
Tomás J. Aragón

Applied Epidemiology Using R

October 14, 2013

University of California, Berkeley School of Public Health,
and the San Francisco Department of Public Health

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

For my wife, Irene, and my children Ángela, Luis, and
Tomás, Jr.

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

Preface

I write this book to introduce R—a language and environment for statistical com-

puting and graphics—to epidemiologists and health data analysts conducting epi-

demiologic studies. From my experience in public health practice, sometimes even

formally trained epidemiologists lack the breadth of analytic skills required at health

departments where resources are very limited. Recent graduates come prepared with

a solid foundation in epidemiological and statistical concepts and principles and

they are ready to run a multivariable analysis (which is not a bad thing we are grate-

ful for highly trained staff). However, what is sometimes lacking is the practical

knowledge, skills, and abilities to collect and process data from multiple sources

(e.g., Census data; reportable diseases, death and birth registries) and to adequately

implement new methods they did not learn in school. One approach to implementing

new methods is to look for the “commands” among their favorite statistical pack-

ages (or to buy a new software program). If the commands do not exist, then the

method may not be implemented. In a sense, they are looking for a custom-made

solution that makes their work quick and easy.

In contrast to custom-made tools or software packages, R is a suite of basic tools

for statistical programming, analysis, and graphics. One will not find a “command”

for a large number of analytic procedures one may want to execute. Instead, R is

more like a set of high quality carpentry tools (hammer, saw, nails, and measuring

tape) for tackling an infinite number of analytic problems, including those for which

custom-made tools are not readily available or affordable. I like to think of R as a

set of extensible tools to implement one’s analysis plan, regardless of simplicity or

complexity. With practice, one not only learns to apply new methods, but one also

develops a depth of understanding that sharpens one’s intuition and insight. With

understanding comes clarity, focused problem-solving, and confidence.

This book is divided into two parts. First, I cover how to process, manipulate, and

operate on data in R. Most books cover this material briefly or leave it for an ap-

pendix. I decided to dedicate a significant amount of space to this topic with the as-

sumption that the average epidemiologist is not familiar with R and a good ground-

vii

viii Preface

ing in the basics will make the later chapters more understandable. Second, I cover

basic epidemiology topics addressed in most books but we infuse R to demonstrate

concepts and to exercise your intuition. Readers may notice a heavier emphasis on

descriptive epidemiology which is what is more commonly used at health depart-

ments, at least as a first step. In this section we do cover regression methods and

graphical displays. I have also included “how to” chapters on a diversity of topics

that come up in public health. My goal is not to be comprehensive in each topic but

to demonstrate how R can be used to implement a diversity of methods relevant to

public health epidemiology and evidence-based practice.

To help us spread the word, this book is available on the World Wide Web

(http://www.medepi.com). I do not want financial or geographical barriers

to limit access to this material. I am only presenting what I have learned from the

generosity of others. My hope is that more and more epidemiologists will embrace

R for epidemiological applications, or at least, include it in their toolbox.

Berkeley, California Tomás J. Aragón

October 14, 2013

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

Acknowledgements

I would like to acknowledge the professors at University of California at Berkeley

that not only taught me the principles and methods of epidemiology, biostatistics,

and demography, but also introduced me to the S language as a tool for exploring and

analyzing epidemiologic data. More specifically, I owe special thanks to Professor

Steve Selvin, Chair of the Division of Biostatistics at the School of Public Health,

Professor Kenneth Wachter, Chair of the Department of Demography, and Professor

Arthur Reingold, Chair of the Division of Epidemiology. Professor Selvin convinced

me that the investment in learning S would pay off in increased productivity and

understanding. From Professor Wachter I learned the fundamentals of demography

and how to use S to program functions for demographic analysis. Professor Reingold

recruited me to direct the UC Berkeley Center for Infectious Diseases & Emergency

Readiness where I have had the opportunity and challenge to think about how to

make this material more accessible to public health epidemiologists.

Using the S language is so much fun! It becomes an extension of one’s analytic

mind. Thanks for getting me started and and for giving me the opportunity to learn

and teach!

Berkeley, California Tomás J. Aragón

ix

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

Contents

Part I Working with R

1 Getting Started With R . 3

1.1 What is R? . 3

1.1.1 Who should learn R? . 4

1.1.2 Why should I learn R? . 4

1.1.3 Where can I get R? . 5

1.2 How do I use R? . 5

1.2.1 Using R on our computer . 5

1.2.2 Does R have epidemiology programs? 6

1.2.3 How should I use these notes? . 7

1.3 Just do it! . 8

1.3.1 Using R as your calculator . 8

1.3.2 Useful R concepts . 9

1.3.3 Useful R functions . 11

1.3.4 How do I get help? . 14

1.3.5 RStudio—An integrated development environment for R . . . 15

1.3.6 Is there anything else that I need? . 15

1.3.7 What’s ahead? . 17

Problems . 21

2 Working with R data objects . 25

2.1 Data objects in R . 25

2.1.1 Atomic vs. recursive data objects . 25

2.1.2 Assessing the structure of data objects 28

2.2 A vector is a collection of like elements . 29

2.2.1 Understanding vectors . 29

2.2.2 Creating vectors . 32

2.2.3 Naming vectors . 37

xi

xii Contents

2.2.4 Indexing vectors . 38

2.2.5 Replacing vector elements (by indexing and assignment) . . . 40

2.2.6 Operations on vectors . 41

2.3 A matrix is a 2-dimensional table of like elements 48

2.3.1 Understanding matrices . 48

2.3.2 Creating matrices . 49

2.3.3 Naming a matrix . 55

2.3.4 Indexing a matrix . 56

2.3.5 Replacing matrix elements . 57

2.3.6 Operations on a matrix . 57

2.4 An array is a n-dimensional table of like elements 62

2.4.1 Understanding arrays . 62

2.4.2 Creating arrays . 65

2.4.3 Naming arrays . 69

2.4.4 Indexing arrays . 69

2.4.5 Replacing array elements . 69

2.4.6 Operations on arrays . 70

2.5 A list is a collection of like or unlike data objects 76

2.5.1 Understanding lists . 76

2.5.2 Creating lists . 78

2.5.3 Naming lists . 79

2.5.4 Indexing lists . 80

2.5.5 Replacing lists components . 83

2.5.6 Operations on lists . 83

2.6 A data frame is a list in a 2-dimensional tabular form 84

2.6.1 Understanding data frames and factors 84

2.6.2 Creating data frames . 87

2.6.3 Naming data frames . 88

2.6.4 Indexing data frames . 90

2.6.5 Replacing data frame components . 92

2.6.6 Operations on data frames . 94

2.7 Managing data objects . 96

2.8 Managing our workspace . 100

Problems . 103

3 Managing epidemiologic data in R . 107

3.1 Entering and importing data . 107

3.1.1 Entering data at the command prompt 107

3.1.2 Importing data from a file . 115

3.1.3 Importing data using a URL . 118

3.2 Editing data . 119

3.2.1 Text editor . 119

3.2.2 The data.entry, edit, or fix functions 119

3.2.3 Vectorized approach . 121

3.2.4 Text processing . 123

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

Contents xiii

3.3 Sorting data . 124

3.4 Indexing (subsetting) data . 126

3.4.1 Indexing . 127

3.4.2 Subsetting . 128

3.5 Transforming data . 129

3.5.1 Numerical transformation . 129

3.5.2 Creating categorical variables (factors) 130

3.5.3 “Re-coding” levels of a categorical variable 132

3.5.4 Use factors instead of dummy variables 135

3.5.5 Conditionally transforming the elements of a vector 135

3.6 Merging data . 136

3.7 Executing commands from, and directing output to, a file 139

3.7.1 The source function . 139

3.7.2 The sink and capture.output functions 140

3.8 Working with missing and “not available” values 142

3.8.1 Testing, indexing, replacing, and recoding 144

3.8.2 Importing missing values with the read.table function . 145

3.8.3 Working with NA values in data frames and factors 146

3.8.4 Viewing number of missing values in tables 148

3.8.5 Setting default NA behaviors in statistical models 149

3.8.6 Working with finite, infinite, and NaN numbers 150

3.9 Working with dates and times . 151

3.9.1 Date functions in the base package . 152

3.9.2 Date functions in the chron and survival packages 158

3.10 Exporting data objects . 158

3.10.1 Exporting to a generic ASCII text file 159

3.10.2 Exporting to R ASCII text file . 161

3.10.3 Exporting to R binary file . 163

3.10.4 Exporting to non-R ASCII text and binary files 164

3.11 Working with regular expressions . 164

3.11.1 Single characters . 165

3.11.2 Character class . 166

3.11.3 Concatenation . 167

3.11.4 Repetition . 168

3.11.5 Alternation . 168

3.11.6 Repetition > Concatenation > Alternation 170

3.11.7 Metacharacters . 170

3.11.8 Other regular expression functions . 172

Problems . 175

Part II Applied Epidemiology

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

xiv Contents

A Available data sets . 183

A.1 Latina Mothers and their Newborn . 183

A.2 Oswego County (outbreak) . 184

A.3 Western Collaborative Group Study (cohort) . 184

A.4 Evans County (cohort) . 185

A.5 Myocardial infarction case-control study . 185

A.6 AIDS surveillance cases . 187

A.7 Hepatitis B surveillance cases . 187

A.8 Measles surveillance cases . 187

A.9 University Group Diabetes Program . 187

A.10 Novel influenza A (H1N1) pandemic . 187

A.10.1 United States reported cases and deaths as of July 23, 2009 . 187

B Outbreak analysis template in R . 189

C Programming and creating R functions . 197

C.1 Basic programming . 197

C.2 Intermediate programming . 198

C.2.1 Control statements . 198

C.2.2 Vectorized approach . 200

C.2.3 Looping . 201

C.3 Writing R functions . 204

C.3.1 Arguments default values . 206

C.3.2 Passing optional arguments using the ... function 208

C.4 Advanced topics . 208

C.4.1 Lexical scoping . 208

Solutions . 211

References . 227

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

Part I

Working with R

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

CHAPTER 1

Getting Started With R

1.1 What is R?

R is a freely available “computational language and environment for data analysis

and graphics.” R is indispensable for anyone that uses and interprets data. As medi-

cal, public health, and research epidemiologists, we use R in the following ways:

• Full-function calculator

• Extensible statistical package

• High-quality graphics tool

• Multi-use programming language

We use R to explore, analyze, and understand epidemiological data. We analyze

data straight out of tables provided in reports or articles as well as analyze usual

data sets. The data might be a large, individual-level data set imported from another

source (e.g., cancer registry); an imported matrix of group-level data (e.g, popula-

tion estimates or projections); or some data extracted from a journal article we are

reviewing. The ability to quantitatively express, graphically explore, and describe

epidemiologic data and processes enables one to work and strengthen one’s epi-

demiologic intuition.

In fact, we only use a very small fraction of the R package. For those who develop

an interest or have a need, R also has many of the statistical modeling tools used by

epidemiologists and statisticians, including logistic and Poisson regression, and Cox

proportional hazard models. However, for many of these routine statistical models,

almost any package will suffice (SAS, Stata, SPSS, etc.). The real advantage of R

is the ability to easily manipulate, explore, and graphically display data. Repetitive

analytic tasks can be automated or streamlined with the creation of simple functions

(programs that execute specific tasks). The initial learning curve is steep, but in the

3

4 1 Getting Started With R

long run one is able to conduct analyses that would otherwise require a tremendous

amounts of programming and time.

Some may find R challenging to learn if they are not familiar with statistical

programming. R was created by statistical programmers and is more often used

by analysts comfortable with matrix algebra and programming. However, even for

those unfamiliar with matrix algebra, there are many analyses one can accomplish

in R without using any advanced mathematics, which would be difficult in other

programs. The ability to easily manipulate data in R will allow one to conduct good

descriptive epidemiology, life table methods, graphical displays, and exploration of

epidemiologic concepts. R allows one to work with data in any way they come.

1.1.1 Who should learn R?

Anyone that uses a calculator or spreadsheet, or analyzes numerical data at least

weekly should seriously consider learning and using R. This includes epidemiol-

ogists, statisticians, physician researchers, engineers, and faculty and students of

mathematics and science courses, to name just a few. We jokingly tell our staff an-

alysts that once they learn R they will never use a spreadsheet program again (well

almost never!).

1.1.2 Why should I learn R?

To implement numerical methods we need a computational tool. On one end of the

spectrum are calculators and spreadsheets for simple calculations, and on the other

end of the spectrum are specialized computer programs for such things as statistical

and mathematical modeling. However, many numerical problems are not easily han-

dled by these approaches. Calculators, and even spreadsheets, are too inefficient and

cumbersome for numerical calculations whose scope and scale change frequently.

Statistical packages are usually tailored for the statistical analysis of data sets and

often lack an intuitive, extensible, open source programming language for tackling

new problems efficiently.1 R can do the simplest and the most complex analysis

efficiently and effectively.

When we learn and use R regularly we will save significant amounts of time and

money. It’s powerful and it’s free! It’s a complete environment for data analysis and

graphics. Its straightforward programming language facilitates the development of

functions to extend and improve the efficiency of our analyses.

1 Read my recommendations for mostly free and open source software (FOSS) at medepi.com.

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

1.2 How do I use R? 5

1.1.3 Where can I get R?

R is available for many computer platforms, including Mac OS, Linux, Microsoft

Windows, and others. R comes as source code or a binary file. Source code needs to

be compiled into an executable program for our computer. Those not familiar with

compiling source code (and that’s most of us) just install the binary program. We

assume most readers will be using R in the Mac OS or MS Windows environment.

Listed here are useful R links:

• R Project home page at http://www.r-project.org/;

• R download page at http://cran.r-project.org;

• Numerous free tutorials are at http://cran.r-project.org/other-docs.

html;

• R Wikibook at http://en.wikibooks.org/wiki/R_Programming;

and

• R Journal at http://journal.r-project.org/.

To install R for Windows, do the the following:

1. Go to http://www.r-project.org/;

2. From the left menu list, click on the “CRAN” (Comprehensive R Archive Net-

work) link;

3. Select a nearby geographic site (e.g., http://cran.cnr.berkeley.edu/);

4. Select appropriate operating system;

5. Select on “base” link;

6. For Windows, save R-X.X.X-win32.exe to the computer; and for Mac OS,

save the R-X.X.X-mini.dmg disk image.

7. Run the installation program and accept the default installation options. That’s

it!

1.2 How do I use R?

1.2.1 Using R on our computer

Use R by typing commands at the R command line prompt (>) and pressing Enter on

our keyboard. This is how to use R interactively. Alternatively, from the R command

line, we can also execute a list of R commands that we have saved in a text file (more

on this later). Here is an example of using R as a calculator:

> 8*4

[1] 32

> (4 + 6)ˆ3

[1] 1000

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

6 1 Getting Started With R

Use the scan function to enter data at the command line. At the end of each line

press the Enter key to move to the next line. Pressing the Enter key twice completes

the data entry.

> quantity <- scan()

1: 34 56 22

4:

Read 3 items

> price <- scan()

1: 19.95 14.95 10.99

4:

Read 3 items

> total <- quantity*price

> cbind(quantity, price, total)

quantity price total

[1,] 34 19.95 678.30

[2,] 56 14.95 837.20

[3,] 22 10.99 241.78

1.2.2 Does R have epidemiology programs?

The default installation of R does not have packages that specifically implement epi-

demiologic applications; however, many of the statistical tools that epidemiologists

use are readily available, including statistical models such as unconditional logis-

tic regression, conditional logistic regression, Poisson regression, Cox proportional

hazards regression, and much more.

To meet the specific needs of public health epidemiologists and health data ana-

lysts, I maintain a freely available suite of Epidemiology Tools: the epitools R

package can be directly installed from within R.

For example, to evaluate the association of consuming jello with a diarrheal ill-

ness after attending a church supper in 1940, we can use the epitab function from

the epitools package. In the R code that follows, the # symbol precedes com-

ments that are not evaluated by R.

> library(epitools) #load ’epitools’ package

> data(oswego) #load Oswego dataset

> attach(oswego) #attach dataset

> round(epitab(jello, ill, method = "riskratio")$tab, 3)

Outcome

Predictor N p0 Y p1 riskratio lower upper p.value

N 22 0.423 30 0.577 1.000 NA NA NA

Y 7 0.304 16 0.696 1.206 0.844 1.723 0.442

> round(epitab(jello, ill, method = "oddsratio")$tab, 3)

Outcome

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

1.2 How do I use R? 7

Predictor N p0 Y p1 oddsratio lower upper p.value

N 22 0.759 30 0.652 1.000 NA NA NA

Y 7 0.241 16 0.348 1.676 0.59 4.765 0.442

> detach(oswego) #detach dataset

The risk of illness among those that consumed jello was 69.6% compared to 57.7%

among those that did not consume jello. Both the risk ratio and the odds ratio were

elevated but we cannot exclude random error as an explanation (p value = 0.44).

We also notice that the odds ratio is not a good approximation to the risk ratio. This

occurs when the risks among the exposed and unexposed is greater than 10%. In

this case, the risks of diarheal illness were 69.6% and 57.7% among exposed and

nonexposed, respectively.

1.2.3 How should I use these notes?

The best way to learn R is to use it! Use it as our calculator! Use it as our spread-

sheet! Finally read these notes sitting at a computer and use R interactively (this

works best sitting in a cafe that brews great coffee and plays good music). In this

book, when we display R code it appears as if we are typing the code directly at the

R command line:

> x <- matrix(1:9, nrow = 3, ncol = 3)

> x

[,1] [,2] [,3]

[1,] 1 4 7

[2,] 2 5 8

[3,] 3 6 9

Sometimes the R code appears as it would in a text editor (e.g., Notepad) before it

has been evaluated by R. When a text editor version of R code is displayed it appears

without the command line prompt and without output:

x <- matrix(1:9, nrow = 3, ncol = 3)

x

When the R code displayed exceeds the page width it will continue on the next

line but indented. Here’s an example:

agegrps <- c("Age < 1", "Age 1 to 4", "Age 5 to 14", "Age 15

to 24", "Age 25 to 44", "Age 45 to 64", "Age 64+")

Although we encourage initially to use R interactively by typing expressions

at the command line, as a general rule, it is much better to type our code into a

text editor. We save our code with a convenient file name such as job01.R2. For

2 The .R extension, although not necessary, is useful when searching for R command files. Addi-
tionally, this file extension is recognized by some text editors.

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

8 1 Getting Started With R

Table 1.1 Selected math operators

Operator Description Try these examples

+ addition 5+4

− subtraction 5-4

∗ multiplication 5*4

/ division 5/4

ˆ exponentiation 5ˆ4

− unary minus (change current sign) -5

abs absolute value abs(-23)

exp exponentiation (e to a power) exp(8)

log logarithm (default is natural log) log(exp(8))

sqrt square root sqrt(64)

%/% integer divide 10%/%3

%% modulus 10%%3

%*% matrix multiplication xx <- matrix(1:4, 2,

2)

xx%*%c(1, 1)

c(1, 1)%*%xx

convenience, R comes with its own text editor. For Windows, under File, select New

script to open an empty text file. For Mac OS, under File, select New Document.

As before, save this text file with a .R extension. Within R’s text editor, we can

highlight and run selected commands.

The code in our text editor can be run in the following ways:

• Highlight and run selected command in the R editor;

• Paste the code directly into R at the command line;

• Run the file in batch mode from the R command line using the source("job01.R").

1.3 Just do it!

1.3.1 Using R as your calculator

Open R and start using it as our calculator. The most common math operators are

displayed in Table 1.1. From now on make R our default calculator! Study the exam-

ples and spend a few minutes experimenting with R as a calculator. Use parentheses

as needed to group operations. Use the keyboard Up-arrow to recall what we previ-

ously entered at the command line prompt.

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

1.3 Just do it! 9

Table 1.2 Types of evaluable expressionsa

Expression type Try these examples

literal "hello, I’m John Snow" #character

3.5 #numeric

TRUE; FALSE #logical

math operation 6*7

assignment x <- 4*4

data object x

function log(x)

a lines preceded with # are not evaluated

1.3.2 Useful R concepts

1.3.2.1 Types of evaluable expressions

Every expression that is entered at the R command line is evaluated by R and returns

a value. A literal is the simplist expression that can be evaluated (number, charac-

ter string, or logical value). Mathematical operations involve numeric literals. For

example, R evaluates the expression 4*4 and returns the value 16). The exception

to this is when an evaluable expression is assigned an object name: x <- 4*4. To

display the assigned expression, wrap the expression in parentheses: (x <- 4*4),

or type the object name.

> 4*4

[1] 16

> x <- 4*4

> x

[1] 16

> (x <- 4*4)

[1] 16

Finally, evaluable expressions must be separated by either newline breaks or a semi-

colon.

> x <- 4*4; x

[1] 16

Table 1.2 summarizes evaluable expressions.

1.3.2.2 Using the assignment operator

Most calculators have a memory function: the ability to assign a number or numer-

ical result to a key for recalling that number or result at a later time. The same is

true in R but it is much more flexible. Any evaluable expression can be assigned a

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

10 1 Getting Started With R

name and recalled at a later time. We refer to these variables as data objects. We use

the assignment operator (<-) to name an evaluable expression and save it as a data

object.

> xx <- "hello, what’s your name"

> xx

[1] "hello, what’s your name"

Wrapping the assignment expression in parentheses makes the assignment and dis-

plays the data object value(s).

> yy <- 5ˆ3 #assignment; no display

> (yy <- 5ˆ3) #assignment; displays evaluation

[1] 125

In this book, we might use (yy <- 5ˆ3) to display the value of yy and save

space on the page. In practice, this is more common:

> yy <- 5ˆ3

> yy

[1] 125

Multiple assignments work and are read from right to left:

> aa <- bb <- 99

> aa; bb

[1] 99

[1] 99

Finally, the equal sign (=) can be used for assignments, although I prefer and the <-

symbol:

> ages = c(34, 45, 67)

> ages

[1] 34 45 67

The reason I prefer <- for assigning object names in the workspace is because

later we use = for assigning values to function arguments. For example,

> x <- 20:25 #object name assignment

> x

[1] 20 21 22 23 24 25

> sample(x = 1:10, size = 5) #argument assignments

[1] 9 6 3 2 5

> x

[1] 20 21 22 23 24 25

The first x is an object name assignment in the workspace which persist during the R

session. The second x is a function argument assignment which is only recognized

locally in the function and only for the duration of the function execution. For clarity,

it is better to keep these types of assignments separate in our mind by using different

assignment symbols.

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

1.3 Just do it! 11

Study these previous examples and spend a few minutes using the assignment

operator to create and call data objects. Try to use descriptive names if possible. For

example, suppose we have data on age categories; we might name the data agecat,

age.cat, or age cat3. These are all acceptable.

1.3.3 Useful R functions

When we start R you have opened a workspace. The first time we use R, the

workspace is empty. Every time we create a data object, it is in the workspace.

If a data object with the same name already exists, the old data object will be over-

written withou warning, so be careful. To list the objects in your workspace use the

ls or objects functions:

> ls() ##display workspace objects

character(0)

> x <- 1:5

> ls()

[1] "x"

> x

[1] 1 2 3 4 5

> x <- 10:15 ##overwrites without warning

> x

[1] 10 11 12 13 14 15

Data objects can be saved between sessions. We will be prompted with “Save

workspace image?” (You can also use save.image() at the command line.) The

workspace image is saved in a file called .RData.4 Use getwd() to display the

file path to the .RData file. Table 1.3 on the following page has more useful R

functions.

1.3.3.1 What are packages?

R has many available functions. When we open R, several packages are attached by

default. Each package has its own suite of functions. To display the list of attached

packages use the search function.

> search() # Linux

[1] ".GlobalEnv" "package:stats" "package:graphics"

3 In older versions of R, the underscore symbol () could be used for assignments, but this is no
longer permitted. The “ ” symbol can be used to make your object name more readable and is
consistent with other software.
4 In some operating systems files names that begin with a period (.) are hidden files and are not
displayed by default. You may need to change the viewing option to see the file.

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

12 1 Getting Started With R

Table 1.3 Useful R functions

Function Description Try these examples

q Quit R q()

ls
objects

List objects ls()

objects() #equivalent

rm
remove

Remove object(s) yy <- 1:5; ls()

rm(yy); ls()

#remove everything:

caution!

rm(list = ls()); ls()

help Open help instructions; or get help
on specific topic.

help()

help(plot)

?plot #equivalent

help.search Search help system given character
string

help.search("print")

help.start Start help browser help.start()

apropos Displays all objects in the search list
matching topic

apropos(plot)

getwd Get working directory getwd()

setwd Set working directory setwd("c:\mywork\rproject")

args Display arguments of function args(sample)

example Runs example of function example(plot)

data Information on available R data sets;
load data set

data() #displays data sets

data(Titanic) #load data

set

save.image Saves current workspace to .RData save.image()

[4] "package:grDevices" "package:utils" "package:datasets"

[7] "package:methods" "Autoloads" "package:base"

To display the file paths to the packages use the searchpaths function.

> searchpaths() # Linux

[1] ".GlobalEnv" "/usr/lib/R/library/stats"

[3] "/usr/lib/R/library/graphics" "/usr/lib/R/library/grDevices"

[5] "/usr/lib/R/library/utils" "/usr/lib/R/library/datasets"

[7] "/usr/lib/R/library/methods" "Autoloads"

[9] "/usr/lib/R/library/base"

To learn more about a specific package enter library(help=package name).

Alternatively, we can get more detailed information by entering help.start()

which opens the HTML help page. On this page click on the Packages link to see the

available packages. If we need to load a package enter library(package name).

For example, when we cover survival analysis we will need to load the survival

package.

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

1.3 Just do it! 13

1.3.3.2 What are function arguments?

We will be using many R functions for data analysis, so we need to know some

function basics. Suppose we are interested in taking a random sample of days from

the month of June, which has 30 days. We want to use the {sample} function but

we forgot the syntax. Let’s explore:

> sample

function (x, size, replace = FALSE, prob = NULL)

{

if (length(x) == 1 && x >= 1) {

if (missing(size))

size <- x

.Internal(sample(x, size, replace, prob))

}

else {

if (missing(size))

size <- length(x)

x[.Internal(sample(length(x), size, replace, prob))]

}

}

<environment: namespace:base>

Whoa! What happened? Whenever we type the function name without any parenthe-

ses it usually returns the whole function code. This is useful when we start program-

ming and we need to alter an existing function, borrow code for our own functions,

or study the code for learning how to program. If we are already familiar with the

sample function we may only need to see the syntax of the function arguments.

For this we use the args function:

> args(sample)

function (x, size, replace = FALSE, prob = NULL)

NULL

The terms x, size, replace, and prob are the function arguments. First, notice

that replace and prob have default values; that is, we do not need to specify

these arguments unless we want to override the default values. Second, notice the

order of the arguments. If you enter the argument values in the same order as the

argument list we do not need to specify the argument.

> dates <- 1:30

> sample(dates, 18)

[1] 29 12 28 8 5 2 13 24 20 18 11 14 23 1 21 4 22 9

Third, if we enter the arguments out of order then we will get either an error mes-

sage or an undesired result. Arguments entered out of their default order need to be

specified.

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

14 1 Getting Started With R

> sample(18, dates) #gives undesired results

[1] 2

> #No! We wanted sample of size = 18

> sample(size = 18, x = dates) #gives desired result

[1] 6 29 1 27 13 7 24 19 21 5 22 12 14 23 25 15 18 11

Fourth, when we specify an argument we only need to type a sufficient number of

letters so that R can uniquely identify it from the other arguments.

> sample(s = 18, x = dates, r = T) #sampling with replacement

[1] 23 10 23 27 13 14 1 7 23 26 28 3 23 28 9 6 23 5

Fifth, argument values can be any valid R expression (including functions) that

yields to an appropriate value. In the following example we see two sample func-

tions that provide random values to the sample function arguments.

> sample(s = sample(1:100, 1), x = sample(1:10, 5), r=T)

[1] 3 4 9 3 3 9 10 3 10 3 10 4 9 3 5 9 4 5

Finally, if we need more guidance on how to use the sample function enter

?sample or help(sample).

1.3.4 How do I get help?

R has extensive help capabilities. From the main menu select Help to get you started

(Figure 1.1 on the next page). The Frequently Asked Questions (FAQ) and R man-

uals are available from this menu. The R functions (text). . . , Html help, Search

help. . . , and Apropos. . . selections are also available from the command line.

From the command line, we have several options. Suppose you are interested in

learning abouting help capabilities.

> ?help #opens help page for ’help’ function

> help() #opens help page for ’help’ function

> help(help) #opens help page for ’help’ function

> help.start() #starts HTML help page

> help.search("help") #searches help system for "help"

> apropos("help") #displays ’help’ objects in search list

> apropos("help")

[1] "help" "help.request" "help.search" "help.start"

To learn about about available data sets use the data function:

> data() #displays available data sets

> try(data(package = "survival")) #lists survival pkg data sets

> help(pbc, package = "survival") #displays pbc data help page

Figure 1.1 on the facing page shows that a R Graphical User Interface (GUI) main

menu will have a Help selection.

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

1.3 Just do it! 15

Fig. 1.1 Select Help from the main menu in the MS Windows R GUI.

1.3.5 RStudio—An integrated development environment for R

RStudio5 is a free and open source integrated development environment (IDE) for

R that runs on any desktop (Windows, Mac, or Linux) (Figure 1.2 on the next page).

For our purposes, I highly recommend the installation of RStudio: it has all the tools

we need to learn and apply R.

1.3.6 Is there anything else that I need?

Maybe.6 A good text editor will make your programming and data processing easier

and more efficient. A text editor is a program for, we guessed it, editing text! The

functionality we look for in a text editor are the following:

1. Toggle between wrapped and unwrapped text

2. Block cutting and pasting (also called column editing)

3. Easy macro programming

4. Search and replace using regular expressions

5. Ability to import large datasets for editing

When we are programming we want our text to wrap so we can read all of your

code. When we import a data set that is wider than the screen, we do not want the

data set to wrap: we want it to appear in its tabular format. Column editing allows

us to cut and paste columns of text at will. A macro is just a way for the text editor

to learn a set of keystrokes (including search and replace) that can be executed

5 http://www.rstudio.org/
6 If your only goal is to learn R, then RStudio is more than sufficient.

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

16 1 Getting Started With R

Fig. 1.2 RStudio—An integrated development environment for R that runs in Linux, Mac OS, or
MS Windows. In this Figure, RStudio is running in MS Windows.

Fig. 1.3 Emacs and ESS in the Mac OS

as needed. Searching using regular expressions means searching for text based on

relative attributes. For example, suppose you want to find all words that begin with

“b,” end with “g,” have any number of letters in between but not “r” and “f.” Regular

expression searching makes this a trivial task. These are powerful features that once

we use regularly, we will wonder how we ever got along without them.

If we do not want to install a text editing program then we can use the default

text editor that comes with our computer operating system (gedit in Ubuntu Linux,

TextEdit in Mac OS, Notepad in Windows). However, it is much better to install a

text editor that works with R. My favorite text editor is the free and open source

GNU Emacs. GNU Emacs can be extended with the “Emacs Speaks Statistics”

(ESS) package. For more information on Emacs and ESS pre-installed for Win-

dows, visit http://ess.r-project.org/. For the Mac OS, I recommend

GNU Emacs for Mac OS7 (Figure 1.3) or Aquamacs.8

7 http://emacsformacosx.com/
8 http://aquamacs.org/

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

1.3 Just do it! 17

Table 1.4 Types of actions taken on R data objects and where to find examples

Action Vector Matrix Array List Data Frame

Creating Table 2.4
(p. 34)

Table 2.11
(p. 50)

Table 2.18
(p. 65)

Table 2.24
(p. 79)

Table 2.30
(p. 88)

Naming Table 2.5
(p. 37)

Table 2.12
(p. 54)

Table 2.19
(p. 68)

Table 2.25
(p. 80)

Table 2.31
(p. 89)

Indexing Table 2.6
(p. 39)

Table 2.13
(p. 56)

Table 2.20
(p. 69)

Table 2.26
(p. 80)

Table 2.32
(p. 90)

Replacing Table 2.7
(p. 41)

Table 2.14
(p. 57)

Table 2.21
(p. 69)

Table 2.27
(p. 82)

Table 2.33
(p. 93)

Operating on Table 2.8
(p. 42)

Table 2.15
(p. 58)

Table 2.22
(p. 70)

Table 2.28
(p. 83)

Table 2.34
(p. 93)

Table 2.9
(p. 46)

1.3.7 What’s ahead?

To the novice user, R may seem complicated and difficult to learn. In fact, for its

immense power and versatility, R is easier to learn and deploy compared to other

statistical software (e.g. SAS, Stata, SPSS). This is because R was built from the

ground up to be an efficient and intuitive programming language and environment.

If one understands the logic and structure of R, then learning proceeds quickly. Just

like a spoken language, once we know its rules of grammar, syntax, and pronuncia-

tion, and can write legible sentences, we can figure out how to communicate almost

anything. Before the next chapter, we want to describe the “forest”: the logic and

structure of working with R objects and epidemiologic data.

1.3.7.1 Working with R objects

For our purposes, there are only five types of data objects in R9 and five types of

actions we take on these objects (Table 1.4). That’s it! No more, no less. You will

learn to create, name, index (subset), replace components of, and operate on these

data objects using a systematic, comprehensive approach. As you learn about each

new data object type, it will reinforce and extend what you learned previously.

A vector is a collection of elements (usually numbers):

> x <- c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)

> x

[1] 1 2 3 4 5 6 7 8 9 10 11 12

A matrix is a 2-dimensional representaton of a vector:

9 The sixth type of R object is a function. Functions can create, manipulate, operate on, and store
data; however, we will use functions primarily to execute a series of R “commands” and not as
primary data objects.

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

18 1 Getting Started With R

> y <- matrix(x, nrow = 2)

> y

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 3 5 7 9 11

[2,] 2 4 6 8 10 12

An array is a 3 or more dimensional represention of a vector:

> z <- array(x, dim = c(2, 3, 2))

> z

, , 1

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

, , 2

[,1] [,2] [,3]

[1,] 7 9 11

[2,] 8 10 12

A list is a collection of “bins,” each containing any kind of R object:

> mylist <- list(x, y, z)

> mylist

[[1]]

[1] 1 2 3 4 5 6 7 8 9 10 11 12

[[2]]

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 3 5 7 9 11

[2,] 2 4 6 8 10 12

[[3]]

, , 1

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

, , 2

[,1] [,2] [,3]

[1,] 7 9 11

[2,] 8 10 12

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

1.3 Just do it! 19

A data frame is a list in tabular form where each “bin” contains a data vector of the

same length. A data frame is the usual tabular data set familiar to epidemiologists.

Each row is an record and each column (“bin”) is a field.

> kids <- c("Tomasito", "Lusito", "Angelita")

> gender <- c("boy", "boy", "girl")

> age <- c(8, 7, 4)

> mydf <- data.frame(kids, gender, age)

> mydf

kids gender age

1 Tomasito boy 8

2 Lusito boy 7

3 Angelita girl 4

In the next chapter we explore these R data objects in greater detail.

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

20 1 Getting Started With R

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

1.3 Just do it! 21

Problems

1.1. If you have not done so already, install R on your personal computer. What is

the R workspace file on your operating systems? What is the file path to your R

workspace file? What is the name of this workspace file?

1.2. By default, which R packages come already loaded? What are the file paths to

the default R packages?

1.3. List all the object in the current workspace. If there are none, create some data

objects. Using one expression, remove all the objects in the current workspace.

1.4. One inch equals 2.54 centimeters. Correct the following R code and create a

conversion table.

inches <- 1:12

centimeters <- inches/2.54

cbind(inches, centimeters)

1.5. To convert between temperatures in degrees Celsius (C) and Farenheit (F), we

use the following conversion formulas:

C = (F −32)
5

9

F =
9

5
C+32

At standard temperature and pressure, the freezing and boiling points of water are

0 and 100 degrees Celsius, respectively. What are the freezing and boiling points of

water in degrees Fahrenheit?

1.6. For the Celsius temperatures 0, 5, 10, 15, 20, 25, ..., 80, 85, 90, 95, 100, con-

struct a conversion table that displays the corresponding Fahrenheit temperatures.

Hint: to create the sequence of Celsius temperatures use seq(0, 100, 5).

1.7. BMI is a reliable indicator of total body fat, which is related to the risk of

disease and death. The score is valid for both men and women but it does have some

limits. BMI does have some limitations: it may overestimate body fat in athletes and

others who have a muscular build, it may underestimate body fat in older persons

and others who have lost muscle mass.

Table 1.5 Body mass index classification

BMI Classification

< 18.5 Underweight
[18.5,25) Normal weight
[25,30) Overweight
≥ 30 Obesity

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

22 1 Getting Started With R

Body Mass Index (BMI) is calculated from your weight in kilograms and height

in meters:

BMI =
kg

m2

1kg ≈ 2.2lb

1m ≈ 3.3ft

Calculate your BMI (don’t report it to us).

1.8. Using Table 1.1 on page 8, explain in words, and use R to illustrate, the differ-

ence between modulus and integer divide.

1.9. In mathematics, a logarithm (to base b) of a number x is written logb(x) and

equals the exponent y that satisfies x = by. In other words,

y = logb(x)

is equivalent to

x = by

In R, the log function is to the base e. Implement the following R code and

study the graph:

curve(log(x), 0, 6)

abline(v = c(1, exp(1)), h = c(0, 1), lty = 2)

What kind of generalizations can you make about the natural logarithm and its

base—the number e?

1.10. Risk (R) is a probability bounded between 0 and 1. Odds is the following

transformation of R:

Odds =
R

1−R

Use the following code to plot the odds:

curve(x/(1-x), 0, 1)

Now, use the following code to plot the log(odds):

curve(log(x/(1-x)), 0, 1)

What kind of generalizations can you make about the log(odds) as a transformation

of risk?

1.11. Use the data in Table 1.6 on the next page. Assume one is HIV-negative. If the

probability of infection per act is p, then the probability of not getting infected per

act is (1− p). The probability of not getting infected after 2 consecutive acts is (1−
p)2, and after 3 consecutive acts is (1− p)3. Therefore, the probability of not getting

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

1.3 Just do it! 23

Table 1.6 Estimated per-act risk (transmission probability) for acquisition of HIV, by exposure
route to an infected source. Source: CDC [1]

Exposure route Risk per 10,000 exposures

Blood transfusion (BT) 9,000
Needle-sharing injection-drug use (IDU) 67
Receptive anal intercourse (RAI) 50
Percutaneous needle stick (PNS) 30
Receptive penile-vaginal intercourse (RPVI) 10
Insertive anal intercourse (IAI) 6.5
Insertive penile-vaginal intercourse (IPVI) 5
Receptive oral intercourse on penis (ROI) 1
Insertive oral intercourse with penis (IOI) 0.5

infected infected after n consecutive acts is (1− p)n, and the probability of getting

infected after n consecutive acts is 1− (1− p)n. For each non-blood transfusion

transmission probability (per act risk) in Table 1.6, calculate the cumulative risk of

being infected after one year (365 days) if one carries out the same act once daily

for one year with an HIV-infected partner. Do these cumulative risks make intuitive

sense? Why or why not?

1.12. The source function in R is used to “source” (read in) ASCII text files. Take

a group of R commands that worked from a previous problem above and paste them

into an ASCII text file and save it with the name job01.R. Then from R command

line, source the file. Here is how it looked on my Linux computer running R:

> source("/home/tja/Documents/courses/ph251d/jobs/job01.R")

Describe what happened. Now, set echo option to TRUE.

> source("/home/tja/Documents/courses/ph251d/jobs/job01.R", echo = TRUE)

Describe what happened. To improve your understanding read the help file on the

source function.

1.13. Now run the source again (without and with echo = TRUE) but each

time create a log file using the sink function. Create two log files: job01.log1a

and job01.log1b.

> sink("/home/tja/Documents/courses/ph251d/jobs/job01.log1a")

> source("/home/tja/Documents/courses/ph251d/jobs/job01.R")

> sink() #closes connection

>

> sink("/home/tja/Documents/courses/ph251d/jobs/job01.log1b")

> source("/home/tja/Documents/courses/ph251d/jobs/job01.R", echo = TRUE)

> sink() #closes connection

Examine the log files and describe what happened.

1.14. Create a new job file (job02.R) with the following code:

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

24 1 Getting Started With R

n <- 365

per.act.risk <- c(0.5, 1, 5, 6.5, 10, 30, 50, 67)/10000

risks <- 1-(1-per.act.risk)ˆn

show(risks)

Source this file at the R command line and describes what happens.

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

CHAPTER 2

Working with R data objects

2.1 Data objects in R

2.1.1 Atomic vs. recursive data objects

The analysis of data in R involves creating, manipulating, and operating on data

objects using functions. Data in R are organized as objects and have been assigned a

name. We have already been introduced to several R data objects. We will now make

some additional distinctions. Every data object has a mode and length. The mode of

an object describes the type of data it contains and is available by using the mode

function. An object can be of mode character, numeric, logical, list, or function.

> fname <- c("Juan", "Miguel"); mode(fname)

[1] "character"

> age <- c(34, 20); mode(age)

[1] "numeric"

> lt25 <- age<25

> lt25

[1] FALSE TRUE

> mode(lt25)

[1] "logical"

> mylist <- list(fname, age); mode(mylist)

[1] "list"

> mydat <- data.frame(fname, age); mode(mydat)

[1] "list"

> myfun <- function(x) {xˆ2}

> myfun(5)

25

26 2 Working with R data objects

[1] 25

> mode(myfun)

[1] "function"

Data objects are further categorized into atomic or recursive objects. An atomic

data object can only contain elements from one, and only one, of the following

modes: character, numeric, or logical. Vectors, matrices, and arrays are atomic data

objects. A recursive data object can contain data objects of any mode. Lists, data

frames, and functions are recursive data objects. We start by reviewing atomic data

objects.

A vector is a collection of like elements without dimensions.1 The vector el-

ements are all of the same mode (either character, numeric, or logical). When R

returns a vector the [n] indicates the position of the element displayed to its imme-

diate right.

> y <- c("Pedro", "Paulo", "Maria")

> y

[1] "Pedro" "Paulo" "Maria"

> x <- c(1, 2, 3, 4, 5)

> x

[1] 1 2 3 4 5

> x < 3

[1] TRUE TRUE FALSE FALSE FALSE

A matrix is a collection of like elements organized into a 2-dimensional (tabular)

data object. We can think of a matrix as a vector with a 2-dimensional structure.

When R returns a matrix the [n,] indicates the nth row and [,m] indicates the

mth column.

> x <- c("a", "b", "c", "d")

> y <- matrix(x, 2, 2)

> y

[,1] [,2]

[1,] "a" "c"

[2,] "b" "d"

An array is a collection of like elements organized into a n-dimensional data

object. We can think of an array as a vector with an n-dimensional structure. When

R returns an array the [n,,] indicates the nth row and [,m,] indicates the mth

column, and so on.

> x <- 1:8

> y <- array(x, dim=c(2, 2, 2))

> y

, , 1

1 In other programming languages, vectors are either row vectors or column vectors. R does not
make this distinction until it is necessary.

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

2.1 Data objects in R 27

[,1] [,2]

[1,] 1 3

[2,] 2 4

, , 2

[,1] [,2]

[1,] 5 7

[2,] 6 8

If we try to include elements of different modes in an atomic data object, R will

coerce the data object into a single mode based on the following hierarchy: character

> numeric > logical. In other words, if an atomic data object contains any character

element, all the elements are coerced to character.

> c("hello", 4.56, FALSE)

[1] "hello" "4.56" "FALSE"

> c(4.56, FALSE)

[1] 4.56 0.00

A recursive data object can contain one or more data objects where each object

can be of any mode. Lists, data frames, and functions are recursive data objects. Lists

and data frames are of mode list, and functions are of mode function (Table 2.1 on

the next page).

A list is a collection of data objects without any restrictions:

> x <- c(1, 2, 3)

> y <- c("Male", "Female", "Male")

> z <- matrix(1:4, 2, 2)

> mylist <- list(x, y, z)

> mylist

[[1]]

[1] 1 2 3

[[2]]

[1] "Male" "Female" "Male"

[[3]]

[,1] [,2]

[1,] 1 3

[2,] 2 4

A data frame is a list with a 2-dimensional (tabular) structure. Epidemiolo-

gists are very experienced working with data frames where each row usually repre-

sents data collected on individual subjects (also called records or observations) and

columns represent fields for each type of data collected (also called variables).

> subjno <- c(1, 2, 3, 4)

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

28 2 Working with R data objects

Table 2.1 Summary of six types of data objects in R

Data object Possible mode Default class

Atomic

vector character, numeric, logical NULL

matrix character, numeric, logical NULL

array character, numeric, logical NULL

Recursive

list list NULL

data frame list data frame

function function NULL

> age <- c(34, 56, 45, 23)

> sex <- c("Male", "Male", "Female", "Male")

> case <- c("Yes", "No", "No", "Yes")

> mydat <- data.frame(subjno, age, sex, case)

> mydat

subjno age sex case

1 1 34 Male Yes

2 2 56 Male No

3 3 45 Female No

4 4 23 Male Yes

> mode(mydat)

[1] "list"

2.1.2 Assessing the structure of data objects

Summarized in Table 2.1 are the key attributes of atomic and recursive data objects.

Data objects can also have class attributes. Class attributes are just a way of letting

R know that an object is “special,” allowing R to use specific methods designed

for that class of objects (e.g., print, plot, and summary methods). The class

function displays the class if it exists. For our purposes, we do not need to know any

more about classes.

Frequently, we need to assess the structure of data objects. We already know that

all data objects have a mode and length attribute. For example, let’s explore the infert

data set that comes with R. The infert data comes from a matched case-control

study evaluating the occurrence of female infertility after spontaneous and induced

abortion.

> data(infert) #loads data

> mode(infert)

[1] "list"

> length(infert)

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

2.2 A vector is a collection of like elements 29

[1] 8

At this point we know that the data object named “infert” is a list of length 8. To

get more detailed information about the structure of infert use the str function

(str comes from “str”ucture).

> str(infert)

‘data.frame’: 248 obs. of 8 variables:

$ education : Factor w/ 3 levels "0-5yrs",..: 1 1 1 1 ...

$ age : num 26 42 39 34 35 36 23 32 21 28 ...

$ parity : num 6 1 6 4 3 4 1 2 1 2 ...

$ induced : num 1 1 2 2 1 2 0 0 0 0 ...

$ case : num 1 1 1 1 1 1 1 1 1 1 ...

$ spontaneous : num 2 0 0 0 1 1 0 0 1 0 ...

$ stratum : int 1 2 3 4 5 6 7 8 9 10 ...

Great! This is better. We now know that infert is a data frame with 248 ob-

servations and 8 variables. The variable names and data types are displayed along

with their first few values. In this case, we now have sufficient information to start

manipulating and analyzing the infert data set.

Additionally, we can extract more detailed structural information that becomes

useful when we want to extract data from an object for further manipulation or

analysis (Table 2.2 on the next page). We will see extensive use of this when we

start programming in R.

To get practice calling data from the command line, enter data() to display the

available data sets in R. Then enter data(data set) to load a dataset. Study the

examples in Table 2.2 on the following page and spend a few minutes exploring the

structure of the data sets we have loaded. To display detailed information about a

specific data set use ?data set at the command prompt (e.g., ?infert).

2.2 A vector is a collection of like elements

2.2.1 Understanding vectors

A vector is a collection of like elements (i.e., the elements all have the same mode).

There are many ways to create vectors (see Table 8). The most common way of

creating a vector is using the concatenation function c:

> #numeric

> chol <- c(136, 219, 176, 214, 164)

> chol

[1] 136 219 176 214 164

> #character

> fname <- c("Mateo", "Mark", "Luke", "Juan", "Jaime")

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

30 2 Working with R data objects

Table 2.2 Useful functions to assess R data objects

Function Description Try these examples

Returns summary objects

str Displays summary of data object
structure

str(infert)

attributes Returns list with data object
attributes

attributes(infert)

Returns specific information

mode Returns mode of object mode(infert)

class Returns class of object, if it exists class(infert)

length Returns length of object length(infert)

dim Returns vector with object
dimensions, if applicable

dim(infert)

nrow Returns number of rows, if applicable nrow(infert)

ncol Returns number of columns, if
applicable

ncol(infert)

dimnames Returns list containing vectors of
names for each dimension, if
applicable

dimnames(infert)

rownames Returns vector of row names of a
matrix-like object

rownames(infert)

colnames Returns vector of column names of a
matrix-like object

colnames(infert)

names Returns vector of names for the list,
if applicable (for a data frame it
returns the field names)

names(infert)

row.names Returns vector of row names for a
data frame

row.names(infert)

head Display first 6 lines of a data frame head(infert)

infert[1:6,] #equivalent

> fname

[1] "Mateo" "Mark" "Luke" "Juan" "Jaime"

> #logical

> z <- c(T, T, F, T, F)

> z

[1] TRUE TRUE FALSE TRUE FALSE

A single digit is also a vector; that is, a vector of length = 1. Let’s confirm this.

> 5

[1] 5

> is.vector(5)

[1] TRUE

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

2.2 A vector is a collection of like elements 31

2.2.1.1 Boolean operations on vectors

In R, we use relational and logical operators (Table 2.3 on page 33) to conduct

Boolean queries. Boolean operations is a methodological workhorse of data analy-

sis. For example, suppose we have a vector of female movie stars and a correspond-

ing vector of their ages (as of January 16, 2004), and we want to select a subset of

actors based on age criteria.

> movie.stars

[1] "Rebecca De Mornay" "Elisabeth Shue" "Amanda Peet"

[4] "Jennifer Lopez" "Winona Ryder" "Catherine Zeta Jones"

[7] "Reese Witherspoon"

> ms.ages

[1] 42 40 32 33 32 34 27

Let’s select the actors who are in their 30s. This is done using logical vectors that

are created by using relational operators (<, >, <=, >=, ==, !=). Study the following

example:

> #logical vector for stars with ages >=30

> ms.ages >= 30

[1] TRUE TRUE TRUE TRUE TRUE TRUE FALSE

> #logical vector for stars with ages <40

> ms.ages < 40

[1] FALSE FALSE TRUE TRUE TRUE TRUE TRUE

> #logical vector for stars with ages >=30 and <40

> (ms.ages >= 30) & (ms.ages < 40)

[1] FALSE FALSE TRUE TRUE TRUE TRUE FALSE

> thirtysomething <- (ms.ages >= 30) & (ms.ages < 40)

> #indexing vector based on logical vector

> movie.stars[thirtysomething]

[1] "Amanda Peet" "Jennifer Lopez" "Winona Ryder"

[4] "Catherine Zeta Jones"

We also saw that we can compare logical vectors using logical operators (&, |, !).

For more examples see Table 7. The expression movie.stars[thirtysomething]

is an example of indexing using a logical vector. Now, we can use the ! function to

select the stars that are not “thirtysomething.” Study the following:

> thirtysomething

[1] FALSE FALSE TRUE TRUE TRUE TRUE FALSE

> !thirtysomething

[1] TRUE TRUE FALSE FALSE FALSE FALSE TRUE

> movie.stars[!thirtysomething]

[1] "Rebecca De Mornay" "Elisabeth Shue" "Reese Witherspoon"

To summarize:

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

32 2 Working with R data objects

• Logical vectors are created using Boolean comparisons,

• Boolean comparisons are constructed using relational and logical operators

• Logical vectors are commonly used for indexing (subsetting) data objects

Before moving on, we need to be sure we understand the previous examples, then

study the examples in Table 2.3 on the facing page. For practice, study the examples

and spend a few minutes creating simple numeric vectors, then (1) generate logical

vectors using relational operators, (2) use these logical vectors to index the original

numerical vector or another vector, (3) generate logical vectors using the combina-

tion of relational and logical operators, and (4) use these logical vectors to index the

original numerical vector or another vector.

The element-wise exclusive “or” operator (xor) returns TRUE if either compar-

ison element is TRUE, but not if both are TRUE. In contrast, the | returns TRUE if

either or both comparison elements are TRUE.

The && and || logical operators are used for control flow in if functions. If

logical vectors are provided, only the first element of each vector is used. Therefore,

for element-wise comparisons of 2 or more vectors, use the & and | operators but

not the && and || operators.

2.2.2 Creating vectors

Vectors are created directly, or indirectly as the result of manipulating an R object.

The c function for concatenating a collection has been covered previously. Another,

possibly more convenient, method for collecting elements into a vector is with the

scan function.

> x <- scan()

1: 45 67 23 89

5:

Read 4 items

> x

[1] 45 67 23 89

This method is convenient because we do not need to type c, parentheses, and com-

mas to create the vector. The vector is created after executing a newline twice.

To generate a sequence of consecutive integers use the : function.

> -9:8

[1] -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

However, the seq function provides more flexibility in generating sequences. Here

are some examples:

> seq(1, 5, by = 0.5) ##specify interval

[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

> seq(1, 5, length = 8) ##specify length

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

2.2 A vector is a collection of like elements 33

Table 2.3 Using Boolean relational and logical operators

Operator Description Try these examples

Relational operators

< Less than pos <- c("p1", "p2", "p3", "p4",

"p5")

x <- c(1, 2, 3, 4, 5)

y <- c(5, 4, 3, 2, 1)

x < y

pos[x < y]

> Greater than x > y

pos[x > y]

<= Less than or equal to x <= y

pos[x <= y]

>= Greater than or equal
to

x >= y

pos[x >= y]

== Equal to x == y

pos[x == y]

! = Not equal to x != y

pos[x != y]

Logical operators

! NOT x > 2

!(x > 2)

pos[!(x > 2)]

& Element-wise AND (x > 1) & (x < 5)

pos[(x > 1) & (x < 5)]

| Element-wise OR (x <= 1) | (x > 4)

pos[(x <= 1) | (x > 4)]

xor Exclusive OR; similar
to | for comparing
two vectors, but only
TRUE if one or the
other is true, not both

xx <- x <= 1

yy <- x > 4

xor(xx, yy)

xx | yy

Logical operators for if function

&& Similar to & but used
with if function

if(T && T) print("Both TRUE")

nothing printed if(F && T)

print("Both TRUE")

|| Similar to | but used
with if function

if(T || F) print("Either TRUE")

nothing printed if(F || F)

print("Either TRUE")

[1] 1.0000 1.5714 2.1429 2.7143 3.2857 3.8571 4.4286 5.0000

> x <- 1:8

> seq(1, 5, along = x) ##by length of other object

[1] 1.0000 1.5714 2.1429 2.7143 3.2857 3.8571 4.4286 5.0000

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

34 2 Working with R data objects

Table 2.4 Common ways of creating vectors

Function Description Try these examples

c Concatenate a collection x <- c(1, 2, 3, 4, 5)

y <- c(6, 7, 8, 9, 10)

z <- c(x, y)

scan Scan a collection (after
entering data press Enter

twice)

xx <- scan()

1 2 3 4 5

yy <- scan(what = "")

"Javier" "Miguel" "Martin"

xx; yy

: Generate integer
sequence

1:10

10:(-4)

seq Generate sequence of
numbers

seq(1, 5, by = 0.5)

seq(1, 5, length = 3)

zz <- c("a", "b", "c")

seq(along = zz)

rep Replicate argument rep("Juan Nieve", 3)

rep(1:3, 4)

rep(1:3, 3:1)

which Integer vector from
Boolean operation

age <- c(8, NA, 7, 4)

which(age<5 | age>=8)

paste Paste elements creating a
character string

paste(c("A", "B", "C"), 1:3)

paste(c("A", "B", "C"), 1:3, sep="")

[row#,]

or
[,col#]

Indexing a matrix returns
a vector

xx <- matrix(1:8, nrow = 2, ncol =

4)

xx[2,]

xx[,3]

sample Sample from a vector sample(c("H","T"), 20, replace =

TRUE)

runif
rnorm
rbinom
rpois

Generate random
numbers from a
probability distribution

rnorm(10, mean = 50, sd = 19)

runif(n = 10, min = 0, max = 1)

rbinom(n = 10, size = 20, p = 0.5)

rpois(n = 10, lambda = 15)

as.vector Coerce data objects into
a vector

mx <- matrix(1:4, nrow = 2, ncol =

2)

mx

as.vector(mx)

vector Create vector of specified
mode and length

vector("character", 5)

vector("numeric", 5)

vector("logical", 5)

character
numeric
logical

Create vector of
specified type

character(5)

numeric(5)

logical(5)

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

2.2 A vector is a collection of like elements 35

These types of sequences are convenient for plotting mathematical equations.2

For example, suppose we wanted to plot the standard normal curve using the normal

equation. For a standard normal curve µ = 0 (mean) and σ = 1 (standard deviation)

f (x) =
1√

2πσ2
exp

{−(x−µ)2

2σ2

}

Here is the R code to plot this equation (see Figure 2.1):

mu <- 0; sigma <- 1

x <- seq(-4, 4, .01)

fx <- (1/sqrt(2*pi*sigmaˆ2))*exp(-(x-mu)ˆ2/(2*sigmaˆ2))

plot(x, fx, type = "l", lwd = 2)

After assigning values to mu and sigma, we assigned to x a sequence of num-

bers from −4 to 4 by intervals of 0.01. Using the normal curve equation, for every

value of x we calculated f (x), represented by the numeric vector fx. We then used

the plot function to plot x vs. f (x). The optional argument type="l" produces a

“line” and lwd=2 doubles the line width. For comparison, we also plotted a density

histogram of 500 standard normal variates that were simulated using the rnorm

function (Figure 2.1).3

The rep function is used to replicate its arguments. Study the examples that

follow:

−4 0 2 4

0.
0

0.
2

0.
4

x

fx

rnorm(500)

D
en

si
ty

−3 −1 1 3

0.
0

0.
2

0.
4

Fig. 2.1 Standard normal curve from equation and simulation

2 See also the curve function for graphing mathematical equations.
3 hist(rnorm(500), freq = FALSE, breaks = 25, main="")

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

36 2 Working with R data objects

> rep(5, 2) #repeat 5 2 times

[1] 5 5

> rep(1:2, 5) # repeat 1:2 5 times

[1] 1 2 1 2 1 2 1 2 1 2

> rep(1:2, c(5, 5)) # repeat 1 5 times; repeat 2 5 times

[1] 1 1 1 1 1 2 2 2 2 2

> rep(1:2, rep(5, 2)) # equivalent to previous

[1] 1 1 1 1 1 2 2 2 2 2

> rep(1:5, 5:1) # repeat 1 5 times, repeat 2 4 times, etc

[1] 1 1 1 1 1 2 2 2 2 3 3 3 4 4 5

The paste function pastes character strings:

> fname <- c("John", "Kenneth", "Sander")

> lname <- c("Snow", "Rothman", "Greenland")

> paste(fname, lname)

[1] "John Snow" "Kenneth Rothman" "Sander Greenland"

> paste("var", 1:7, sep="")

[1] "var1" "var2" "var3" "var4" "var5" "var6" "var7"

Indexing (subsetting) an object often results in a vector. To preserve the dimen-

sionality of the original object use the drop option.

> x <- matrix(1:8, 2, 4)

> x

[,1] [,2] [,3] [,4]

[1,] 1 3 5 7

[2,] 2 4 6 8

> x[2,] #index 2nd row

[1] 2 4 6 8

> x[2, , drop = FALSE] #index 2nd row; keep object structure

[,1] [,2] [,3] [,4]

[1,] 2 4 6 8

Up to now we have generated vectors of known numbers or character strings. On

occasion we need to generate random numbers or draw a sample from a collection

of elements. First, sampling from a vector returns a vector:

> # toss 8 coins

> sample(c("Head","Tail"), size = 8, replace = TRUE)

[1] "Head" "Head" "Tail" "Head" "Tail" "Tail" "Head" "Head"

> # toss 2 die

> sample(1:6, size = 2, replace = TRUE)

[1] 1 4

Second, generating random numbers from a probability distribution returns a vector:

> # toss 8 coins twice using the binomial distribution

> rbinom(n = 2, size = 8, p = 0.5)

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

2.2 A vector is a collection of like elements 37

Table 2.5 Common ways of naming vectors

Function Description Try these examples

c Name vector elements
at time that vector is
created

x <- c(a = 1, b = 2, c = 3, d = 4);

x

names Name vector elements y <- 1:4; y

names(y) <- c("a", "b", "c", "d"); y

#return names, if they exist

names(y)

unname Remove names y <- unname(y)

y #equivalent: names(y) <- NULL

[1] 5 2

> # generate 6 standard normal distribution values

> rnorm(6)

[1] 1.52826 -0.50631 0.56446 0.10813 -1.96716 2.01802

There are additional ways to create vectors. To practice creating vectors study

the examples in Table 2.4 on page 34 and spend a few minutes creating simple

vectors. If we need help with a function remember enter ?function name or

help(function name).

Finally, notice that we use vectors as arguments to functions:

character vector used in ’sample’ function

sample(c("head", "tail"), 100, replace = TRUE)

numeric vector used in ’rep’ function

rep(1:2, rep(5, 2))

numeric vector used in ’matrix’ function

matrix(c(23, 45, 16, 17), nrow = 2, ncol = 2)

2.2.3 Naming vectors

The first way of naming vector elements is when the vector is created:

> x <- c(chol = 234, sbp = 148, dbp = 78, age = 54)

> x

chol sbp dbp age

234 148 78 54

The second way is to create a character vector of names and then assign that vector

to the numeric vector using the names function:

> z <- c(234, 148, 78, 54)

> z

[1] 234 148 78 54

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

38 2 Working with R data objects

> names(z) <- c("chol", "sbp", "dbp", "age")

> z

chol sbp dbp age

234 148 78 54

The names function, without an assignment, returns the character vector of names,

if it exist. This character vector can be used to name elements of other vectors.

> names(z)

[1] "chol" "sbp" "dbp" "age"

> z2 <- c(250, 184, 90, 45)

> z2

[1] 250 184 90 45

> names(z2) <- names(z)

> z2

chol sbp dbp age

250 184 90 45

The unname function removes the element names from a vector:

> unname(z2)

[1] 250 184 90 45

For practice study the examples in Table 2.5 on the preceding page and spend a

few minutes creating and naming simple vectors.

2.2.4 Indexing vectors

Indexing a vector is subsetting or extracting elements from a vector. A vector is

indexed by position(s), by name(s), and by logical vector. Positions are specified by

positive or negative integers.

> x <- c(chol = 234, sbp = 148, dbp = 78, age = 54)

> x[c(2, 4)] #extract 2nd and 4th element

sbp age

148 54

> x[-c(2, 4)] #exclude 2nd and 4th element

chol dbp

234 78

Although indexing by position is concise, indexing by name (when the names exists)

is better practice in terms of documenting our code. Here is an example:

> x[c("sbp", "age")] #extract 2nd and 4th element

sbp age

148 54

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

2.2 A vector is a collection of like elements 39

Table 2.6 Common ways of indexing vectors

Indexing Try these examples

By position x <- c(chol = 234, sbp = 148, dbp = 78, age =

54)

x[2] #positions to include

x[c(2, 3)]

x[-c(1, 3, 4)] #positions to exclude

x[-c(1, 4)]

x[which(x<100)]

By name (if exists) x["sbp"]

x[c("sbp", "dbp")]

By logical x < 100

x[x < 100]

(x < 150) & (x > 70)

bp <- (x < 150) & (x > 70)

x[bp]

Unique values samp <- sample(1:5, 25, replace=T); samp

unique(samp)

Duplicated values duplicated(samp) #generates logical

samp[duplicated(samp)]

A logical vector indexes the positions that corresponds to the TRUEs. Here is an

example:

> x<=100 | x>200

chol sbp dbp age

TRUE FALSE TRUE TRUE

> x[x<=100 | x>200]

chol dbp age

234 78 54

Any expression that evaluates to a valid vector of integers, names, or logicals can

be used to index a vector.

> (samp1 <- sample(1:4, 8, replace = TRUE))

[1] 1 3 3 3 1 3 4 1

> x[samp1]

chol dbp dbp dbp chol dbp age chol

234 78 78 78 234 78 54 234

> (samp2 <- sample(names(x), 8, replace = TRUE))

[1] "dbp" "sbp" "sbp" "dbp" "dbp" "age" "dbp" "sbp"

> x[samp2]

dbp sbp sbp dbp dbp age dbp sbp

78 148 148 78 78 54 78 148

Notice that when we indexed by position or name we indexed the same position

repeatly. This will not work with logical vectors. In the example that follows NA

means “not available.”

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

40 2 Working with R data objects

> (samp3 <- sample(c(TRUE, FALSE), 8, replace = TRUE))

[1] FALSE FALSE TRUE FALSE TRUE TRUE TRUE TRUE

> x[samp3]

dbp <NA> <NA> <NA> <NA>

78 NA NA NA NA

We have already seen that a vector can be indexed based on the characteristics of

another vector.

> kid <- c("Tomasito", "Irene", "Luisito", "Angelita", "Tomas")

> age <- c(8, NA, 7, 4, NA)

> age<=7 # produces logical vector

[1] FALSE NA TRUE TRUE NA

> kid[age<=7] # index ’kid’ using ’age’

[1] NA "Luisito" "Angelita" NA

> kid[!is.na(age)] # remove missing values

[1] "Tomasito" "Luisito" "Angelita"

> kid[age<=7 & !is.na(age)]

[1] "Luisito" "Angelita"

In this example, NA represents missing data. The is.na function returns a logical

vector with TRUEs at NA positions. To generate a logical vector to index values that

are not missing use !is.na.

For practice study the examples in Table 2.6 on the previous page and spend a

few minutes creating, naming, and indexing simple vectors.

2.2.4.1 The which function

A Boolean operation that returns a logical vector contains TRUE values where the

condition is true. To identify the position of each TRUE value we use the which

function. For example, using the same data above:

> which(age<=7) # which positions meet condition

[1] 3 4

> kid[which(age<=7)]

[1] "Luisito" "Angelita"

Notice that is was unnecessary to remove the missing values.

2.2.5 Replacing vector elements (by indexing and assignment)

To replace vector elements we combine indexing and assignment. Any elements of a

vector that can be indexed can be replaced. Replacing vector elements is one method

of recoding a variable.

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

2.2 A vector is a collection of like elements 41

Table 2.7 Common ways of replacing vector elements

Replacing Try these examples

By position x <- c(chol = 234, sbp = 148, dbp = 78, age =

54)

x[1]

x[1] <- 250

x

By name (if exists) x["sbp"]

x["sbp"] <- 150

x

By logical x[x<100]

x[x<100] <- NA

x

> # simulate vector with 1000 age values

> age <- sample(0:100, 1000, replace = TRUE)

> mean(age)

[1] 50.378

> sd(age)

[1] 28.25947

> agecat <- age

> agecat[age<15] <- "<15"

> agecat[age>=15 & age<25] <- "15-24"

> agecat[age>=25 & age<45] <- "25-44"

> agecat[age>=45 & age<65] <- "45-64"

> agecat[age>=65] <- "65+"

> table(agecat)

agecat

<15 15-24 25-44 45-64 65+

125 107 207 206 355

First, we made a copy of the numeric vector age and named it agecat. Then, we

replaced elements of agecat with character strings for each age category, creating

a character vector.

For practice study the examples in Table 2.7 and spend a few minutes replacing

vector elements.

2.2.6 Operations on vectors

Operations on vectors is very common in epidemiology and statistics. In this section

we cover common operations on single vectors (Table 2.8 on the next page) and

multiple vectors (Table 2.9 on page 46).

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

42 2 Working with R data objects

Table 2.8 Selected operations on single vectors

Function Description Function Description

sum summation range range

cumsum cumulative sum rev reverse order

diff x[i+1]-x[i] order order

prod product sort sort

cumprod cumulative product rank rank

mean mean sample random sample

median median quantile percentile

min minimum var variance, covariance

max maximum sd standard deviation

2.2.6.1 Operations on single vectors

First, we focus on operating on single numeric vectors (Table 2.8). This also gives us

the opportunity to see how common mathematical notation is translated into simple

R code.

To sum elements of a numeric vector x of length n, (∑n
i=1 xi), use the sum func-

tion:

> # generate and sum 100 random standard normal values

> x <- rnorm(100)

> sum(x)

[1] -0.34744

To calculate a cumulative sum of a numeric vector x of length n, (∑k
i=1 xi, for

k = 1, . . . ,n), use the cumsum function which returns a vector:

generate sequence of 2’s and calculate cumulative sum

> x <- rep(2, 10)

> x

[1] 2 2 2 2 2 2 2 2 2 2

> cumsum(x)

[1] 2 4 6 8 10 12 14 16 18 20

To multiply elements of a numeric vector x of length n, (∏n
i=1 xi), use the prod

function:

> x <- c(1, 2, 3, 4, 5, 6, 7, 8)

> prod(x)

[1] 40320

To calculate the cumulative product of a numeric vector x of length n, (∏k
i=1 xi,

for k = 1, . . . ,n), use the cumprod function:

> x <- c(1, 2, 3, 4, 5, 6, 7, 8)

> cumprod(x)

[1] 1 2 6 24 120 720 5040 40320

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

2.2 A vector is a collection of like elements 43

To calculate the mean of a numeric vector x of length n, (1
n ∑n

i=1 xi), use the sum

and length functions, or use the mean function:

> x <- rnorm(100)

> sum(x)/length(x)

[1] 0.05843341

> mean(x)

[1] 0.05843341

To calculate the sample variance of a numeric vector x of length n, use the sum,

mean, and length functions, or, more directly, use the var function.

S2
X =

1

n−1

[

n

∑
i=1

(xi − x̄)2

]

> x <- rnorm(100)

> sum((x-mean(x))ˆ2)/(length(x)-1)

[1] 0.9073808

> var(x) # equivalent

[1] 0.9073808

This example illustrates how we can implement a formula in R using several func-

tions that operate on single vectors (sum, mean, and length). The var function,

while available for convenience, is not necessary to calculate the sample variance.

When the var function is applied to two numeric vectors, x and y, both of length

n, the sample covariance is calculated:

SXY =
1

n−1

[

n

∑
i=1

(xi − x̄)(yi − ȳ)

]

> x <- rnorm(100); y <- rnorm(100)

> sum((x-mean(x))*(y-mean(y)))/(length(x)-1)

[1] -0.09552851

> var(x, y) # equivalent

[1] -0.09552851

The sample standard deviation, of course, is just the square root of the sample

variance (or use the sd function):

SX =

√

√

√

√

1

n−1

[

n

∑
i=1

(xi − x̄)2

]

> sqrt(var(x))

[1] 0.9525654

> sd(x)

[1] 0.9525654

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

44 2 Working with R data objects

To sort a numeric or character vector use the sort function.

> ages <- c(8, 4, 7)

> sort(ages)

[1] 4 7 8

However, to sort one vector based on the ordering of another vector use the order

function.

> ages <- c(8, 4, 7)

> subjects <- c("Tomas", "Angela", "Luis")

> subjects[order(ages)]

[1] "Angela" "Luis" "Toms"

> # ’order’ returns positional integers for sorting

> order(ages)

[1] 2 3 1

Notice that the order function does not return the data, but rather indexing in-

tegers in new positions for sorting the vector age or another vector. For example,

order(ages) returned the integer vector c(2, 3, 1) which means “move the

2nd element (age = 4) to the first position, move the 3rd element (age = 7) to the

second position, and move the 1st element (age = 8) to the third position.” Verify

that sort(ages) and ages[order(ages)] are equivalent.

To sort a vector in reverse order combine the rev and sort functions.

> x <- c(12, 3, 14, 3, 5, 1)

> sort(x)

[1] 1 3 3 5 12 14

> rev(sort(x))

[1] 14 12 5 3 3 1

In contrast to the sort function, the rank function gives each element of a vector

a rank score but does not sort the vector.

> x <- c(12, 3, 14, 3, 5, 1)

> rank(x)

[1] 5.0 2.5 6.0 2.5 4.0 1.0

The median of a numeric vector is that value which puts 50% of the values below

and 50% of the values above, in other words, the 50% percentile (or 0.5 quantile).

For example, the median of c(4, 3, 1, 2, 5) is 3. For a vector of even length,

the middle values are averaged: the median of c(4, 3, 1, 2) is 2.5. To get the

median value of a numeric vector use the median or quantile function.

> ages <- c(23, 45, 67, 33, 20, 77)

> median(ages)

[1] 39

> quantile(ages, 0.5)

50%

39

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

2.2 A vector is a collection of like elements 45

To return the minimum value of a vector use the min function; for the maximum

value use the max function. To get both the minimum and maximum values use the

range function.

> ages <- c(23, 45, 67, 33, 20, 77)

> min(ages)

[1] 20

> sort(ages)[1] # equivalent

[1] 20

> max(ages)

[1] 77

> sort(ages)[length(ages)] # equivalent

[1] 77

> range(ages)

[1] 20 77

> c(min(ages), max(ages)) # equivalent

[1] 20 77

To sample from a vector of length n, with each element having a default sampling

probability of 1/n, use the sample function. Sampling can be with or without

replacement (default). If the sample size is greater than the length of the vector, then

sampling must occur with replacement.

> coin <- c("H", "T")

> sample(coin, size = 10, replace = TRUE)

[1] "H" "H" "T" "T" "T" "H" "H" "H" "H" "T"

> sample(1:100, 15)

[1] 9 24 53 11 15 63 52 73 54 84 82 66 65 20 67

2.2.6.2 Operations on multiple vectors

Next, we review selected functions that work with one or more vectors. Some of

these functions manipulate vectors and others facilitate numerical operations.

In addition to creating vectors, the c function can be used to append vectors.

> x <- 6:10

> y <- 20:24

> c(x, y)

[1] 6 7 8 9 10 20 21 22 23 24

The append function also appends vectors; however, one can specify at which

position.

> append(x, y)

[1] 6 7 8 9 10 20 21 22 23 24

> append(x, y, after = 2)

[1] 6 7 20 21 22 23 24 8 9 10

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

46 2 Working with R data objects

Table 2.9 Selected operations on multiple vectors

Function Description

c concatenates vectors

append Appends a vector to another vector (default is to append at the end
of the first vector)

cbind Column-bind vectors or matrices

rbind Row-bind vectors or matrices

table Creates contingency table from 2 or more vectors

xtabs Creates contingency table from 2 or more factors in a data frame

ftable Creates flat contingency table from 2 or more vectors

outer Outer product

tapply Applies a function to strata of a vector

<, >,
<=, >=,
==, !=

Relational operators, See Table 2.3 on page 33

!,
&, &&,
|, ||, xor

Logical operators, See Table 2.3 on page 33

In contrast, the cbind and rbind functions concatenate vectors into a matrix.

During the outbreak of severe acute respiratory syndrome (SARS) in 2003, a patient

with SARS potentially exposed 111 passengers on board an airline flight. Of the

23 passengers that sat “close” to the index case, 8 developed SARS; among the 88

passengers that did not sit “close” to the index case, only 10 developed SARS [2].

Now, we can bind 2 vectors to create a 2×2 table (matrix).

> case <- c("exposed" = 8, "unexposed" = 10)

> noncase <- c("exposed" = 15, "unexposed" = 78)

> cbind(case, noncase)

case noncase

exposed 8 15

unexposed 10 78

> rbind(case, noncase)

exposed unexposed

case 8 10

noncase 15 78

For the example that follows, let’s recreate the SARS data as two character vec-

tors.

> outcome <- c(rep("case", 8+10), rep("noncase", 15+78))

> tmp <- c("exposed", "unexposed")

> exposure <- c(rep(tmp, c(8, 10)), rep(tmp, c(15, 78)))

> cbind(exposure,outcome)[1:4,] # display 4 rows

exposure outcome

[1,] "exposed" "case"

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

2.2 A vector is a collection of like elements 47

[2,] "exposed" "case"

[3,] "exposed" "case"

[4,] "exposed" "case"

Now, use the table function to cross-tabulate one or more vectors.

> table(outcome, exposure)

exposure

outcome exposed unexposed

case 8 10

noncase 15 78

The ftable function creates a flat contingency table from one or more vectors.

> ftable(outcome, exposure)

exposure exposed unexposed

outcome

case 8 10

noncase 15 78

This will come in handy later when we want to display a 3 or more dimensional

table as a “flat” 2-dimensional table.

The outer function applies a function to every combination of elements from

two vectors. For example, create a multiplication table for the numbers 1 to 5.

> outer(1:5, 1:5, "*")

[,1] [,2] [,3] [,4] [,5]

[1,] 1 2 3 4 5

[2,] 2 4 6 8 10

[3,] 3 6 9 12 15

[4,] 4 8 12 16 20

[5,] 5 10 15 20 25

The tapply function applies a function to strata of a vector that is defined by

one or more “indexing” vectors. For example, to calculate the mean age of females

and males:

> age <- c(23, 45, 67, 88, 22, 34, 80, 55, 21, 48)

> sex <- c("M", "F", "M", "F", "M", "F", "M", "F", "M", "F")

> tapply(X = age, INDEX = sex, FUN = mean)

F M

54.0 42.6

> # equivalent

> tapply(age, sex, sum)/tapply(age, sex, length)

F M

54.0 42.6

The tapply function is an important and versatile function because it allows us to

apply any function that can be applied to a vector, to be applied to strata of a vector.

Moveover, we can use our user-created functions as well.

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

48 2 Working with R data objects

Table 2.10 Deaths among subjects who received tolbutamide and placebo in the Unversity Group
Diabetes Program (1970)

Tolbutamide Placebo

Deaths 30 21

Survivors 174 184

2.3 A matrix is a 2-dimensional table of like elements

2.3.1 Understanding matrices

A matrix is a 2-dimensional table of like elements. Matrix elements can be either

numeric, character, or logical. Contingency tables in epidemiology are represented

in R as numeric matrices or arrays. An array is the generalization of matrices to 3 or

more dimensions (commonly known as stratified tables). We cover arrays later, for

now we will focus on 2-dimensional tables.

Consider the 2×2 table of crude data in Table 2.10 [3]. In this randomized clin-

ical trial (RCT), diabetic subjects were randomly assigned to receive either tolbu-

tamide, an oral hypoglycemic drug, or placebo. Because this was a prospective study

we can calculate risks, odds, a risk ratio, and an odds ratio. We will do this using R

as a calculator.

> dat <- matrix(c(30, 174, 21, 184), 2, 2)

> rownames(dat) <- c("Deaths", "Survivors")

> colnames(dat) <- c("Tolbutamide", "Placebo")

> coltot <- apply(dat, 2, sum) #column totals

> risks <- dat["Deaths",]/coltot

> risk.ratio <- risks/risks[2] #risk ratio

> odds <- risks/(1-risks)

> odds.ratio <- odds/odds[2] #odds ratio

> # display results

> dat

Tolbutamide Placebo

Deaths 30 21

Survivors 174 184

> rbind(risks, risk.ratio, odds, odds.ratio)

Tolbutamide Placebo

risks 0.1470588 0.1024390

risk.ratio 1.4355742 1.0000000

odds 0.1724138 0.1141304

odds.ratio 1.5106732 1.0000000

Now let’s review each line briefly to understand the analysis in more detail.

dat <- matrix(c(30, 174, 21, 184), 2, 2)

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

2.3 A matrix is a 2-dimensional table of like elements 49

We used the matrix function to take a vector and convert it into a matrix with 2

rows and 2 columns. Notice the matrix function reads in the vector column-wise.

To read the vector in row-wise we would add the byrow=TRUE option. Try creating

a matrix reading in a vector column-wise (default) and row-wise.

rownames(dat) <- c("Deaths", "Survivors")

colnames(dat) <- c("Tolbutamide", "Placebo")

We used the rownames and the colnames functions to assign row and column

names to the matrix dat. The row names and the column names are both character

vectors.

coltot <- apply(dat, 2, sum) #column totals

We used the apply function to sum the columns; it is a versatile function for apply-

ing any function to matrices or arrays. The second argument is the MARGIN option:

in this case, MARGIN=2, meaning apply the sum function to the columns. To sum

the rows, set MARGIN=1.

risks <- dat["Deaths",]/coltot

risk.ratio <- risks/risks[2] #risk ratio

We calculated the risks of death for each treatment group. We got the numerator

by indexing the dat matrix using the row name "Deaths". The numerator is a

vector containing the deaths for each group and the denominator is the total number

of subjects in each group. We calculated the risk ratios using the placebo group as

the reference.

odds <- risks/(1-risks)

odds.ratio <- odds/odds[2] #odds ratio

Using the definition of the odds, we calculated the odds of death for each treatment

group. Then we calculated the odds ratios using the placebo group as the reference.

dat

rbind(risks, risk.ratio, odds, odds.ratio)

Finally, we display the dat table we created. We also created a table of results by

row binding the vectors using the rbind function.

In the sections that follow we will cover the necessary concepts to make the

previous analysis routine.

2.3.2 Creating matrices

There are several ways to create matrices (Table 2.11 on the next page). In general,

we create or use matrices in the following ways:

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

50 2 Working with R data objects

Table 2.11 Common ways of creating a matrix

Function Description Try these examples

cbind Column-bind vectors or
matrices

x <- 1:3

y <- 3:1

z <- cbind(x, y); z

rbind Row-bind vectors or
matrices

z2 <- rbind(x, y); z2

matrix Generates matrix mtx <- matrix(1:4, nrow=2, ncol=2);

mtx

dim Assign dimensions to a
data object

mtx2 <- 1:4; mtx2

dim(mtx2) <- c(2, 2); mtx2

array Generates matrix when
array is 2-dimensional

mtx <- array(1:4, dim = c(2, 2));

mtx

table Creates contingency
table

table(infert$educ, infert$case)

xtabs Create a contingency
table using a formula
interface

xtabs(˜education + case, data =

infert)

ftable Creates flat contingency
table

ftable(infert$educ, infert$spont,

infert$case)

as.matrix Coerces object into a
matrix

1:3

as.matrix(1:3)

outer Outer product of two
vectors

outer(1:5, 1:5, "*")

x[row, ,

]

x[,col,

]

x[,

,dep]

Indexing an array can
return a matrix

x <- array(1:8, c(2, 2, 2))

x[1, ,]

x[,1,]

x[, ,1]

• Contingency tables (cross tabulations)

• Spreadsheet calculations and display

• Collecting results into tabular form

• Results of 2-variable equations

2.3.2.1 Contingency tables (cross tabulations)

In the previous section we used the matrix function to create the 2× 2 table for

the UGDP clinical trial:

> dat <- matrix(c(30, 174, 21, 184), 2, 2)

> rownames(dat) <- c("Deaths", "Survivors")

> colnames(dat) <- c("Tolbutamide", "Placebo")

> dat

Tolbutamide Placebo

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

2.3 A matrix is a 2-dimensional table of like elements 51

Deaths 30 21

Survivors 174 184

Alternatively, we can create a 2-way contingency table using the table function

with fields from a data set;

> dat2 <- read.table("http://www.medepi.net/data/ugdp.txt",

+ header = TRUE, sep = ",")

> names(dat2) #display field names

[1] "Status" "Treatment" "Agegrp"

> table(dat2$Status, dat2$Treatment)

Placebo Tolbutamide

Deaths 21 30

Survivors 184 174

Alternatively, the xtabs function cross tabulates using a formula interface. An

advantage of this function is that the field names are included.

> xtabs(˜Status + Treatment, data = dat2)

Treatment

Status Placebo Tolbutamide

Deaths 21 30

Survivors 184 174

Finally, a multi-dimensional contingency table can be presented as a 2-dimensional

flat contingency table using the ftable function. Here we stratify the above table

by the variable Agegrp.

> xtab3way <- xtabs(˜Status + Treatment + Agegrp, data=dat2)

> xtab3way

, , Agegrp = <55

Treatment

Status Placebo Tolbutamide

Deaths 5 8

Survivors 115 98

, , Agegrp = 55+

Treatment

Status Placebo Tolbutamide

Deaths 16 22

Survivors 69 76

> ftable(xtab3way) #convert to flat table

Agegrp <55 55+

Status Treatment

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

52 2 Working with R data objects

Deaths Placebo 5 16

Tolbutamide 8 22

Survivors Placebo 115 69

Tolbutamide 98 76

> #alternative and more consistent with xtab3way

> ftable(xtabs(˜Agegrp + Status + Treatment, data=dat2))

Treatment Placebo Tolbutamide

Agegrp Status

<55 Deaths 5 8

Survivors 115 98

55+ Deaths 16 22

Survivors 69 76

2.3.2.2 Spreadsheet calculations and display

Matrices are commonly used to display spreadsheet-like calculations. In fact, a very

efficient way to learn R is to use it as our spreadsheet. For example, assuming the

rate of seasonal influenza infection is 10 infections per 100 person-years, let’s cal-

culate the individual cumulative risk of influenza infection at the end of 1, 5, and 10

years. Assuming no competing risk, we can use the exponential formula:

R(0, t) = 1− e−λ t

where , λ = infection rate, and t = time.

> lamb <- 10/100

> years <- c(1, 5, 10)

> risk <- 1 - exp(-lamb*tim)

> cbind(rate = lamb, years, cumulative.risk = risk)

rate years cumulative.risk

[1,] 0.1 1 0.09516258

[2,] 0.1 5 0.39346934

[3,] 0.1 10 0.63212056

Therefore, the cumulative risk of influenza infection after 1, 5, and 10 years is 9.5%,

39%, and 63%, respectively.

2.3.2.3 Collecting results into tabular form

A 2-way contingency table from the table or xtabs functions does not have

margin totals. However, we can construct a numeric matrix that includes the totals.

Using the UGDP data again,

> dat2 <- read.table("http://www.medepi.net/data/ugdp.txt",

+ header = TRUE, sep=",")

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

2.3 A matrix is a 2-dimensional table of like elements 53

> tab2 <- xtabs(˜Status + Treatment, data = dat2)

> rowt <- tab2[,1] + tab2[,2]

> tab2a <- cbind(tab2, Total = rowt)

> colt <- tab2a[1,] + tab2a[2,]

> tab2b <- rbind(tab2a, Total = colt)

> tab2b

Placebo Tolbutamide Total

Deaths 21 30 51

Survivors 184 174 358

Total 205 204 409

This table (tab2b) is primarily for display purposes.

2.3.2.4 Results of 2-variable equations

When we have an equation with 2 variables, we can use a matrix to display the

answers for every combination of values contained in both variables. For example,

consider this equation:

z = xy

And suppose x = {1,2,3,4,5} and y = {6,7,8,9,10}. Here’s the long way to create

a matrix for this equation:

> x <- 1:5; y <- 6:10

> z <- matrix(NA, 5, 5) #create empty matrix of missing values

> for(i in 1:5){

+ for(j in 1:5){

+ z[i, j] <- x[i]*y[j]

+ }

+ }

> rownames(z) <- x; colnames(z) <- y

> z

6 7 8 9 10

1 6 7 8 9 10

2 12 14 16 18 20

3 18 21 24 27 30

4 24 28 32 36 40

5 30 35 40 45 50

Okay, but the outer function is much better for this task:

> x <- 1:5; y <- 6:10

> z <- outer(x, y, "*")

> rownames(z) <- x; colnames(z) <- y

> z

6 7 8 9 10

1 6 7 8 9 10

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

54 2 Working with R data objects

Table 2.12 Common ways of naming a matrix

Function Try these examples

matrix #name rows and columns only

dat <- matrix(c(178, 79, 1411, 1486), 2, 2,

dimnames = list(c("Type A", "Type B"),

c("Yes", "No")))

dat

#name rows, columns, and fields

dat <- matrix(c(178, 79, 1411, 1486), 2, 2,

dimnames = list(Behavior = c("Type A", "Type B"),

"Heart attack" = c("Yes", "No")))

dat

rownames #name rows only

dat <- matrix(c(178, 79, 1411, 1486), 2, 2)

rownames(dat) <- c("Type A", "Type B")

dat

colnames #name columns only

dat <- matrix(c(178, 79, 1411, 1486), 2, 2)

colnames(dat) <- c("Yes", "No"); dat

dimnames #name rows and columns only

dat <- matrix(c(178, 79, 1411, 1486), 2, 2)

dimnames(dat) <- list(c("Type A", "Type B"),

c("Yes", "No"))

dat

#name rows, columns, and fields

dat <- matrix(c(178, 79, 1411, 1486), 2, 2)

dimnames(dat) <- list(Behavior = c("Type A", "Type B"),

"Heart attack" = c("Yes", "No"))

dat

names #name fields when row and column names already exist

dat <- matrix(c(178, 79, 1411, 1486), 2, 2,

dimnames = list(c("Type A", "Type B"),

c("Yes", "No")))

dat #display w/o field names

names(dimnames(dat)) <- c("Behavior", "Heart attack")

dat #display w/ field names

2 12 14 16 18 20

3 18 21 24 27 30

4 24 28 32 36 40

5 30 35 40 45 50

In fact, the outer function can be used to calculate the “surface” for any 2-variable

equation (more on this later).

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

2.3 A matrix is a 2-dimensional table of like elements 55

2.3.3 Naming a matrix

We have already seen several examples of naming components of a matrix. Ta-

ble 2.12 on the facing page summarizes the common ways of naming matrix compo-

nents. The components of a matrix can be named at the time the matrix is created, or

they can be named later. For a matrix, we can provide the row names, column names,

and/or field names. For example, consider the UGDP clinical trial 2×2 table:

> tab

Treatment

Outcome Tolbutamide Placebo

Deaths 30 21

Survivors 174 184

In the “Treatment” field, the possible values, “Tolbutamide” and “Placebo,” are the

column names. Similarly, in the “Outcome” field, the possible values, “Deaths” and

“Survivors,” are the row names.

To review, the components of matrix can be named at the time the matrix is

created:

> tab <- matrix(c(30, 174, 21, 184), 2, 2,

+ dimnames = list(Outcome = c("Deaths", "Survivors"),

+ Treatment = c("Tolbutamide", "Placebo")))

> tab

Treatment

Outcome Tolbutamide Placebo

Deaths 30 21

Survivors 174 184

If a matrix does not have field names, we can add them after the fact, but we must

use the names and dimnames functions together. Having field names is necessary

if the row and column names are not self-explanatory, as this example illustrates.

> y <- matrix(c(30, 174, 21, 184), 2, 2)

> rownames(y) <- c("Yes", "No")

> colnames(y) <- c("Yes", "No")

> y #labels not informative

Yes No

Yes 30 21

No 174 184

> #add field names

> names(dimnames(y)) <- c("Death", "Tolbutamide")

> y

Tolbutamide

Death Yes No

Yes 30 21

No 174 184

Study and test the examples in Table 2.12 on the preceding page.

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

56 2 Working with R data objects

Table 2.13 Common ways of indexing a matrix

Indexing Try these examples

By position dat <- matrix(c(178, 79, 1411, 1486), 2, 2)

dimnames(dat) <- list(Behavior = c("Type A","Type

B"),

"Heart attack" = c("Yes","No"))

dat[1,]

dat[1,2]

dat[2, , drop = FALSE]

By name (if
exists)

dat["Type A",]

dat["Type A", "Type B"]

dat["Type B", , drop = FALSE]

By logical dat[, 1] > 100

dat[dat[, 1] > 100,]

dat[dat[, 1] > 100, , drop = FALSE]

2.3.4 Indexing a matrix

Similar to vectors, a matrix can be indexed by position, by name, or by logical. Study

and practice the examples in Table 2.13. An important skill to master is indexing

rows of a matrix using logical vectors. Consider the following matrix of data, and

suppose I want to select the rows for subjects age less than 60 and systolic blood

pressure less than 140.

> dat

age chol sbp

[1,] 45 145 124

[2,] 56 168 144

[3,] 73 240 150

[4,] 44 144 134

[5,] 65 210 112

> dat[,"age"]<60

[1] TRUE TRUE FALSE TRUE FALSE

> dat[,"sbp"]<140

[1] TRUE FALSE FALSE TRUE TRUE

> tmp <- dat[,"age"]<60 & dat[,"sbp"]<140

> tmp

[1] TRUE FALSE FALSE TRUE FALSE

> dat[tmp,]

age chol sbp

[1,] 45 145 124

[2,] 44 144 134

Notice that the tmp logical vector is the intersection of the logical vectors separated

by the logical operator &.

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

2.3 A matrix is a 2-dimensional table of like elements 57

Table 2.14 Common ways of replacing matrix elements

Replacing Try these examples

By position dat <- matrix(c(178, 79, 1411, 1486), 2, 2)

dimnames(dat) <- list(c("Type A","Type B"),

c("Yes","No"))

dat[1,] <- 99

dat

By name (if
exists)

dat["Type A",] <- c(178, 1411)

dat

By logical qq <- dat[,1]<100

qq

dat[qq,] <- 99

dat

dat[dat[,1]<100,] <- c(79, 1486)

dat

2.3.5 Replacing matrix elements

Remember, replacing matrix elements is just indexing plus assignment: anything

that can be indexed can be replaced. Study and practice the examples in Table 2.14.

2.3.6 Operations on a matrix

In epidemiology books, authors have preferences for displaying contingency tables.

Software packages have default displays for contingency tables. In practice, we may

need to manipulate a contingency table to facilitate further analysis. Consider the

following 2-way table:

> tab

Treatment

Outcome Tolbutamide Placebo

Deaths 30 21

Survivors 174 184

We can transpose the matrix using the t function.

> t(tab)

Outcome

Treatment Deaths Survivors

Tolbutamide 30 174

Placebo 21 184

We can reverse the order of the rows and/or columns.

> tab[2:1,] #reverse rows

Treatment

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

58 2 Working with R data objects

Table 2.15 Common ways of operating on a matrix

Function Description Try these examples

t Transpose matrix dat #from Table 2.14 on the

preceding page

t(dat)

apply Apply a function to the
margins of a matrix

apply(X = dat, MARGIN = 2, FUN =

sum)

apply(dat, 1, FUN=sum)

apply(dat, 1, mean)

apply(dat, 2, cumprod)

sweep Return an array
obtained from an input
array by sweeping out a
summary statistic

rsum <- apply(dat, 1, sum)

rdist <- sweep(dat, 1, rsum, "/")

rdist

csum <- apply(dat, 2, sum)

cdist <- sweep(dat, 2, csum, "/")

cdist

The following short-cuts use apply and/or sweep functions.

margin.table
rowSums
colSums

For a contingency table
in array form, compute
the sum of table entries
for a given index. These
functions are really just
the apply function
using sum.

margin.table(dat)

margin.table(dat, 1)

rowSums(dat) #equivalent

apply(dat, 1, sum) #equivalent

margin.table(dat, 2)

colSums(dat) #equivalent to previous

apply(dat, 2, sum)

addmargins Calculate and display
marginal totals of a
matrix

addmargins(dat)

rowMeans
colMeans

For a contingency table
in array form, compute
the mean of table entries
for a given index. These
functions are really just
the apply function
using mean.

rowSums(dat)

apply(dat, 1, mean) #equivalent

colSums(dat)

apply(dat, 2, mean) #equivalent

prop.table Short cut that uses the
sweep and apply
functions to get margin
and joint distributions

prop.table(dat)

dat/sum(dat)

prop.table(dat, 1)

sweep(dat, 1, apply(y, 1, sum), "/")

prop.table(dat, 2)

sweep(y, 2, apply(y, 2, sum), "/")

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

2.3 A matrix is a 2-dimensional table of like elements 59

Outcome Tolbutamide Placebo

Survivors 174 184

Deaths 30 21

> tab[,2:1] #reverse columns

Treatment

Outcome Placebo Tolbutamide

Deaths 21 30

Survivors 184 174

> tab[2:1,2:1] #reverse rows and columns

Treatment

Outcome Placebo Tolbutamide

Survivors 184 174

Deaths 21 30

2.3.6.1 The apply function

The apply function is an important and versatile function for conducting op-

erations on rows or columns of a matrix, including user-created functions. The

same functions that are used to conduct operations on single vectors (Table 2.8 on

page 42) can be applied to rows or columns of a matrix.

To calculate the row or column totals use the apply with the sum function:

> tab

Treatment

Outcome Tolbutamide Placebo

Deaths 30 21

Survivors 174 184

> apply(tab, 1, sum) #row totals

Deaths Survivors

51 358

> apply(tab, 2, sum) #column totals

Tolbutamide Placebo

204 205

These operations can be used to calculate marginal totals and have them combined

with the original table into one table.

> tab

Treatment

Outcome Tolbutamide Placebo

Deaths 30 21

Survivors 174 184

> rtot <- apply(tab, 1, sum) #row totals

> tab2 <- cbind(tab, Total = rtot)

> tab2

Tolbutamide Placebo Total

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

60 2 Working with R data objects

Deaths 30 21 51

Survivors 174 184 358

> ctot <- apply(tab2, 2, sum) #column totals

> rbind(tab2, Total = ctot)

Tolbutamide Placebo Total

Deaths 30 21 51

Survivors 174 184 358

Total 204 205 409

For convenience, R provides some functions for calculating marginal totals,

and calculating row or column means (margin.table, rowSums, colSums,

rowMeans, and colMeans). However, these functions just use the apply func-

tion4.

Here’s an alternative method to calculate marginal totals:

> tab

Treatment

Outcome Tolbutamide Placebo

Deaths 30 21

Survivors 174 184

> tab2 <- cbind(tab, Total=rowSums(tab))

> rbind(tab2, Total=colSums(tab2))

Tolbutamide Placebo Total

Deaths 30 21 51

Survivors 174 184 358

Total 204 205 409

For convenience, the addmargins function calculates and displays the marginals

totals with the original data in one step.

> addmargins(tab)

Treatment

Outcome Tolbutamide Placebo Sum

Deaths 30 21 51

Survivors 174 184 358

Sum 204 205 409

The power of the apply function comes from our ability to pass many functions

(including our own) to it. For practice, combine the apply function with functions

from Table 2.8 on page 42 to conduct operations on rows and columns of a matrix.

2.3.6.2 The sweep function

The sweep function is another important and versatile function for conducting op-

erations across rows or columns of a matrix. This function “sweeps” (operates on)

4 More specifically, rowSums, colSums, rowMeans, and colMeans are optimized for speed.

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

2.3 A matrix is a 2-dimensional table of like elements 61

a row or column of a matrix using some function and a value (usually derived from

the row or column values). To understand this, we consider an example involving a

single vector. For a given integer vector x, to convert the values of x into proportions

involves two steps:

> x <- c(1, 2, 3, 4, 5)

> sumx <- sum(x) #Step 1: summation

> propx <- x/sumx #Step 2: division (the "sweep")

> propx

[1] 0.066667 0.133333 0.200000 0.266667 0.333333

To apply this equivalent operation across rows or columns of a matrix requires the

sweep function.

For example, to calculate the row and column distributions of a 2-way table we

combine the apply (step 1) and the sweep (step 2) functions:

> tab

Treatment

Outcome Tolbutamide Placebo

Deaths 30 21

Survivors 174 184

> rtot <- apply(tab, 1, sum) #row totals

> tab.rowdist <- sweep(tab, 1, rtot, "/")

> tab.rowdist

Treatment

Outcome Tolbutamide Placebo

Deaths 0.58824 0.41176

Survivors 0.48603 0.51397

> ctot <- apply(tab, 2, sum) #column totals

> tab.coldist <- sweep(tab, 2, ctot, "/")

> tab.coldist

Treatment

Outcome Tolbutamide Placebo

Deaths 0.14706 0.10244

Survivors 0.85294 0.89756

Because R is a true programming language, these can be combined into single steps:

> sweep(tab, 1, apply(tab, 1, sum), "/") #row distribution

Treatment

Outcome Tolbutamide Placebo

Deaths 0.58824 0.41176

Survivors 0.48603 0.51397

> sweep(tab, 2, apply(tab, 2, sum), "/") #column distribution

Treatment

Outcome Tolbutamide Placebo

Deaths 0.14706 0.10244

Survivors 0.85294 0.89756

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

62 2 Working with R data objects

Table 2.16 Deaths among subjects who received tolbutamide and placebo in the Unversity Group
Diabetes Program (1970), stratifying by age

Age<55 Age≥55 Combined

Tolbutamide Placebo Tolbutamide Placebo Tolbutamide Placebo

Deaths 8 5 22 16 30 21

Survivors 98 115 76 69 174 184

Total 106 120 98 85 204 205

For convenience, R provides prop.table. However, this function just uses the

apply and sweep functions.

2.4 An array is a n-dimensional table of like elements

2.4.1 Understanding arrays

While a matrix is a 2-dimensional table of like elements, an array is the general-

ization of matrices to n-dimensions. Stratified contingency tables in epidemiology

are represented as array data objects in R. For example, the randomized clinical

trial previously shown comparing the number deaths among diabetic subjects that

received tolbutamide vs. placebo is now also stratified by age group (Table 2.16):

This is 3-dimensional array: outcome status vs. treatment status vs. age group.

Let’s see how we can represent this data in R.

> tdat <- c(8, 98, 5, 115, 22, 76, 16, 69)

> tdat <- array(tdat, c(2, 2, 2))

> dimnames(tdat) <- list(Outcome=c("Deaths", "Survivors"),

+ Treatment=c("Tolbutamide", "Placebo"),

+ "Age group"=c("Age<55", "Age>=55"))

> tdat

, , Age group = Age<55

Treatment

Outcome Tolbutamide Placebo

Deaths 8 5

Survivors 98 115

, , Age group = Age>=55

Treatment

Outcome Tolbutamide Placebo

Deaths 22 16

Survivors 76 69

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

2.4 An array is a n-dimensional table of like elements 63

Table 2.17 Example of 4-dimensional array: Year 2000 population estimates by age, ethnicity,
sex, and county

Ethnicity

County/Sex Age White AfrAmer AsianPI Latino Multirace AmerInd

Alameda

Female <=19 58160 31765 40653 49738 10120 839

20–44 112326 44437 72923 58553 7658 1401

45–64 82205 24948 33236 18534 2922 822

65+ 49762 12834 16004 7548 1014 246

Male <=19 61446 32277 42922 53097 10102 828

20–44 115745 36976 69053 69233 6795 1263

45–64 81332 20737 29841 17402 2506 687

65+ 33994 8087 11855 5416 711 156

San Francisco

Female <=19 14355 6986 23265 13251 2940 173

20–44 85766 10284 52479 23458 3656 526

45–64 35617 6890 31478 9184 1144 282

65+ 27215 5172 23044 5773 554 121

Male <=19 14881 6959 24541 14480 2851 165

20–44 105798 11111 48379 31605 3766 782

45–64 43694 7352 26404 8674 1220 354

65+ 20072 3329 17190 3428 450 76

R displays the first stratum (tdat[,,1]) then the second stratum (tdat[,,2]).

Our goal now is to understand how to generate and operate on these types of arrays.

Before we can do this we need to thoroughly understand the structure of arrays.

Let’s study a 4-dimensional array. Displayed in Table 2.17 is the year 2000 pop-

ulation estimates for Alameda and San Francisco Counties by age, ethnicity, and

sex. The first dimension is age category, the second dimension is ethnicity, the third

dimension is sex, and the fourth dimension is county. Learning how to visualize this

4-dimensional sturcture in R will enable us to visualize arrays of any number of

dimensions.

Displayed in Figure 2.4.1 on the next page is a schematic representation of the

4-dimensional array of population estimates in Table 2.17. The left cube represents

the population estimates by age, race, and sex (dimensions 1, 2, and 3) for Alameda

County (first component of dimension 4). The right cube represents the population

estimates by age, race, and sex (dimensions 1, 2, and 3) for San Francisco County

(second component of dimension 4). We see, then, that it is possible to visualize

data arrays in more than three dimensions.

To convince ourselves further, displayed in Figure 2.4.1 on the next page is a

theorectical 5-dimensional data array. Suppose this 5-D array contained data on

age (“Young”, “Old”), ethnicity (“White”, “Nonwhite”), sex (“Male”, “Female”),

party affiliation (“Democrat”, “Republican”), and state (“California”, “Washington

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

64 2 Working with R data objects

Fig. 2.2 Schematic representation of a 4-dimensional array (Year 2000 population estimates by
age, race, sex, and county)

Fig. 2.3 Schematic representation of a theoretical 5-dimensional array (possibly population esti-
mates by age (1), race (2), sex (3), party affiliation (4), and state (5)). From this diagram, we can
infer that the field “state” has 3 levels, and the field “party affiliation” has 2 levels; however, it
is not apparent how many age levels, race levels, and sex levels have been created. Although not
displayed, age levels would be represented by row names (along 1st dimension), race levels would
be represented by column names (along 2nd dimension), and sex levels would be represented by
depth names (along 3rd dimension).

State”, “Florida”). For practice, using fictitious data, try the following R code and

study the output:

tab5 <- array(1:48, dim = c(2,2,2,2,3))

dn1 <- c("Young", "Old")

dn2 <- c("White", "Nonwhite")

dn3 <- c("Male", "Female")

dn4 <- c("Democrat", "Republican")

dn5 <- c("California", "Washington State", "Florida")

dimnames(tab5) <- list(Age=dn1, Race=dn2, Sex=dn3, Party=dn4,

State=dn5)

tab5

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

2.4 An array is a n-dimensional table of like elements 65

Table 2.18 Common ways of creating arrays

Function Description Try these examples

array Reshapes vector into an
array

aa <- array(1:12, dim = c(2, 3, 2))

aa

table Creates n-dimensional
contingency table from n

vectors

data(infert) # load infert data set

table(infert$educ, infert$spont,

infert$case)

xtabs Creates a contingency
table from
cross-classifying factors
contained in a data frame
using a formula interface

xtabs(˜education + case + parity,

data = infert)

as.table Creates n-dimensional
contingency table from
n-dimensional ftable

ft <- ftable(infert$educ,

infert$spont,

infert$case)

ft

as.table(ft)

dim Assign dimensions to a
data object

x <- 1:12

x

dim(x) <- c(2, 3, 2)

x

2.4.2 Creating arrays

In R, arrays are most often produced with the array, table, or xtabs functions

(Table 2.18). As in the previous example, the array function works much like the

matrix function except the array function can specify 1 or more dimensions,

and the matrix function only works with 2 dimensions.

> array(1, dim = 1)

[1] 1

> array(1, dim = c(1, 1))

[,1]

[1,] 1

> array(1, dim = c(1, 1, 1))

, , 1

[,1]

[1,] 1

The table function cross tabulates 2 or more categorical vectors: character vec-

tors or factors. In R, categorical data are represented as factors (more on this later).

In contrast, using a formula interface, the xtabs function cross tabulates 2 or more

factors from a data frame. Additionally, the xtabs function includes field names

(which is highly preferred). For illustration, we will cross tabulate character vectors.

> #read in data "as is" (no factors created)

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

66 2 Working with R data objects

> udat1 <- read.csv("http://www.medepi.net/data/ugdp.txt",

+ as.is = TRUE)

> str(udat1)

’data.frame’: 409 obs. of 3 variables:

$ Status : chr "Death" "Death" "Death" "Death" ...

$ Treatment: chr "Tolbutamide" "Tolbutamide" "Tolbutamide" ...

$ Agegrp : chr "<55" "<55" "<55" "<55" ...

> table(udat1$Status, udat1$Treatment, udat1$Agegrp)

, , = 55+

Placebo Tolbutamide

Death 16 22

Survivor 69 76

, , = <55

Placebo Tolbutamide

Death 5 8

Survivor 115 98

The xtabs function will not work on character vectors.

By default, R converts character fields into factors. With factors, both the table

and xtabs functions cross tabulate the fields.

> #read in data and convert character vectors to factors

> udat2 <- read.csv("http://www.medepi.net/data/ugdp.txt")

> str(udat2)

’data.frame’: 409 obs. of 3 variables:

$ Status : Factor w/ 2 levels "Death","Survivor": 1 1 1 1 ...

$ Treatment: Factor w/ 2 levels "Placebo","Tolbutamide": 2 2 ...

$ Agegrp : Factor w/ 2 levels "55+","<55": 2 2 2 2 2 2 2 ...

> table(udat2$Status, udat1$Treatment, udat1$Agegrp)

, , = 55+

Placebo Tolbutamide

Death 16 22

Survivor 69 76

, , = <55

Placebo Tolbutamide

Death 5 8

Survivor 115 98

> xtabs(˜Status + Treatment + Agegrp, data = udat2)

, , Agegrp = 55+

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

2.4 An array is a n-dimensional table of like elements 67

Treatment

Status Placebo Tolbutamide

Death 16 22

Survivor 69 76

, , Agegrp = <55

Treatment

Status Placebo Tolbutamide

Death 5 8

Survivor 115 98

Notice that the xtabs function above included the field names. Field names can be

added manually with the table functions:

> table(Outcome = udat2$Status, Therapy = udat1$Treatment,

+ Age = udat1$Agegrp)

, , Age = 55+

Therapy

Outcome Placebo Tolbutamide

Death 16 22

Survivor 69 76

, , Age = <55

Therapy

Outcome Placebo Tolbutamide

Death 5 8

Survivor 115 98

Recall that the ftable function creates a flat contingency from categorical vec-

tors. The as.table function converts the flat contingency table back into a multi-

dimensional array.

> ftab <- ftable(udat2$Agegrp, udat1$Treatment, udat1$Status)

> ftab

Death Survivor

<55 Placebo 5 115

Tolbutamide 8 98

55+ Placebo 16 69

Tolbutamide 22 76

> as.table(ftab)

, , = Death

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

68 2 Working with R data objects

Table 2.19 Common ways of naming arrays

Function Try these examples

array # name components at time array is created x <- c(140,

11, 280, 56, 207, 9, 275, 32)

create labels for values of each dimension

rn <- c(">=1 cups per day", "0 cups per day")

cn <- c("Cases", "Controls")

dn <- c("Females", "Males")

x <- array(x, dim = c(2, 2, 2), dimnames = list(Coffee

= rn,

Outcome = cn, Gender = dn))

x

dimnames x <- c(140, 11, 280, 56, 207, 9, 275, 32)

create labels for values of each dimension

rn <- c(">=1 cups per day", "0 cups per day")

cn <- c("Cases", "Controls")

dn <- c("Females", "Males")

x <- array(x, dim = c(2, 2, 2))

dimnames(x) <- list(Coffee = rn, Outcome = cn, Gender =

dn)

x

names x <- c(140, 11, 280, 56, 207, 9, 275, 32)

create labels for values of each dimension

rn <- c(">=1 cups per day", "0 cups per day")

cn <- c("Cases", "Controls")

dn <- c("Females", "Males")

x <- array(x, dim = c(2, 2, 2))

dimnames(x) <- list(rn, cn, dn)

x # display w/o field names

names(dimnames(x)) <- c("Coffee", "Case status", "Sex")

x # display w/ field names

Placebo Tolbutamide

<55 5 8

55+ 16 22

, , = Survivor

Placebo Tolbutamide

<55 115 98

55+ 69 76

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

2.4 An array is a n-dimensional table of like elements 69

Table 2.20 Common ways of indexing arrays

Indexing Try these examples

By position # use x from Table 2.19

x[1, ,]

x[,2,]

By name (if exists) x[, ,"Males"]

x[

,"Controls","Females"]

By logical vector zz <- x[,1,1]>50

zz

x[zz, ,]

Table 2.21 Common ways of replacing array elements

Replacing Try these examples

By position # use x from Table 2.19

x[1, 1, 1] <- NA

x

By name (if exists) x[

,"Controls","Females"]

<- 99

x

By logical x>200

x[x>200] <- 999

x

2.4.3 Naming arrays

Naming components of an array is an extension of naming components of a matrix

(Table 2.12 on page 54). Study and implement the examples in Table 2.19 on the

facing page.

2.4.4 Indexing arrays

Indexing an array is an extension of indexing a matrix (Table 2.13 on page 56).

Study and implement the examples in Table 2.20.

2.4.5 Replacing array elements

Replacing elements of an array is an extension of replacing elements of a matrix

(Table 2.14 on page 57). Study and implement the examples in Table 2.21.

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

70 2 Working with R data objects

Table 2.22 Common ways of operating on an array

Function Description Try these examples

aperm Transpose an array by
permuting its dimensions
and optionally resizing it

x <- array(1:24, c(2, 3, 2, 2))

x

aperm(x, c(3, 2, 1, 4))

apply Apply a function to the
margins of an array

apply(x, 1, sum)

apply(x, c(2, 3), sum)

apply(x, c(1, 2, 4), sum)

sweep Return an array obtained
from an input array by
sweeping out a summary
statistic

zz <- apply(x, c(1, 2), sum)

sweep(x, c(1, 2), zz, "/")

The following short-cuts use apply and/or sweep functions

margin.table For a contingency table in
array form, compute the
sum of table entries for a
given index

margin.table(x); sum(x)

margin.table(x, c(1, 2))

apply(x, c(1, 2), sum) #equiv

margin.table(x, c(1, 2, 4))

apply(x, c(1, 2, 4), sum) #equiv

rowSums Sum across rows of an
array

rowSums(x) # dims = 1

apply(x, 1, sum) #equiv

rowSums(x, dims = 2)

apply(x, c(1, 2), sum) #equiv

colSums Sum down columns of an
array

colSums(x) # dims = 1

apply(x, c(2, 3, 4), sum) #equiv

colSums(x, dims = 2)

apply(x, c(3, 4), sum) #equiv

addmargins Calculate and display
marginal totals of an array

addmargins(x)

rowMeans Calculate means across
rows of an array

rowMeans(x) # dims = 1

apply(x, 1, mean) #equiv

rowMeans(x, dims = 2)

apply(x, c(1, 2), mean) #equiv

colMeans Calculate means down
columns of an array

colMeans(x) # dims = 1

apply(x, c(2, 3, 4), mean) #equiv

colMeans(x, dims = 2)

apply(x, c(3, 4), mean) #equiv

prop.table Generates distribution for
dimensions that are
summed in the
margin.table function

prop.table(x)

prop.table(x, margin = 1)

prop.table(x, c(1, 2))

prop.table(x, c(1, 2, 3))

2.4.6 Operations on arrays

With the exception of the aperm function, operating on an array (Table 2.22) is an

extension of operating on a matrix (Table 2.15 on page 58). Consider the number

of primary and secondary syphilis cases in the United State, 1989, stratified by sex,

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

2.4 An array is a n-dimensional table of like elements 71

Table 2.23 Example of 3-dimensional array with marginal totals: Primary and secondary syphilis
morbidity by age, race, and sex, United State, 1989

Ethnicity

Age (years) Sex White Black Other Total

≤ 14 Male 2 31 7 40

Female 14 165 11 190

Total 16 196 18 230

15-19 Male 88 1412 210 1710

Female 253 2257 158 2668

Total 341 3669 368 4378

20-24 Male 407 4059 654 5120

Female 475 4503 307 5285

Total 882 8562 961 10405

25-29 Male 550 4121 633 5304

Female 433 3590 283 4306

Total 983 7711 916 9610

30-34 Male 564 4453 520 5537

Female 316 2628 167 3111

Total 880 7081 687 8648

35-44 Male 654 3858 492 5004

Female 243 1505 149 1897

Total 897 5363 641 6901

45-54 Male 323 1619 202 2144

Female 55 392 40 487

Total 378 2011 242 2631

55+ Male 216 823 108 1147

Female 24 92 15 131

Total 240 915 123 1278

Total (all ages) Male 2804 20376 2826 26006

Female 1813 15132 1130 18075

Total 4617 35508 3956 44081

ethnicity, and age (Table 2.23). This table contains the marginal and joint distribu-

tion of cases. Let’s read in the original data and reproduce the table results.

> sdat3 <- read.csv("http://www.medepi.net/data/syphilis89c.txt")

> str(sdat3)

‘data.frame’: 44081 obs. of 3 variables:

$ Sex : Factor w/ 2 levels "Male","Female": 1 1 1 1 1 1 1 1 ...

$ Race: Factor w/ 3 levels "White","Black",..: 1 1 1 1 1 1 ...

$ Age : Factor w/ 8 levels "<=14","15-19",..: 1 1 2 2 2 2 2 ...

> sdat3[1:5,] #display first 5 lines

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

72 2 Working with R data objects

Sex Race Age

1 Male White <=14

2 Male White <=14

3 Male White 15-19

4 Male White 15-19

5 Male White 15-19

> sdat <- xtabs(˜Sex+Race+Age, data=sdat3) #create array

> sdat

, , Age = <=14

Race

Sex White Black Other

Male 2 31 7

Female 14 165 11

, , Age = 15-19

Race

Sex White Black Other

Male 88 1412 210

Female 253 2257 158

, , Age = 20-24

Race

Sex White Black Other

Male 407 4059 654

Female 475 4503 307

, , Age = 25-29

Race

Sex White Black Other

Male 550 4121 633

Female 433 3590 283

, , Age = 30-34

Race

Sex White Black Other

Male 564 4453 520

Female 316 2628 167

, , Age = 35-44

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

2.4 An array is a n-dimensional table of like elements 73

Race

Sex White Black Other

Male 654 3858 492

Female 243 1505 149

, , Age = 45-54

Race

Sex White Black Other

Male 323 1619 202

Female 55 392 40

, , Age = 55+

Race

Sex White Black Other

Male 216 823 108

Female 24 92 15

To get marginal totals for one dimension, use the apply function and specify

the dimension for stratifying the results.

> sum(sdat) #total

[1] 44081

> apply(X = sdat, MARGIN = 1, FUN = sum) #by sex

Male Female

26006 18075

> apply(sdat, 2, sum) #by race

White Black Other

4617 35508 3956

> apply(sdat, 3, sum) #by age

<=14 15-19 20-24 25-29 30-34 35-44 45-54 55+

230 4378 10405 9610 8648 6901 2631 1278

To get the joint marginal totals for 2 or more dimensions, use the apply function

and specify the dimensions for stratifying the results. This means that the function

that is passed to apply is applied across the other, non-stratified dimensions.

> apply(sdat, c(1, 2), sum) #by sex and race

Race

Sex White Black Other

Male 2804 20376 2826

Female 1813 15132 1130

> apply(sdat, c(1, 3), sum) #by sex and age

Age

Sex <=14 15-19 20-24 25-29 30-34 35-44 45-54 55+

Male 40 1710 5120 5304 5537 5004 2144 1147

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

74 2 Working with R data objects

Female 190 2668 5285 4306 3111 1897 487 131

> apply(sdat, c(3, 2), sum) #by age and race

Race

Age White Black Other

<=14 16 196 18

15-19 341 3669 368

20-24 882 8562 961

25-29 983 7711 916

30-34 880 7081 687

35-44 897 5363 641

45-54 378 2011 242

55+ 240 915 123

In R, arrays are displayed by the 1st and 2nd dimensions, stratified by the re-

maining dimensions. To change the order of the dimensions, and hence the display,

use the aperm function. For example, the syphilis case data is most efficiently dis-

played when it is stratified by race, age, and sex:

> sdat.ras <- aperm(sdat, c(2, 3, 1))

> sdat.ras

, , Sex = Male

Age

Race <=14 15-19 20-24 25-29 30-34 35-44 45-54 55+

White 2 88 407 550 564 654 323 216

Black 31 1412 4059 4121 4453 3858 1619 823

Other 7 210 654 633 520 492 202 108

, , Sex = Female

Age

Race <=14 15-19 20-24 25-29 30-34 35-44 45-54 55+

White 14 253 475 433 316 243 55 24

Black 165 2257 4503 3590 2628 1505 392 92

Other 11 158 307 283 167 149 40 15

Another method for changing the display of an array is to convert it into a flat

contingency table using the ftable function. For example, to display Table 2.23

on page 71 as a flat contingency table in R (but without the marginal totals), we use

the following code:

> sdat.asr <- aperm(sdat, c(3,1,2)) #rearrange to age, sex, race

> ftable(sdat.asr) #convert 2-D flat table

Race White Black Other

Age Sex

<=14 Male 2 31 7

Female 14 165 11

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

2.4 An array is a n-dimensional table of like elements 75

15-19 Male 88 1412 210

Female 253 2257 158

20-24 Male 407 4059 654

Female 475 4503 307

25-29 Male 550 4121 633

Female 433 3590 283

30-34 Male 564 4453 520

Female 316 2628 167

35-44 Male 654 3858 492

Female 243 1505 149

45-54 Male 323 1619 202

Female 55 392 40

55+ Male 216 823 108

Female 24 92 15

This ftable object can be treated as a matrix, but it cannot be transposed. Notice

that we can combine the ftable with addmargins:

> ftable(addmargins(sdat.asr))

Race Black Other White Sum

Age Sex

15-19 Female 2257 158 253 2668

Male 1412 210 88 1710

Sum 3669 368 341 4378

20-24 Female 4503 307 475 5285

Male 4059 654 407 5120

Sum 8562 961 882 10405

25-29 Female 3590 283 433 4306

Male 4121 633 550 5304

Sum 7711 916 983 9610

30-34 Female 2628 167 316 3111

Male 4453 520 564 5537

Sum 7081 687 880 8648

35-44 Female 1505 149 243 1897

Male 3858 492 654 5004

Sum 5363 641 897 6901

45-54 Female 392 40 55 487

Male 1619 202 323 2144

Sum 2011 242 378 2631

<=14 Female 165 11 14 190

Male 31 7 2 40

Sum 196 18 16 230

>55 Female 92 15 24 131

Male 823 108 216 1147

Sum 915 123 240 1278

Sum Female 15132 1130 1813 18075

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

76 2 Working with R data objects

Male 20376 2826 2804 26006

Sum 35508 3956 4617 44081

To share the U.S. syphilis data in a universal format, we could create a text file

with the data in a tabular form. However, the original, individual-level data set has

over 40,000 observations. Instead, it would be more convenient to create a group-

level, tabular data set using the as.data.frame function on the data array object.

> sdat.df <- as.data.frame(sdat)

> str(sdat.df)

‘data.frame’: 48 obs. of 4 variables:

$ Sex : Factor w/ 2 levels "Male","Female": 1 2 1 2 1 2 1 2 1 2 ...

$ Race: Factor w/ 3 levels "White","Black",..: 1 1 2 2 3 3 1 1 2 2 ...

$ Age : Factor w/ 8 levels "<=14","15-19",..: 1 1 1 1 1 1 2 2 2 2 ...

$ Freq: num 2 14 31 165 7 ...

> sdat.df[1:8,]

Sex Race Age Freq

1 Male White <=14 2

2 Female White <=14 14

3 Male Black <=14 31

4 Female Black <=14 165

5 Male Other <=14 7

6 Female Other <=14 11

7 Male White 15-19 88

8 Female White 15-19 253

For additional practice, study and implement the examples in Table 2.22 on

page 70.

2.5 A list is a collection of like or unlike data objects

2.5.1 Understanding lists

Up to now, we have been working with atomic data objects (vector, matrix, array).

In contrast, lists, data frames, and functions are recursive data objects. Recursive

data objects have more flexibility in combining diverse data objects into one object.

A list provides the most flexibility. Think of a list object as a collection of “bins”

that can contain any R object (see Figure 2.5.1 on the facing page). Lists are very

useful for collecting results of an analysis or a function into one data object where

all its contents are readily accessible by indexing.

For example, using the UGDP clinical trial data, suppose we perform Fisher’s

exact test for testing the null hypothesis of independence of rows and columns in a

contingency table with fixed marginals.

> udat <- read.csv("http://www.medepi.net/data/ugdp.txt")

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

2.5 A list is a collection of like or unlike data objects 77

Fig. 2.4 Schematic representation of a list of length four. The first bin [1] contains a smiling face
[[1]], the second bin [2] contains a flower [[2]], the third bin [3] contains a lightning bolt
[[3]], and the fourth bin [[4]] contains a heart [[4]]. When indexing a list object, single
brackets [·] indexes the bin, and double brackets [[·]] indexes the bin contents. If the bin has a
name, then $name also indexes the contents.

> tab <- table(udat$Status, udat$Treatment)[,2:1]

> tab

Tolbutamide Placebo

Death 30 21

Survivor 174 184

> ftab <- fisher.test(tab)

> ftab

Fisher’s Exact Test for Count Data

data: tab

p-value = 0.1813

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

0.80138 2.88729

sample estimates:

odds ratio

1.5091

The default display only shows partial results. The total results are stored in the

object ftab. Let’s evaluate the structure of ftab and extract some results:

> str(ftab)

List of 7

$ p.value : num 0.181

$ conf.int : atomic [1:2] 0.801 2.887

..- attr(*, "conf.level")= num 0.95

$ estimate : Named num 1.51

..- attr(*, "names")= chr "odds ratio"

$ null.value : Named num 1

..- attr(*, "names")= chr "odds ratio"

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

78 2 Working with R data objects

$ alternative: chr "two.sided"

$ method : chr "Fisher’s Exact Test for Count Data"

$ data.name : chr "tab"

- attr(*, "class")= chr "htest"

> ftab$estimate

odds ratio

1.5091

> ftab$conf.int

[1] 0.80138 2.88729

> ftab$conf.int[2]

[1] 2.887286

attr(,"conf.level")

[1] 0.95

> ftab$p.value

[1] 0.18126

Using the str function to evaluate the structure of an output object is a common

method employed to extract additional results for display or further analysis. In this

case, ftab was a list with 7 bins, each with a name.

2.5.2 Creating lists

To create a list directly, use the list function. A list is a convenient method to save

results in our customized functions. For example, here’s a function to calculate an

odds ratio from a 2×2 table:

orcalc <- function(x){

or <- (x[1,1]*x[2,2])/(x[1,2]*x[2,1])

pval <- fisher.test(x)$p.value

list(data = x, odds.ratio = or, p.value = pval)

}

The orcalc function has been loaded in R, and now we run the function on the

UGDP data.

> tab #display 2x2 table

Tolbutamide Placebo

Death 30 21

Survivor 174 184

> orcalc(tab) #run function

$data

Tolbutamide Placebo

Death 30 21

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

2.5 A list is a collection of like or unlike data objects 79

Table 2.24 Common ways of creating a list

Function Description Try these examples

list Creates list object x <- 1:3

y <- matrix(c("a","c","b","d"), 2,2)

z <- c("Pedro", "Paulo", "Maria")

mm <- list(x, y, z)

mm

data.frame List in tabular
format where each
“bin” has a vector
of same length

x <-

data.frame(id=1:3,sex=c("M","F","T"))

x

mode(x)

class(x)

as.data.frame Coerces data
object into a data
frame

x <- matrix(1:6, 2, 3)

x

y <- as.data.frame(x)

y

read.table
read.csv
read.delim
read.fmf

Reads ASCII text
file into data
frame object1

wcgs <- read.table(".../wcgs.txt",

header=TRUE, sep=",")

str(wcgs)

vector Creates empty list
of length n

vector("list", 2)

as.list Coercion into list
object

list(1:2) # compare to as.list

as.list(1:2)

1. Try read.table("http://www.medepi.net/data/wcgs.txt", header=TRUE, sep=",")

Survivor 174 184

$odds.ratio

[1] 1.5107

$p.value

[1] 0.18126

For additional practice, study and implement the examples in Table 2.24.

2.5.3 Naming lists

Components (bins) of a list can be unnamed or named. Components of a list can be

named at the time the list is created or later using the names function. For practice,

try the examples in Table 2.25 on the following page.

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

80 2 Working with R data objects

Table 2.25 Common ways of naming lists

Function Try these examples

names z <- list(rnorm(20), "Luis", 1:3)

z

name after creation of list

names(z) <- c("bin1", "bin2", "bin3")

z

name at creation of list

z <- list(bin1 = rnorm(20), bin2 = "Luis", bin3 =

1:3)

z

without assignment returns character vector

names(z)

Table 2.26 Common ways of indexing lists

Indexing Try these examples

By position z <- list(bin1 = rnorm(20), bin2 = "Luis", bin3 =

1:3)

z[1] # indexes "bin" #1

z[[1]] # indexes contents of "bin" #1

By name (if exists) z$bin1

z$bin2

Indexing by
logical vector

num <- sapply(z, is.numeric)

num

z[num]

2.5.4 Indexing lists

If list components (bins) are unnamed, we can index the list by bin position with

single or double brackets. The single brackets [·] indexes one or more bins, and the

double brackets indexes contents of single bins only.

> mylist1 <- list(1:5, matrix(1:4,2,2), c("Juan Nieve", "Guillermo Farro"))

> mylist1[c(1, 3)] #index bins 1 and 3

[[1]]

[1] 1 2 3 4 5

[[2]]

[1] "Juan Nieve" "Guillermo Farro"

> mylist1[[3]] #index contents of 3rd bin

[1] "Juan Nieve" "Guillermo Farro"

When list bins are named, we can index the bin contents by name. Using the

matched case-control study infert data set, we will conduct a conditional logistic

regression analysis to determine if spontaneous and induced abortions are indepen-

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

2.5 A list is a collection of like or unlike data objects 81

dently associated with infertility. For this we’ll need to load the survival package

which contains the clogit function.

> data(infert)

> library(survival)

> mod1 <- clogit(case ˜ spontaneous + induced + strata(stratum),

+ data = infert)

> mod1 #default display

Call:

clogit(case ˜ spontaneous + induced + strata(stratum), data = infert)

coef exp(coef) se(coef) z p

spontaneous 1.99 7.29 0.352 5.63 1.8e-08

induced 1.41 4.09 0.361 3.91 9.4e-05

Likelihood ratio test=53.1 on 2 df, p=2.87e-12 n= 248

> str(mod1) #evaluate structure

List of 17

$ coefficients : Named num [1:2] 1.99 1.41

..- attr(*, "names")= chr [1:2] "spontaneous" "induced"

$ var : num [1:2, 1:2] 0.1242 0.0927 0.0927 0.1301

$ loglik : num [1:2] -90.8 -64.2

$ score : num 48.4

$ iter : int 5

...

> names(mod1) #names of list components

[1] "coefficients" "var" "loglik"

[4] "score" "iter" "linear.predictors"

[7] "residuals" "means" "method"

[10] "n" "terms" "assign"

[13] "wald.test" "y" "formula"

[16] "call" "userCall"

> mod1$coeff

spontaneous induced

1.9859 1.4090

The results from str(mod1) are only partially displayed. Sometimes it is more

convenience to display the names for the list rather than the complete structure.

Additionally, the summary function applied to a regression model object creates a

list object with more detailed results. This too has a default display, or we can index

list components by name.

> summod1 <- summary(mod1)

> summod1 #default display of more detailed results

Call:

coxph(formula = Surv(rep(1, 248), case) ˜ spontaneous +

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

82 2 Working with R data objects

Table 2.27 Common ways of replacing list components

Replacing Try these examples

By position z <- list(bin1 = rnorm(20), bin2 = "Luis", bin3 =

1:3)

z[1] <- list(c(2, 3, 4)) # replaces "bin" contents

z[[1]] <- c(2, 3, 4) # replaces "bin" contents

By name (if exists) z$bin2 <- c("Tomas", "Luis", "Angela")

z

replace name of specific "bin"

names(z)[2] <- "mykids"

z

By logical num <- sapply(z, is.numeric)

num

z[num]<- list(rnorm(10), rnorm(10))

z

induced + strata(stratum), data = infert, method = "exact")

n= 248

coef exp(coef) se(coef) z p

spontaneous 1.99 7.29 0.352 5.63 1.8e-08

induced 1.41 4.09 0.361 3.91 9.4e-05

exp(coef) exp(-coef) lower .95 upper .95

spontaneous 7.29 0.137 3.65 14.5

induced 4.09 0.244 2.02 8.3

Rsquare= 0.193 (max possible= 0.519)

Likelihood ratio test= 53.1 on 2 df, p=2.87e-12

Wald test = 31.8 on 2 df, p=1.22e-07

Score (logrank) test = 48.4 on 2 df, p=3.03e-11

> names(summod1) #names of list components

[1] "call" "fail" "na.action" "n" "icc"

[6] "coef" "conf.int" "logtest" "sctest" "rsq"

[11] "waldtest" "used.robust"

> summod1$coef

coef exp(coef) se(coef) z p

spontaneous 1.9859 7.2854 0.35244 5.6346 1.8e-08

induced 1.4090 4.0919 0.36071 3.9062 9.4e-05

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

2.5 A list is a collection of like or unlike data objects 83

Table 2.28 Common ways of operating on a list

Function Description Try these examples

lapply Applies a function to each
component of a list and returns a list

x <- list(1:5, 6:10)

x

lapply(x, mean)

sapply Applies a function to each
component of a list and simplifies

sapply(x, mean)

do.call Calls and applies a function to the
list

do.call(rbind, x)

mapply Applies a function to the first
elements of each argument, the
second elements, the third elements,
and so on.

x <- list(1:4, 1:4)

x

y <- list(4, rep(4, 4))

y

mapply(rep, x, y,

SIMPLIFY=FALSE)

mapply(rep, x, y)

2.5.5 Replacing lists components

Replacing list components is accomplished by combining indexing with assignment.

And of course, we can index by position, name, or logical. Remember, if it can be

indexed, it can be replaced. Study and practice the examples in Table 2.27 on the

preceding page.

2.5.6 Operations on lists

Because lists can have complex structural components, there are not many opera-

tions we will want to do on lists. When we want to apply a function to each compo-

nent (bin) of a list, we use the lapply or sapply function. These functions are

identical except that sapply “simplies” the final result, if possible.

The do.call function applies a function to the entire list using each each com-

ponent as an argument. For example, consider a list where each bin contains a vector

and we want to cbind the vectors.

> mylist <- list(vec1=1:5, vec2=6:10, vec3=11:15)

> cbind(mylist) #will not work

mylist

vec1 Integer,5

vec2 Integer,5

vec3 Integer,5

> do.call(cbind, mylist) #works

vec1 vec2 vec3

[1,] 1 6 11

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

84 2 Working with R data objects

[2,] 2 7 12

[3,] 3 8 13

[4,] 4 9 14

[5,] 5 10 15

For additional practice, study and implements the examples in Table 2.28 on the

preceding page.

2.6 A data frame is a list in a 2-dimensional tabular form

A data frame is a list in 2-dimensional tabular form. Each list component (bin) is a

data field of equal length. A data frame is a list that behaves like a matrix. Anything

that can be done with lists can be done with data frames. Many things that can be

done with matrices can be done with data frames.

2.6.1 Understanding data frames and factors

Epidemiologists are familiar with tabular data sets where each row is a record and

each column is a field. A record can be data collected on individuals or groups.

We usually refer to the field name as a variable (e.g., age, gender, ethnicity). Fields

can contain numeric or character data. In R, these types of data sets are handled

by data frames. Each column of a data frame is usually either a factor or numeric

vector, although it can have complex, character, or logical vectors. Data frames have

the functionality of matrices and lists. For example, here is the first 10 rows of the

infert data set, a matched case-control study published in 1976 that evaluated

whether infertility was associated with prior spontaneous or induced abortions.

> data(infert)

> str(infert)

‘data.frame’: 248 obs. of 8 variables:

$ education : Factor w/ 3 levels "0-5yrs",..: 1 1 ...

$ age : num NA 45 NA 23 35 36 23 32 21 28 ...

$ parity : num 6 1 6 4 3 4 1 2 1 2 ...

$ induced : num 1 1 2 2 1 2 0 0 0 0 ...

$ case : num 1 1 1 1 1 1 1 1 1 1 ...

$ spontaneous : num 2 0 0 0 1 1 0 0 1 0 ...

$ stratum : int 1 2 3 4 5 6 7 8 9 10 ...

$ pooled.stratum: num 3 1 4 2 32 36 6 22 5 19 ...

> infert[1:10, 1:6]

education age parity induced case spontaneous

1 0-5yrs NA 6 1 1 2

2 0-5yrs 45 1 1 1 0

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

2.6 A data frame is a list in a 2-dimensional tabular form 85

3 0-5yrs NA 6 2 1 0

4 0-5yrs 23 4 2 1 0

5 6-11yrs 35 3 1 1 1

6 6-11yrs 36 4 2 1 1

7 6-11yrs 23 1 0 1 0

8 6-11yrs 32 2 0 1 0

9 6-11yrs 21 1 0 1 1

10 6-11yrs 28 2 0 1 0

The fields are obviously vectors. Let’s explore a few of these vectors to see what

we can learn about their structure in R.

> #age variable

> infert$age

[1] 26 42 39 34 35 36 23 32 21 28 29 37 31 29 31 27 30 26

...

[235] 25 32 25 31 38 26 31 31 25 31 34 35 29 23

> mode(infert$age)

[1] "numeric"

> class(infert$age)

[1] "numeric"

> #stratum variable

> infert$stratum

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

...

[235] 70 71 72 73 74 75 76 77 78 79 80 81 82 83

> mode(infert$stratum)

[1] "numeric"

> class(infert$stratum)

[1] "integer"

> #education variable

> infert$education

[1] 0-5yrs 0-5yrs 0-5yrs 0-5yrs 6-11yrs 6-11yrs

...

[247] 12+ yrs 12+ yrs

Levels: 0-5yrs 6-11yrs 12+ yrs

> mode(infert$education)

[1] "numeric"

> class(infert$education)

[1] "factor"

What have we learned so far? In the infert data frame, age is a vector of mode

“numeric” and class “numeric,” stratum is a vector of mode “numeric” and class

“integer,” and education is a vector of mode “numeric” and class “factor.” The

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

86 2 Working with R data objects

numeric vectors are straightforward and easy to understand. However, a factor, R’s

representation of categorical data, is a bit more complicated.

Contrary to intuition, a factor is a numeric vector, not a character vector, although

it may have been created from a character vector (shown later). To see the “true”

education factor use the unclass function:

> z <- unclass(infert$education)

> z

[1] 1 1 1 1 2

...

[244] 3 3 3 3 3

attr(,"levels")

[1] "0-5yrs" "6-11yrs" "12+ yrs"

> mode(z)

[1] "numeric"

> class(z)

[1] "integer"

Now let’s create a factor from a character vector and then unclass it:

> cointoss <- sample(c("Head","Tail"), 100, replace = TRUE)

> cointoss

[1] "Tail" "Head" "Head" "Tail" "Tail" "Tail" "Head"

...

[99] "Tail" "Head"

> fct <- factor(cointoss)

> fct

[1] Tail Head Head Tail Tail Tail Head Head Head Tail Head

...

[100] Head

Levels: Head Tail

> unclass(fct)

[1] 2 1 1 2 2 2 1 1 1 2 1 1 1 2 2 2 2 2 1 1 1 1 1 1 1 2 2

[28] 1 2 2 1 1 2 1 2 2 1 1 1 1 1 2 2 1 1 2 2 2 1 1 2 2 2 1

[55] 1 1 1 1 2 1 1 2 2 2 1 1 2 2 2 2 1 2 2 1 1 1 2 1 1 2 2

[82] 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 2 1 2 1

attr(,"levels")

[1] "Head" "Tail"

Notice that we can still recover the original character vector using the as.character

function:

> as.character(cointoss)

[1] "Tail" "Head" "Head" "Tail" "Tail" "Tail" "Head"

...

[99] "Tail" "Head"

> as.character(fct)

[1] "Tail" "Head" "Head" "Tail" "Tail" "Tail" "Head"

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

2.6 A data frame is a list in a 2-dimensional tabular form 87

...

[99] "Tail" "Head"

Okay, let’s create an ordered factor; that is, levels of a categorical variable that

have natural ordering. For this we set ordered=TRUE in the factor function:

> samp <- sample(c("Low","Medium","High"), 100, replace=TRUE)

> ofac1 <- factor(samp, ordered=T)

> ofac1

[1] Low Medium High Medium Medium Medium Medium

...

[99] High High

Levels: High < Low < Medium

> table(ofac1) #levels and labels not in natural order

ofac1

High Low Medium

43 25 32

However, notice that the ordering was done in alphabetical order which is not what

we want. To change this, use the levels options in the factor function:

> ofac2 <- factor(samp, levels=c("Low","Medium","High"), ordered=T)

> ofac2

[1] Low Medium High Medium Medium Medium Medium

...

[99] High High

Levels: Low < Medium < High

> table(ofac2)

ofac2

Low Medium High

28 35 37

Great — this is exactly what we want! For review, Table 2.29 on the next page

summarizes the variable types in epidemiology and how they are represented in R.

Factors (unordered and ordered) are used to represent nominal and ordinal categor-

ical data. The infert data set contains nominal factors and the esoph data set

contains ordinal factors.

2.6.2 Creating data frames

In the creation of data frames, character vectors (usually representing categorical

data) are converted to factors (mode numeric, class factor), and numeric vectors are

converted to numeric vectors of class numeric or class integer.

wt <- c(59.5, 61.4, 45.2)

age <- c(11, 9, 6)

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

88 2 Working with R data objects

Table 2.29 Variable types in epidemiologic data and their representations in R data frames

Representations in data Representations in R

Variable type Examples Mode Class Examples1

Numeric

Continuous 3.45, 2/3 numeric numeric infert$age

Discrete 1, 2, 3, 4, . . . numeric integer infert$stratum

Categorical

Nominal male vs. female numeric factor infert$education

Ordinal low < medium < high numeric ordered factor esoph$agegp

1. First load data: data(infert); data(esoph)

Table 2.30 Common ways of creating data frames

Function Description Try these examples

data.frame Data frames are of
mode list

x <- data.frame(id=1:2, sex=c("M","F"))

mode(x); x

as.data.frame Coerces data
object into a data
frame

x <- matrix(1:6, 2, 3); x

as.data.frame(x)

as.table
ftable

Combine with
as.data.frame to
convert a fully
labeled array into
a data frame

x <- array(1:8, c(2, 2, 2))

dimnames(x) <- list(Exposure=c("Y",

"N"),

Disease = c("Y", "N"),

Confounder = c("Y", "N"))

as.data.frame(ftable(x))

as.data.frame(as.table(x))

read.table
read.csv
read.delim
read.fmf

Reads ASCII text
file into data
frame object1

wcgs <- read.csv(".../wcgs.txt",

header=T)

str(wcgs)

1. Try read.csv("http://www.medepi.net/data/wcgs.txt", header=TRUE)

sex <- c("Male", "Male", "Female")

df <- data.frame(age, sex, wt)

df

str(df)

Factors can also be created directly from vectors as described in the previous section.

2.6.3 Naming data frames

Everything that applies to naming list components (Table 2.25 on page 80) also

applies to naming data frame components (Table 2.31 on the next page). In general,

we may be interested in renaming variables (fields) or row names of a data frame,

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

2.6 A data frame is a list in a 2-dimensional tabular form 89

Table 2.31 Common ways of naming data frames

Function Try these examples

names x <- data.frame(var1 = 1:3, var2 = c("M", "F", "F"))

x

names(x) <- c("Subjno", "Sex")

x

row.names row.names(x) <- c("Subj 1", "Subj 2", "Subj 3")

x

or renaming the levels (possible values) for a given factor (categorical variable). For

example, consider the Oswego data set.

> odat <- read.table("http://www.medepi.net/data/oswego.txt",

+ sep="", header=TRUE, na.strings=".")

> odat[1:5,1:8] #Display partial data frame

id age sex meal.time ill onset.date onset.time baked.ham

1 2 52 F 8:00 PM Y 4/19 12:30 AM Y

2 3 65 M 6:30 PM Y 4/19 12:30 AM Y

3 4 59 F 6:30 PM Y 4/19 12:30 AM Y

4 6 63 F 7:30 PM Y 4/18 10:30 PM Y

5 7 70 M 7:30 PM Y 4/18 10:30 PM Y

> names(odat)[3] <- "Gender" #Rename ’sex’ to ’Gender’

> table(odat$Gender) #Display ’Gender’ distribution

F M

44 31

> levels(odat$Gender) #Display ’Gender’ levels

[1] "F" "M"

> #Replace ’Gender’ level labels

> levels(odat$Gender) <- c("Female", "Male")

> levels(odat$Gender) #Display new ’Gender’ levels

[1] "Female" "Male"

> table(odat$Gender) #Confirm distribution is same

Female Male

44 31

> odat[1:5,1:8] #Display partial data frame

id age Gender meal.time ill onset.date onset.time baked.ham

1 2 52 Female 8:00 PM Y 4/19 12:30 AM Y

2 3 65 Male 6:30 PM Y 4/19 12:30 AM Y

3 4 59 Female 6:30 PM Y 4/19 12:30 AM Y

4 6 63 Female 7:30 PM Y 4/18 10:30 PM Y

5 7 70 Male 7:30 PM Y 4/18 10:30 PM Y

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

90 2 Working with R data objects

Table 2.32 Common ways of indexing data frames

Indexing Try these examples

By position data(infert)

infert[1:5, 1:3]

By name infert[1:5, c("education", "age", "parity")]

By logical agelt30 <- infert$age<30; agelt30

infert[agelt30, c("education","induced","parity")]

can also use ’subset’ function

subset(infert, agelt30,

c("education","induced","parity"))

On occasion, we might be interested in renaming the row names. Currently, the

Oswego data set has default integer values from 1 to 75 as the row names.

> row.names(odat)

[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11"

[12] "12" "13" "14" "15" "16" "17" "18" "19" "20" "21" "22"

[23] "23" "24" "25" "26" "27" "28" "29" "30" "31" "32" "33"

[34] "34" "35" "36" "37" "38" "39" "40" "41" "42" "43" "44"

[45] "45" "46" "47" "48" "49" "50" "51" "52" "53" "54" "55"

[56] "56" "57" "58" "59" "60" "61" "62" "63" "64" "65" "66"

[67] "67" "68" "69" "70" "71" "72" "73" "74" "75"

We can change the row names by assigning a new character vector.

> row.names(odat) <- sample(101:199, size=nrow(odat))

> odat[1:5,1:7]

id age Gender meal.time ill onset.date onset.time

123 2 52 Female 8:00 PM Y 4/19 12:30 AM

145 3 65 Male 6:30 PM Y 4/19 12:30 AM

173 4 59 Female 6:30 PM Y 4/19 12:30 AM

138 6 63 Female 7:30 PM Y 4/18 10:30 PM

146 7 70 Male 7:30 PM Y 4/18 10:30 PM

2.6.4 Indexing data frames

Indexing a data frame is similar to indexing a matrix or a list: we can index by

position, by name, or by logical vector. Consider, for example, the 2004 Califor-

nia West Nile virus human disease surveillance data. Suppose we are interested in

summarizing the Los Angeles cases with neuroinvasive disease (“WNND”).

> wdat <- read.csv("http://www.medepi.net/data/wnv/wnv2004fin.txt")

> str(wdat)

‘data.frame’: 779 obs. of 8 variables:

$ id : int 1 2 3 4 5 6 7 8 9 10 ...

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

2.6 A data frame is a list in a 2-dimensional tabular form 91

$ county : Factor w/ 23 levels "Butte","Fresno",..: 14 ...

$ age : int 40 64 19 12 12 17 61 74 71 26 ...

$ sex : Factor w/ 2 levels "F","M": 1 1 2 2 2 2 2 1...

$ syndrome : Factor w/ 3 levels "Unknown","WNF",..: 22 3 ...

$ date.onset : Factor w/ 130 levels "2004-05-14", ..: 3 ...

$ date.tested: Factor w/ 104 levels "2004-06-02",..: 1 ...

$ death : Factor w/ 2 levels "No","Yes": 1 1 1 1 1 1 ...

> levels(wdat$county) #Review levels of ’county’ variable

[1] "Butte" "Fresno" "Glenn"

[4] "Imperial" "Kern" "Lake"

[7] "Lassen" "Los Angeles" "Merced"

[10] "Orange" "Placer" "Riverside"

[13] "Sacramento" "San Bernardino" "San Diego"

[16] "San Joaquin" "Santa Clara" "Shasta"

[19] "Sn Luis Obispo" "Tehama" "Tulare"

[22] "Ventura" "Yolo"

> levels(wdat$syndrome) #Review levels of ’syndrome’ variable

[1] "Unknown" "WNF" "WNND"

> myrows <- wdat$county=="Los Angeles" & wdat$syndrome=="WNND"

> mycols <- c("id", "county", "age", "sex", "syndrome", "death")

> wnv.la <- wdat[myrows, mycols]

> wnv.la

id county age sex syndrome death

25 25 Los Angeles 70 M WNND No

26 26 Los Angeles 59 M WNND No

27 27 Los Angeles 59 M WNND No

...

734 736 Los Angeles 71 M WNND Yes

770 772 Los Angeles 72 M WNND No

776 778 Los Angeles 50 F WNND No

In this example, the data frame rows were indexed by logical vector, and the columns

were indexed by names. We emphasize this method because it only requires appli-

cation of previously learned principles that always work with R objects.

An alternative method is to use the subset function. The first argument speci-

fies the data frame, the second argument is a Boolean operation that evaluates to a

logical vector, and the third argument specifies what variables (or range of variables)

to include or exclude.

> wnv.sf2 <- subset(wdat, county=="Los Angeles" & syndrome=="WNND",

+ select = c(id, county, age, sex, syndrome, death))

> wnv.sf2[1:6,]

id county age sex syndrome death

25 25 Los Angeles 70 M WNND No

26 26 Los Angeles 59 M WNND No

27 27 Los Angeles 59 M WNND No

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

92 2 Working with R data objects

47 47 Los Angeles 57 M WNND No

48 48 Los Angeles 60 M WNND No

49 49 Los Angeles 34 M WNND No

This example is equivalent but specifies range of variables using the : function:

> wnv.sf3 <- subset(wdat, county=="Los Angeles" & syndrome=="WNND",

+ select = c(id:syndrome, death))

> wnv.sf3[1:6,]

id county age sex syndrome death

25 25 Los Angeles 70 M WNND No

26 26 Los Angeles 59 M WNND No

27 27 Los Angeles 59 M WNND No

47 47 Los Angeles 57 M WNND No

48 48 Los Angeles 60 M WNND No

49 49 Los Angeles 34 M WNND No

This example is equivalent but specifies variables to exclude using the - function:

> wnv.sf4 <- subset(wdat, county=="Los Angeles" & syndrome=="WNND",

+ select = -c(date.onset, date.tested))

> wnv.sf4[1:6,]

id county age sex syndrome death

25 25 Los Angeles 70 M WNND No

26 26 Los Angeles 59 M WNND No

27 27 Los Angeles 59 M WNND No

47 47 Los Angeles 57 M WNND No

48 48 Los Angeles 60 M WNND No

49 49 Los Angeles 34 M WNND No

The subset function offers some conveniences such as the ability to specify a

range of fields to include using the : function, and to specify a group of fields to

exclude using the - function.

2.6.5 Replacing data frame components

With data frames, as with all R data objects, anything that can be indexed can be

replaced. We already saw some examples of replacing names. For practice, study

and implement the examples in Table 2.33 on the facing page.

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

2.6 A data frame is a list in a 2-dimensional tabular form 93

Table 2.33 Common ways of replacing data frame components

Replacing Try these examples

By position data(infert)

infert[1:4, 1:2]

infert[1:4, 2] <- c(NA, 45, NA, 23)

infert[1:4, 1:2]

By name names(infert)

infert[1:4, c("education", "age")]

infert[1:4, c("age")] <- c(NA, 45, NA, 23)

infert[1:4, c("education", "age")]

By logical table(infert$parity)

change values of 5 or 6 to missing (NA)

infert$parity[infert$parity==5 | infert$parity==6]

<- NA

table(infert$parity)

table(infert$parity, exclude=NULL)

Table 2.34 Common ways of operating on a data frame

Function Description Try these examples

tapply Apply a function to
strata of a vector that
are defined by a
unique combination of
the levels of selected
factors

data(infert)

args(tapply)

tapply(infert$age, infert$education,

mean, na.rm = TRACE)

lapply Apply a function to
each component of the
list

lapply(infert[,1:3], table)

sapply Apply a function to
each component of a
list, and simplify

sapply(infert[,c("age", "parity")],

mean, na.rm = TRUE)

aggregate Splits the data into
subsets, computes
summary statistics for
each, and returns the
result in a convenient
form.

aggregate(infert[,c("age", "parity")],

by = list(Education =

infert$education,

Induced = infert$induced), mean)

mapply Apply a function to
the first elements of
each argument, the
second elements, the
third elements, and so
on.

df <- data.frame(var1 = 1:4, var2 =

4:1)

mapply("*", df$var1, df$var2)

mapply(c, df$var1, df$var2)

mapply(c, df$var1, df$var2, SIMPLIFY=F)

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

94 2 Working with R data objects

2.6.6 Operations on data frames

A data frame is of mode list, and functions that operate on components of a list will

work with data frames. For example, consider the California population estimates

and projections for the years 2000–2050.

> capop <- read.csv("http://www.dof.ca.gov/HTML/DEMOGRAP/

Data/RaceEthnic/Population-00-50/documents/California.txt")

> str(capop)

‘data.frame’: 10302 obs. of 11 variables:

$ County : int 59 59 59 59 59 59 59 59 59 59 ...

$ Year : int 2000 2000 2000 2000 2000 2000 ...

$ Sex : Factor w/ 2 levels "F","M": 1 1 1 ...

$ Age : int 0 1 2 3 4 5 6 7 8 9 ...

$ White : int 75619 76211 76701 78551 82314 ...

$ Hispanic : int 115911 113706 114177 116733 0 ...

$ Asian : int 20879 20424 21044 21920 22760 ...

$ Pacific.Islander: int 741 765 806 817 884 945 961 ...

$ Black : int 14629 15420 15783 16531 17331 ...

$ American.Indian : int 1022 1149 1169 1318 1344 1363 ...

$ Multirace : int 10731 8676 8671 8556 8621 ...

> capop[1:5,1:8]

County Year Sex Age White Hispanic Asian Pacific.Islander

1 59 2000 F 0 75619 115911 20879 741

2 59 2000 F 1 76211 113706 20424 765

3 59 2000 F 2 76701 114177 21044 806

4 59 2000 F 3 78551 116733 21920 817

5 59 2000 F 4 82314 119995 22760 884

Now, suppose we want to assess the range of the numeric fields. If we treat the data

frame as a list, both lapply or sapply works:

> sapply(capop[-3], range)

County Year Age White Hispanic Asian Pacific.Islander

[1,] 59 2000 0 497 110 76 1

[2,] 59 2050 100 148246 277168 46861 1890

Black American.Indian Multirace

[1,] 57 0 5

[2,] 26983 8181 17493

However, if we treat the data frame as a matrix, apply also works:

> apply(capop[,-3], 2, range)

County Year Age White Hispanic Asian Pacific.Islander

[1,] 59 2000 0 497 110 76 1

[2,] 59 2050 100 148246 277168 46861 1890

Black American.Indian Multirace

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

2.6 A data frame is a list in a 2-dimensional tabular form 95

[1,] 57 0 5

[2,] 26983 8181 17493

Some R functions, such as summary, will summarize every variable in a data

frame without having to use lapply or sapply.

> summary(capop[1:7])

County Year Sex Age

Min. :59 Min. :2000 F:5151 Min. : 0

1st Qu.:59 1st Qu.:2012 M:5151 1st Qu.: 25

Median :59 Median :2025 Median : 50

Mean :59 Mean :2025 Mean : 50

3rd Qu.:59 3rd Qu.:2038 3rd Qu.: 75

Max. :59 Max. :2050 Max. :100

White Hispanic Asian

Min. : 497 Min. : 110 Min. : 76

1st Qu.: 63134 1st Qu.: 29962 1st Qu.:19379

Median : 75944 Median :115646 Median :30971

Mean : 71591 Mean :101746 Mean :27769

3rd Qu.: 88021 3rd Qu.:154119 3rd Qu.:37763

Max. :148246 Max. :277168 Max. :46861

2.6.6.1 The aggregate function

The aggregate function is almost identical to the tapply function. Recall that

tapply allows us to apply a function to a vector that is stratified by one or more

fields; for example, calculating mean age (1 field) stratified by sex and ethnicity (2

fields). In contrast, aggregate allows us to apply a function to a group of fields

that are stratified by one or more fields; for example, calculating the mean weight

and height (2 fields) stratified by sex and ethnicity (2 fields):

> sex <- c("M", "M", "M", "M", "F", "F", "F", "F")

> eth <- c("W", "W", "B", "B", "W", "W", "B", "B")

> wgt <- c(140, 150, 150, 160, 120, 130, 130, 140)

> hgt <- c(60, 70, 70, 80, 40, 50, 50, 60)

> df <- data.frame(sex, eth, wgt, hgt)

> aggregate(df[, 3:4], by = list(Gender = df$sex,

+ Ethnicity = df$eth), FUN = mean)

Gender Ethnicity wgt hgt

1 F B 135 55

2 M B 155 75

3 F W 125 45

4 M W 145 65

For another example, in the capop data frame, we notice that the variable age

goes from 0 to 100 by 1-year intervals. It will be useful to aggregate ethnic-specific

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

96 2 Working with R data objects

population estimates into larger age categories. More specifically, we want to cal-

culate the sum of ethnic-specific population estimates (6 fields) stratified by age

category, sex, and year (3 fields). We will create a new 7-level age category field

commonly used by the National Center for Health Statistics. Naturally, we use the

aggregate function:

> capop <- read.csv("http://www.dof.ca.gov/HTML/DEMOGRAP/Data/

RaceEthnic/Population-00-50/documents/California.txt")

> to.keep <- c("White", "Hispanic", "Asian", "Pacific.Islander",

+ "Black", "American.Indian", "Multirace")

> age.nchs7 <- c(0, 1, 5, 15, 25, 45, 65, 101)

> capop$agecat7 <- cut(capop$Age, breaks = age.nchs7, right=FALSE)

> capop7 <- aggregate(capop[,to.keep], by = list(Age=capop$agecat7,

+ Sex=capop$Sex, Year=capop$Year), FUN = sum)

> levels(capop7$Age)[7] <- "65+"

> capop7[1:14, 1:6]

Age Sex Year White Hispanic Asian

1 [0,1) F 2000 75619 115911 20879

2 [1,5) F 2000 313777 464611 86148

3 [5,15) F 2000 924930 1124573 241047

4 [15,25) F 2000 868767 946948 272846

5 [25,45) F 2000 2360250 1742366 667956

6 [45,65) F 2000 2102090 735062 445039

7 65+ F 2000 1471842 279865 208566

8 [0,1) M 2000 79680 121585 21965

9 [1,5) M 2000 331193 484068 91373

10 [5,15) M 2000 979233 1175384 257574

11 [15,25) M 2000 925355 1080868 279314

12 [25,45) M 2000 2465194 1921896 614608

13 [45,65) M 2000 2074833 687549 384011

14 65+ M 2000 1075226 202299 154966

2.7 Managing data objects

When we work in R we have a workspace. Think of the workspace as our desktop

that contains the “objects” (data and tools) we use to conduct our work. To view the

objects in our workspace use the ls or objects functions (Table 2.35 on the next

page):

> ls()

[1] "add.to.x" "add.to.y" "age" "age.nchs7"

[5] "agecat" "alt" "ar.num" "capop"

[9] "capop7" "dat" "dat.ordered" "dat.random"

[13] "dat2" "dat3" "dat4" "dd"

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

2.7 Managing data objects 97

Table 2.35 Common ways of managing data objects

Function Description Try these examples

ls
objects

List objects ls()

objects() #equivalent

rm
remove

Remove object(s) yy <- 1:5; ls()

rm(yy); ls()

remove in objects in working

environment

Don’t do this unless we are really

sure

rm(list = ls())

save.image Saves current
workspace

save.image()

save
load

Writes R objects to the
specified external file.
The objects can be
read back from the file
at a later date using
’load’

x <- runif(20)

y <- list(a = 1, b = TRUE, c = "oops")

save(x, y, file = "c:/temp/xy.Rdata")

rm(x,y); x; y

load(file = "c:/temp/xy.Rdata")

x

y

...

We use the pattern option to search for object names that contain the pattern we

specify.

> ls(pattern = "dat")

[1] "dat" "dat.ordered" "dat.random" "dat2"

[5] "dat3" "dat4" "mydat" "sdat"

[9] "sdat.asr" "sdat3" "st.dates" "udat1"

[13] "udat2" "wdat"

The rm or remove functions will remove workspace objects.

> rm(dat, dat2, dat3, dat4)

> ls(patt="dat")

[1] "dat.ordered" "dat.random" "mydat" "sdat"

[5] "sdat.asr" "sdat3" "st.dates" "udat1"

[9] "udat2" "wdat"

To remove all data objects use the following code with extreme caution:

rm(list = ls())

However, the object names may not be sufficiently descriptive to know what

these objects contain. To assess R objects in our workspace we use the functions

summarized in Table 2.2 on page 30. In general, we never go wrong using the str,

mode, and class functions.

> mode(capop7)

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

98 2 Working with R data objects

[1] "list"

> class(capop7)

[1] "data.frame"

> str(capop7)

‘data.frame’: 714 obs. of 10 variables:

$ Age : Factor w/ 7 levels "[0,1)",..: 1 2 6 ...

$ Sex : Factor w/ 2 levels "F","M": 1 1 1 1 ...

$ Year : Factor w/ 51 levels "2000",..: 1 1 1 ...

$ White : int 75619 313777 924930 868767 ...

$ Hispanic : int 115911 464611 1124573 946948 ...

$ Asian : int 20879 86148 241047 272846 ...

$ Pacific.Islander: int 741 3272 9741 9629 19085 9898 ...

$ Black : int 14629 65065 195533 158923 ...

$ American.Indian : int 1022 4980 15271 14301 30960 ...

$ Multirace : int 10731 34524 78716 56735 82449 ...

>

> mode(orcalc)

[1] "function"

> class(orcalc)

[1] "function"

> str(orcalc)

function (x)

- attr(*, "source")= chr [1:5] "function(x){" ...

> orcalc

function(x){

or <- (x[1,1]*x[2,2])/(x[1,2]*x[2,1])

pval <- fisher.test(x)$p.value

list(data = x, odds.ratio = or, p.value = pval)

Objects created in the workspace are available during the R session. Upon closing

the R session, R asks whether to save the workspace. To save the objects without

exiting an R session, use the save.image function:

> save.image()

The save.image function is actually a special case of the save function:

save(list = ls(all = TRUE), file = ".RData")

The save function saves an R object as an external file. This file can be loaded

using the load function.

> x <- 1:5

> x

[1] 1 2 3 4 5

> save(x, file="/home/tja/temp/x")

> rm(x)

> x

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

2.7 Managing data objects 99

Table 2.36 Assessing and coercing data objects

Query data type Coerce to data type

is.vector as.vector

is.matrix as.matrix

is.array as.array

is.list as.list

is.data.frame as.data.frame

is.factor as.factor

is.ordered as.ordered

is.table as.table

is.numeric as.numeric

is.integer as.integer

is.character as.character

is.logical as.logical

is.function as.function

is.null as.null

is.na n/a

is.nan n/a

is.finite n/a

is.infinite n/a

Error: object "x" not found

> load(file="/home/tja/temp/x")

> x

[1] 1 2 3 4 5

Table 2.36 provides more functions for conducting specific object queries and for

coercing one object type into another. For example, a vector is not a matrix.

> is.matrix(1:3)

[1] FALSE

However, a vector can be coerced into a matrix.

> as.matrix(1:3)

[,1]

[1,] 1

[2,] 2

[3,] 3

> is.matrix(as.matrix(1:3))

[1] TRUE

A common use would be to coerce a factor into a character vector.

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

100 2 Working with R data objects

> sex <- factor(c("M", "M", "M", "M", "F", "F", "F", "F"))

> sex

[1] M M M M F F F F

Levels: F M

> unclass(sex) #does not coerce into character vector

[1] 2 2 2 2 1 1 1 1

attr(,"levels")

[1] "F" "M"

> as.character(sex) #yes, works

[1] "M" "M" "M" "M" "F" "F" "F" "F"

In R, missing values are represented by the value NA (“not available”). The

is.na function evaluates an object and returns a logical vector indicating which

positions contain NA. The !is.na version returns positions that do not contain NA.

> x <- c(12, 34, NA, 56, 89)

> is.na(x)

[1] FALSE FALSE TRUE FALSE FALSE

> !is.na(x)

[1] TRUE TRUE FALSE TRUE TRUE

We can use is.na to replace missing values.

> x[is.na(x)] <- 999

> x

[1] 12 34 999 56 89

In R, NaN represents “not a number” and Inf represent an infinite value. There-

fore, we can use is.nan and is.infinite to assess which positions contain

NaN and Inf, respectively.

> x <- c(0, 3, 0, -6)

> y <- c(4, 0, 0, 0)

> z <- x/y

> z

[1] 0 Inf NaN -Inf

> is.nan(z)

[1] FALSE FALSE TRUE FALSE

> is.infinite(z)

[1] FALSE TRUE FALSE TRUE

2.8 Managing our workspace

Our workspace is like a desktop that contains the “objects” (data and tools) we use

to conduct our work. Use the getwd function to list the file path to the workspace

file .RData.

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

2.8 Managing our workspace 101

> getwd()

[1] "/home/tja/Data/R/home"

Use the setwd function to set up a new workspace location. A new .RData file

will automatically be created there

setwd("/home/tja/Data/R/newproject")

This is one method to manage multiple workspaces for one’s projects.

Use the search function to list the packages, environments, or data frames

attached and available.

> search() # Linux

[1] ".GlobalEnv" "package:stats" "package:graphics"

[4] "package:grDevices" "package:utils" "package:datasets"

[7] "package:methods" "Autoloads" "package:base"

The global environment .GlobalEnv is our workspace. The searchpaths

function list the full paths:

> searchpaths()

[1] ".GlobalEnv" "/usr/lib/R/library/stats"

[3] "/usr/lib/R/library/graphics" "/usr/lib/R/library/grDevices"

[5] "/usr/lib/R/library/utils" "/usr/lib/R/library/datasets"

[7] "/usr/lib/R/library/methods" "Autoloads"

[9] "/usr/lib/R/library/base"

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

102 2 Working with R data objects

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

2.8 Managing our workspace 103

Table 2.37 Risk of Death in a 20-year Period Among Women in Whickham, England, According
to Smoking Status at the Beginning of the Period

Smoking

Vital Status Yes No

Dead 139 230

Alive 443 502

Table 2.38 Risk of Death in a 20-year Period Among Women in Whickham, England, According
to Smoking Status at the Beginning of the Period

Smoking

Vital Status Yes No Total

Dead 139 230 369

Alive 443 502 945

Total 582 732 1314

Table 2.39 Risk Ratio and Odds Ratio of Death in a 20-year Period Among Women in Whickham,
England, According to Smoking Status at the Beginning of the Period

Smoking

Yes No

Risk 0.24 0.31

Risk Ratio 0.76 1.00

Odds 0.31 0.46

Odds Ratio 0.68 1.00

Problems

2.1. Download and install RStudio from http://www.rstudio.org. Start

a new project. For example, I started a new project in the following directory:

/home/tja/Documents/courses/ph251d/Rproj. Inside the Rproj directory I re-

named the XXX.Rproj file to ph251d.Rproj. From the main menu select File →
New → R Script. Save the R script as ph251d.R in the Rproj directory. Write and

run R code from this script. Test R code from the tables in this chapter.

2.2. Names and describe the six type of R objects.

2.3. How many ways can we index an object?

2.4. Finish the sentence: Any R object component(s) that can be indexed, can be

. . . .

2.5. Recreate Table 2.37 using any combination of the matrix, cbind, rbind,

dimnames, or names functions.

2.6. Starting with the 2 × 2 matrix object we created previously, using only the

apply, cbind, rbind, names, and dimnames functions, recreate Table 2.38.

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

104 2 Working with R data objects

2.7. Using the 2×2 data from Table 2.37 on the preceding page, use the sweep and

apply functions to calculate marginal and joint distributions.

2.8. Using the data from the previous problems, recreate Table 2.39 on the previous

page and interpret the results.

2.9. Read in the Whickham, England data using the R code below.

wdat = read.table("http://www.medepi.net/data/whickham-engl.txt",

sep = ",", header = TRUE)

str(wdat)

xtabs(˜Vital.Status + Age + Smoking, data = wdat)

Stratified by age category, calculate the risk of death comparing smokers to non-

smokers. Show your results. What is your interpretation.

2.10. Use the read.table function to read in the syphilis data available at http:

//www.medepi.net/data/syphilis89c.txt. Evaluate structure of data

frame. Do not attach std data frame (yet). Create a 3-dimensional array using both

the table or xtabs function. Now attach the std data frame using the attach

function. Create the same 3-dimensional array using both the table or xtabs

function.

2.11. Use the apply function to get marginal totals for the syphilis 3-dimensional

array.

2.12. Use the sweep and apply functions to get marginal and joint distributions

for a 3-D array.

2.13. Review and read in the group-level, tabular data set of primary and secondary

syphilis cases in the United States in 1989 available at http://www.medepi.

net/data/syphilis89b.txt. Use the rep function on the data frame fields

to recreate the individual-level data frame with over 40,000 observations.

2.14. Working with population estimates can be challenging because of the amount

of data manipulation. Study the 2000 population estimates for California Counties:

http://www.medepi.net/data/calpop/CalCounties2000.txt. Now,

study and implement this R code. For each expression or group of expressions, ex-

plain in words what the R code is doing. Be sure to display intermediate objects to

understand each step.

#1 Read county names

cty <- scan("http://www.medepi.net/data/calpop/calcounty.txt",

what="")

#2 Read county population estimates

calpop =

read.csv("http://www.medepi.net/data/calpop/CalCounties2000.txt",

header = T)

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

2.8 Managing our workspace 105

#2 Replace county number with county name

for(i in 1:length(cty)){

calpop$County[calpop$County==i] <- cty[i]

}

#3 Discretize age into categories

calpop$Agecat <- cut(calpop$Age, c(0,20,45,65,100),

include.lowest = TRUE, right = FALSE)

#4 Create combined API category

calpop$AsianPI <- calpop$Asian + calpop$Pacific.Islander

#5 Shorten selected ethnic labels

names(calpop)[c(6, 9, 10)] = c("Latino", "AfrAmer", "AmerInd")

#6 Index Bay Area Counties

baindex <- calpop$County=="Alameda" | calpop$County=="San Francisco"

bapop <- calpop[baindex,]

bapop

#7 Labels for later use

agelabs <- names(table(bapop$Agecat))

sexlabs <- c("Female", "Male")

racen <- c("White", "AfrAmer", "AsianPI", "Latino", "Multirace",

"AmerInd")

ctylabs <- names(table(bapop$County))

#8 Aggregate

bapop2 <- aggregate(bapop[,racen],

list(Agecat = bapop$Agecat, Sex = bapop$Sex,

County = bapop$County), sum)

bapop2

#9 Temp matrix of counts

tmp <- as.matrix(cbind(bapop2[1:4,racen], bapop2[5:8,racen],

bapop2[9:12,racen], bapop2[13:16,racen]))

#10 Convert into final array

bapop3 <- array(tmp, c(4, 6, 2, 2))

dimnames(bapop3) <- list(agelabs, racen, sexlabs, ctylabs)

bapop3

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

CHAPTER 3

Managing epidemiologic data in R

3.1 Entering and importing data

There are many ways of getting our data into R for analysis. In the section that

follows we review how to enter the Unversity Group Diabetes Program data (Ta-

ble 3.1) as well as the original data from a comma-delimited text file. We will use

the following approaches:

• Entering data at the command prompt

• Importing data from a file

• Importing data using an URL

3.1.1 Entering data at the command prompt

We review four methods. For Methods 1 and 2, data are entered directly at the com-

mand prompt. Method 3 uses the same R expressions and data as Methods 1 and

Table 3.1 Deaths among subjects who received tolbutamide and placebo in the Unversity Group
Diabetes Program (1970), stratifying by age

Age<55 Age≥55 Combined

Tolbutamide Placebo Tolbutamide Placebo Tolbutamide Placebo

Deaths 8 5 22 16 30 21

Survivors 98 115 76 69 174 184

107

108 3 Managing epidemiologic data in R

2, but they are entered into a text editor, saved as an text file with a .R extension

(e.g., job02.R), and then executed from the command prompt using the source

function. Alternatively, the R expressions and data can be copied and pasted into

R.1 And, for Method 4 we use R’s spreadsheet editor (least preferred).

3.1.1.1 Method 1

For review, a convenient way to enter data at the command prompt is to use the c

function:

> #enter data for a vector

> vec1 <- c(8, 98, 5, 115); vec1

[1] 8 98 5 115

> vec2 <- c(22, 76, 16, 69); vec2

[1] 22 76 16 69

>

> #enter data for a matrix

> mtx1 <- matrix(vec1, 2, 2); mtx1

[,1] [,2]

[1,] 8 5

[2,] 98 115

> mtx2 <- matrix(vec2, 2, 2); mtx2

[,1] [,2]

[1,] 22 16

[2,] 76 69

>

> #enter data for an array and sum across strata

> udat <- array(c(vec1, vec2), c(2, 2, 2)); udat

, , 1

[,1] [,2]

[1,] 8 5

[2,] 98 115

, , 2

[,1] [,2]

[1,] 22 16

[2,] 76 69

> udat.tot <- apply(udat, c(1, 2), sum); udat.tot

[,1] [,2]

[1,] 30 21

1 In RStudio, select from main menu Code → Run Region, etc.

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

3.1 Entering and importing data 109

[2,] 174 184

>

> #enter a list

> x <- list(crude.data = udat.tot, stratified.data = udat)

> x$crude.data

[,1] [,2]

[1,] 30 21

[2,] 174 184

> x$stratified

, , 1

[,1] [,2]

[1,] 8 5

[2,] 98 115

, , 2

[,1] [,2]

[1,] 22 16

[2,] 76 69

>

> #enter simple data frame

> subjname <- c("Pedro", "Paulo", "Maria")

> subjno <- 1:length(subjname)

> age <- c(34, 56, 56)

> sex <- c("Male", "Male", "Female")

> dat <- data.frame(subjno, subjname, age, sex); dat

subjno subjname age sex

1 1 Pedro 34 Male

2 2 Paulo 56 Male

3 3 Maria 56 Female

>

> #enter a simple function

> odds.ratio <- function(aa, bb, cc, dd){ aa*dd / (bb*cc)}

> odds.ratio(30, 174, 21, 184)

[1] 1.510673

3.1.1.2 Method 2

Method 2 is identical to Method 1 except one uses the scan function. It does not

matter if we enter the numbers on different lines, it will still be a vector. Remember

that we must press the Enter key twice after we have entered the last number.

> udat.tot <- scan()

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

110 3 Managing epidemiologic data in R

1: 30 174

3: 21 184

5:

Read 4 items

> udat.tot

[1] 30 174 21 184

To read in a matrix at the command prompt combine the matrix and scan

functions. Again, it does not matter on what lines we enter the data, as long as they

are in the correct order because the matrix function reads data in column-wise.

> udat.tot <- matrix(scan(), 2, 2)

1: 30 174 21 184

5:

Read 4 items

> udat.tot

[,1] [,2]

[1,] 30 21

[2,] 174 184

> udat.tot <- matrix(scan(), 2, 2, byrow = T) #read row-wise

1: 30 21 174 184

5:

Read 4 items

> udat.tot

[,1] [,2]

[1,] 30 21

[2,] 174 184

To read in an array at the command prompt combine the array and scan func-

tions. Again, it does not matter on what lines we enter the data, as long as they are

in the correct order because the array function reads the numbers column-wise. In

this example we include the dimnames argument.

> udat <- array(scan(), dim = c(2, 2, 2),

+ dimnames = list(Vital.Status = c("Dead","Survived"),

+ Treatment = c("Tolbutamide", "Placebo"),

+ Age.Group = c("<55", "55+")))

1: 8 98 5 115 22 76 16 69

9:

Read 8 items

> udat

, , Age.Group = <55

Treatment

Vital.Status Tolbutamide Placebo

Dead 8 5

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

3.1 Entering and importing data 111

Survived 98 115

, , Age.Group = 55+

Treatment

Vital.Status Tolbutamide Placebo

Dead 22 16

Survived 76 69

To read in a list of vectors of the same length (“fields”) at the command prompt

combine the list and scan function. We will need to specify the type of data that

will go into each “bin” or “field.” This is done by specifying the what argument as

a list. This list must be values that are either logical, integer, numeric, or character.

For example, for a character vector we can use any expression, say x, that would

evaluate to TRUE for is.character(x). For brevity, use "" for character, 0 for

numeric, 1:2 for integer, and T or F for logical. Look at this example:

> dat <- scan("", what = list(1:2, "", 0, "", T))

1: 3 "John Paul" 84.5 Male F

2: 4 "Jane Doe" 34.5 Female T

3:

Read 2 records

> dat

[[1]]

[1] 3 4

[[2]]

[1] "John Paul" "Jane Doe"

[[3]]

[1] 84.5 34.5

[[4]]

[1] "Male" "Female"

[[5]]

[1] FALSE TRUE

> str(dat)

List of 5

$: int [1:2] 3 4

$: chr [1:2] "John Paul" "Jane Doe"

$: num [1:2] 84.5 34.5

$: chr [1:2] "Male" "Female"

$: logi [1:2] FALSE TRUE

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

112 3 Managing epidemiologic data in R

> #same example with field names

> dat <- scan("", what = list(id = 1:2, name = "", age = 0,

+ sex = "", dead = TRUE))

1: 3 "John Paul" 84.5 Male F

2: 4 "Jane Doe" 34.5 Female T

3:

Read 2 records

> dat

$id

[1] 3 4

$name

[1] "John Paul" "Jane Doe"

$age

[1] 84.5 34.5

$sex

[1] "Male" "Female"

$dead

[1] FALSE TRUE

> str(dat)

List of 5

$ id : int [1:2] 3 4

$ name: chr [1:2] "John Paul" "Jane Doe"

$ age : num [1:2] 84.5 34.5

$ sex : chr [1:2] "Male" "Female"

$ dead: logi [1:2] FALSE TRUE

To read in a data frame at the command prompt combine the data.frame,

scan, and list functions.

> dat <- data.frame(scan("", what = list(id=1:2, name="",

+ age=0, sex="", dead=T)))

1: 3 "John Paul" 84.5 Male F

2: 4 "Jane Doe" 34.5 Female T

3:

Read 2 records

> dat

id name age sex dead

1 3 John Paul 84.5 Male FALSE

2 4 Jane Doe 34.5 Female TRUE

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

3.1 Entering and importing data 113

3.1.1.3 Method 3

Method 3 uses the same R expressions and data as Methods 1 and 2, but they are

entered into a text editor, saved as an ASCII text file with a .R extension (e.g.,

job01.R), and then executed from the command prompt using the source func-

tion. Alternatively, the R expressions and data can be copied and pasted into R.2

For example, the following expressions are in a text editor and saved to a file

named job01.R.

x <- 1:10

x

One can copy and paste this code into R at the commmand prompt.

> x <- 1:10

> x

[1] 1 2 3 4 5 6 7 8 9 10

However, if we execute the code using the source function, it will only display to

the screen those objects that are printed using the show or print function. Here

is the text editor code again, but including show.

x <- 1:10

show(x)

Now, source job01.R using source at the command prompt.

> source("/home/tja/Documents/Rproj/job01.R")

[1] 1 2 3 4 5 6 7 8 9 10

In general, we highly recommend using a text editor for all our work. The pro-

gram file (e.g., job01.R) created with the text editor facilitates documenting our

code, reviewing our code, debugging our code, replicating our analytic steps, and

auditing by external reviewers.

3.1.1.4 Method 4 (optional read)

Method 4 uses R’s spreadsheet editor.3 This is not a preferred method because we

like the original data to be in a text editor or read in from a data file. We will be

using the data.entry and edit functions. The data.entry function allows

editing of an existing object and automatically saving the changes to the original

object name. In contrast, the edit function allows editing of an existing object but

it will not save the changes to the original object name; we must explicitly assign it

to an object name (event if it is the original name).

To enter a vector we need to initialize a vector and then use the data.entry

function (Figure 3.1 on the next page).

2 In RStudio, select from main menu Code → Run Region, etc.
3 Editing of matrix and data frame objects is not currently supported in RStudio.

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

114 3 Managing epidemiologic data in R

Fig. 3.1 Select Help from the main menu.

> x <- numeric(10) #Initialize vector with zeros

> x

[1] 0 0 0 0 0 0 0 0 0 0

> data.entry(x) #Enter numbers, then close window

> x

[1] 1 2 3 4 5 6 7 8 9 10

However, the edit function applied to a vector does not open a spreadsheet. Try

the edit function and see what happens.

xnew <- edit(numeric(10)) #Edit number, then close window

To enter data into a spreadsheet matrix, first initialize a matrix and then use

the data.entry or edit function. Notice that the editor added default column

names. However, to add our own column names just click on the column heading

with our mouse pointer (unfortunately we cannot give row names).

> xnew <- matrix(numeric(4),2,2)

> data.entry(xnew)

> xnew <- edit(xnew) #equivalent

>

> #open spreadsheet editor in one step

> xnew <- edit(matrix(numeric(4),2,2))

> xnew

col1 col2

[1,] 11 33

[2,] 22 44

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

3.1 Entering and importing data 115

Arrays and nontabular lists cannot be entered using a spreadsheet editor. Hence,

we begin to see the limitations of spreadsheet-type approach to data entry. One type

of list, the data frame, can be entered using the edit function.

To enter a data frame use the edit function. However, we do not need to ini-

tialize a data frame (unlike with a matrix). Again, click on the column headings to

enter column names.

> df <- edit(data.frame()) #Spreadsheet screen not shown

> df

mykids age

1 Tomasito 7

2 Luisito 6

3 Angelita 3

When using the edit function to create a new data frame we must assign it an

object name to save the data frame. Later we will see that when we edit an existing

data object we can use the edit or fix function. The fix function differs in that

fix(data object) saves our edits directly back to data object without the

need to make a new assignment.

mypower <- function(x, n){xˆn}

fix(mypower) # Edits saved to ’mypower’ object

mypower <- edit(mypower) #equivalent

3.1.2 Importing data from a file

3.1.2.1 Reading an ASCII text data file

In this section we review how to read the following types of text data files:

• Comma-separated variable (csv) data file (± headers and ± row names)

• Fixed width formatted data file (± headers and ± row names)

Here is the University Group Diabetes Program randomized clinical trial text

data file that is comma-delimited, and includes row names and a header (ugdp.txt).4

The header is the first line that contains the column (field) names. The row names

is the first column that starts on the second line and uniquely identifies each row.

Notice that the row names do not have a column name associated with it. A data

file can come with either row names or header, neither, or both. Our preference is

to work with data files that have a header and data values that are self-explanatory.

Even without a data dictionary one can still make sense out of this data set.

Status,Treatment,Agegrp

1,Dead,Tolbutamide,<55

2,Dead,Tolbutamide,<55

4 Available at http://www.medepi.net/data/ugdp.txt

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

116 3 Managing epidemiologic data in R

...

408,Survived,Placebo,55+

409,Survived,Placebo,55+

Notice that the header row has 3 items, and the second row has 4 items. This is

because the row names start in the second row and have no column name. This data

file can be read in using the read.table function, and R figures out that the first

column are row names.5

> ud <- read.table("http://www.medepi.net/data/ugdp.txt",

+ header = TRUE, sep = ",")

> head(ud) #displays 1st 6 lines

Status Treatment Agegrp

1 Dead Tolbutamide <55

2 Dead Tolbutamide <55

3 Dead Tolbutamide <55

4 Dead Tolbutamide <55

5 Dead Tolbutamide <55

6 Dead Tolbutamide <55

Here is the same data file as it would appear without row names and without a

header (ugdp2.txt).

Dead,Tolbutamide,<55

Dead,Tolbutamide,<55

...

Survived,Placebo,55+

Survived,Placebo,55+

This data file can be read in using the read.table function. By default, it adds

row names (1, 2, 3, . . .).

> cnames <- c("Status", "Treatment", "Agegrp")

> udat2 <- read.table("http://www.medepi.net/data/ugdp2.txt",

+ header = FALSE, sep = ",", col.names = cnames)

> head(udat2)

Status Treatment Agegrp

1 Dead Tolbutamide <55

2 Dead Tolbutamide <55

3 Dead Tolbutamide <55

4 Dead Tolbutamide <55

5 Dead Tolbutamide <55

6 Dead Tolbutamide <55

Here is the same data file as it might appear as a fix formatted file. In this file,

columns 1 to 8 are for field #1, columns 9 to 19 are for field #2, and columns 20 to 22

are for field #3. This type of data file is more compact. One needs a data dictionary

to know which columns contain which fields.

5 If row names are supplied, they must be unique.

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

3.1 Entering and importing data 117

Dead Tolbutamide<55

Dead Tolbutamide<55

...

SurvivedPlacebo 55+

SurvivedPlacebo 55+

This data file would be read in using the read.fwf function. Because the field

widths are fixed, we must strip the white space using the strip.white option.

> cnames <- c("Status", "Treatment", "Agegrp")

> udat3 <- read.fwf("http://www.medepi.net/data/ugdp3.txt",

+ width = c(8, 11, 3), col.names = cnames, strip.white = TRUE)

> head(udat3)

Status Treatment Agegrp

1 Dead Tolbutamide <55

2 Dead Tolbutamide <55

3 Dead Tolbutamide <55

4 Dead Tolbutamide <55

5 Dead Tolbutamide <55

6 Dead Tolbutamide <55

Finally, here is the same data file as it might appear as a fixed width formatted

file but with numeric codes (ugdp4.txt). In this file, column 1 is for field #1, column

2 is for field #2, and column 3 is for field #3. This type of text data file is the most

compact, however, one needs a data dictionary to make sense of all the 1s and 2s.

121

121

...

212

212

Here is how this data file would be read in using the read.fwf function.

> cnames <- c("Status", "Treatment", "Agegrp")

> udat4 <- read.fwf("http://www.medepi.net/data/ugdp4.txt",

+ width = c(1, 1, 1), col.names = cnames)

> head(udat4)

Status Treatment Agegrp

1 1 2 1

2 1 2 1

3 1 2 1

4 1 2 1

5 1 2 1

6 1 2 1

R has other functions for reading text data files (read.csv, read.csv2,

read.delim, read.delim2). In general, read.table is the function used

most commonly for reading in data files.

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

118 3 Managing epidemiologic data in R

3.1.2.2 Reading data from a binary format (e.g., Stata, Epi Info)

To read data that comes in a binary or proprietary format load the foreign package

using the library function. To review available functions in the the foreign

package try help(package = foreign). For example, here we read in the

‘infert’ data set which is also available as a Stata data file.6

> idat <- read.dta("c:/.../data/infert.dta")

> head(idat)[,1:8]

id education age parity induced case spontaneous stratum

1 1 0 26 6 1 1 2 1

2 2 0 42 1 1 1 0 2

3 3 0 39 6 2 1 0 3

4 4 0 34 4 2 1 0 4

5 5 1 35 3 1 1 1 5

6 6 1 36 4 2 1 1 6

3.1.3 Importing data using a URL

As we have already seen, text data files can be read directly off a web server into R

using the read.table function. Here we load the Western Collaborative Group

Study data directly off a web server.

> wdat <- read.table("http://www.medepi.net/data/wcgs.txt",

+ header = TRUE, sep = ",")

> str(wdat)

‘data.frame’: 3154 obs. of 14 variables:

$ id : int 2001 2002 2003 2004 2005 2006 2007 2010 ...

$ age0 : int 49 42 42 41 59 44 44 40 43 42 ...

$ height0: int 73 70 69 68 70 72 72 71 72 70 ...

$ weight0: int 150 160 160 152 150 204 164 150 190 175 ...

$ sbp0 : int 110 154 110 124 144 150 130 138 146 132 ...

$ dbp0 : int 76 84 78 78 86 90 84 60 76 90 ...

$ chol0 : int 225 177 181 132 255 182 155 140 149 325 ...

$ behpat0: int 2 2 3 4 3 4 4 2 3 2 ...

$ ncigs0 : int 25 20 0 20 20 0 0 0 25 0 ...

$ dibpat0: int 1 1 0 0 0 0 0 1 0 1 ...

$ chd69 : int 0 0 0 0 1 0 0 0 0 0 ...

$ typechd: int 0 0 0 0 1 0 0 0 0 0 ...

$ time169: int 1664 3071 3071 3064 1885 3102 3074 1032 ...

$ arcus0 : int 0 1 0 0 1 0 0 0 0 1 ...

6 Available at http://www.medepi.net/data/infert.dta

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

3.2 Editing data 119

Fig. 3.2 Editing West Nile virus human surveillance data in text editor. Source: California Depart-
ment of Health Services, 2004

3.2 Editing data

In the ideal setting, our data has already been checked, errors corrected, and ready

to be analyzed. Post-collection data editing can be minimized by good design and

data collection. However, we may still need to make corrections or changes in data

values.

3.2.1 Text editor

For small data sets, it may be convenience to edit the data in our favorite text editor.

Key-recording macros, and search and replace tools can be very useful and efficient.

Figure 3.2 displays West Nile virus (WNV) infection surveillance data.7 This file is

a comma-delimited data file with a header.

3.2.2 The data.entry, edit, or fix functions

For vector and matrices we can use the data.entry function to edit these data

object elements. For data frames and functions use the edit or fix functions. Re-

member that changes made with the edit function are not saved unless we assign it

7 Raw data set available at http://www.medepi.net/data/wnv2004raw.txt, and
clean data set available at http://www.medepi.net/data/wnv2004fin.txt

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

120 3 Managing epidemiologic data in R

Fig. 3.3 Using the fix function to edit the WNV surveillance data frame. Unfortunately, this
approach does not facilitate documenting our edits. Source: California Department of Health Ser-
vices, 2004

to the original or new object name. In contrast, changes made with the fix function

are saved back to the original data object name. Therefore, be careful when we use

the fix function because we may unintentionally overwrite data.

Now let’s read in the WNV surveillance raw data as a data frame. Then, using the

fix function, we will edit the first three records where the value for the syndome

variable is “Unk” and change it to NA for missing (Figure 3.3). We will also change

“.” to NA.

> wd <- read.table("http://www.medepi.net/data/wnv/wnv2004raw.txt",

+ header = TRUE, sep = ",", as.is = TRUE)

> wd[wd$syndrome=="Unknown",][1:3,] #before edits (3 records)

id county age sex syndrome date.onset date.tested death

128 128 Los Angeles 81 M Unknown 07/28/2004 08/11/2004 .

129 129 Riverside 44 F Unknown 07/25/2004 08/11/2004 .

133 133 Los Angeles 36 M Unknown 08/04/2004 08/11/2004 No

> fix(wd) #open R spreadsheet and make edits (see figure)

> wd[c(128, 129, 133),] #after edits (3 records)

id county age sex syndrome date.onset date.tested death

128 128 Los Angeles 81 M NA 07/28/2004 08/11/2004 NA

129 129 Riverside 44 F NA 07/25/2004 08/11/2004 NA

133 133 Los Angeles 36 M NA 08/04/2004 08/11/2004 No

First, notice that in the read.table function as.is=TRUE. This means the

data is read in without R making any changes to it. In other words, character vectors

are not automatically converted to factors. We set the option because we knew we

were going to edit and make corrections to the data set, and create factors later. In

this example, I manually started changing the missing values “Unknown” to NA (R’s

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

3.2 Editing data 121

representation of missing values). However, this manual approach would be very

inefficient. A better approach is to specify which values in the data frame should

be converted to NA. In the read.table function we should have set the op-

tion na.string=c("Unknown", "."), converting the character strings “Un-

known” and “.” into NA. Let’s replace the missing values with NAs upon reading

the data file.

> wd <- read.table("http://www.medepi.net/data/wnv/wnv2004raw.txt",

+ header = TRUE, sep = ",", as.is = TRUE,

+ na.string=c("Unknown", "."))

> wd[c(128, 129, 133),] #verify change

id county age sex syndrome date.onset date.tested death

128 128 Los Angeles 81 M <NA> 07/28/2004 08/11/2004 <NA>

129 129 Riverside 44 F <NA> 07/25/2004 08/11/2004 <NA>

133 133 Los Angeles 36 M <NA> 08/04/2004 08/11/2004 No

3.2.3 Vectorized approach

How do we make these and other changes after the data set has been read into R?

Although using R’s spreadsheet function is convenient, we do not recommend it

because manual editing is inefficient, our work cannot be replicated and audited,

and documentation is poor. Instead use R’s vectorized approach. Let’s look at the

distribution of responses for each variable to assess what needs to be “cleaned up,”

in addition to converting missing values to NA.

> wd <- read.table("http://www.medepi.net/data/wnv/wnv2004raw.txt",

+ header = TRUE, sep = ",", as.is = TRUE)

> str(wd)

‘data.frame’: 779 obs. of 8 variables:

$ id : int 1 2 3 4 5 6 7 8 9 10 ...

$ county : chr "San Bernardino" "San Bernardino" ...

$ age : chr "40" "64" "19" "12" ...

$ sex : chr "F" "F" "M" "M" ...

$ syndrome : chr "WNF" "WNF" "WNF" "WNF" ...

$ date.onset : chr "05/19/2004" "05/22/2004" ...

$ date.tested: chr "06/02/2004" "06/16/2004" ...

$ death : chr "No" "No" "No" "No" ...

> lapply(wd, table) #apply ’table’ function to fields

$id

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

...

768 769 770 771 772 773 774 775 776 777 778 779 780 781

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

122 3 Managing epidemiologic data in R

1 1 1 1 1 1 1 1 1 1 1 1 1 1

$county

Butte Fresno Glenn Imperial

7 11 3 1

Kern Lake Lassen Los Angeles

59 1 1 306

Merced Orange Placer Riverside

1 62 1 109

Sacramento San Bernardino San Diego San Joaquin

3 187 2 2

Santa Clara Shasta Sn Luis Obispo Tehama

1 5 1 10

Tulare Ventura Yolo

3 2 1

$age

. 1 10 11 12 13 14 15 16 17 18 19 2 20 21 22 23 24 25 26

6 1 1 1 3 2 3 3 1 4 6 5 1 4 2 3 6 8 3 9

...

82 83 84 85 86 87 88 89 9 91 93 94

10 5 6 4 2 2 1 6 1 4 1 1

$sex

. F M

2 294 483

$syndrome

Unknown WNF WNND

105 391 283

$date.onset

02/02/2005 05/14/2004 05/16/2004 05/19/2004 05/22/2004

1 1 1 1 2

...

10/28/2004 10/29/2004 10/30/2004 11/08/2004 11/12/2004

2 1 1 4 2

$date.tested

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

3.2 Editing data 123

01/21/2005 02/04/2005 02/23/2005 06/02/2004 06/16/2004

1 1 1 1 4

...

11/29/2004 12/02/2004 12/03/2004 12/07/2004

8 1 2 1

$death

. No Yes

66 686 27

What did we learn? First, there are 779 observations and 781 id’s; therefore, 3

observations were removed from the original data set. Second, we see that the vari-

ables age, sex, syndrome, and death have missing values that need to be converted

to NAs. This can be done one field at a time, or for the whole data frame in one step.

Here is the R code.

#individually

wd$age[wd$age=="."] <- NA

wd$sex[wd$sex=="."] <- NA

wd$syndrome[wd$syndrome=="Unknown"] <- NA

wd$death[wd$death=="."] <- NA

#or globally

wd[wd=="." | wd=="Unknown"] <- NA

After running the above code, let’s evaluate one variable to verify the missing

values were converted to NAs.

> table(wd$death)

No Yes

686 27

> table(wd$death, exclude=NULL)

No Yes <NA>

686 27 66

We also notice that the entry for one of the counties, San Luis Obispo, was mis-

spelled (Sn Luis Obispo). We can use replacement to make the corrections:

> wd$County[wd$County=="Sn Luis Obispo"] <- "San Luis Obispo"

3.2.4 Text processing

On occasion, we will need to process and manipulate character vectors using a vec-

torized approach. For example, suppose we need to convert a character vector of

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

124 3 Managing epidemiologic data in R

dates from “mm/dd/yy” to “yyyy-mm-dd”.8 We’ll start by using the substr func-

tion. This function extracts characters from a character vector based on position.

> bd <- c("07/17/96","12/09/00","11/07/97")

> mon <- substr(bd, start=1, stop=2); mon

[1] "07" "12" "11"

> day <- substr(bd, 4, 5); day

[1] "17" "09" "07"

> yr <- as.numeric(substr(bd, 7, 8)); yr

[1] 96 0 97

> yr2 <- ifelse(yr<=19, yr+2000, yr+1900); yr2

[1] 1996 2000 1997

> bdfin <- paste(yr2, "-", mon, "-", day, sep=""); bdfin

[1] "1996-07-17" "2000-12-09" "1997-11-07"

In this example, we needed to convert “00” to “2000”, and “96” and “97 to “1996”

and “1997”, respectively. The trick here was to coerce the character vector into

a numeric vector so that 1900 or 2000 could be added to it. Using the ifelse

function, for values ≤ 19 (arbitrarily chosen), 2000 was added, otherwise 1900 was

added. The paste function was used to paste back the components into a new

vector with the standard date format.

The substr function can also be used to replace characters in a character vector.

Remember, if it can be indexed, it can be replaced.

> bd

[1] "07/17/96" "12/09/00" "11/07/97"

> substr(bd, 3, 3) <- "-"

> substr(bd, 6, 6) <- "-"

> bd

[1] "07-17-96" "12-09-00" "11-07-97"

3.3 Sorting data

The sort function sorts a vector as expected:

> x <- sample(1:10, 10); x

[1] 4 3 6 1 7 9 5 8 2 10

> sort(x)

[1] 1 2 3 4 5 6 7 8 9 10

> sort(x, decreasing = TRUE) #reverse sort

[1] 10 9 8 7 6 5 4 3 2 1

> rev(sort(x)) #reverse sort

[1] 10 9 8 7 6 5 4 3 2 1

8 ISO 8601 is an international standard for date and time representations issued by the International
Organization for Standardization (ISO). See http://www.iso.org

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

3.3 Sorting data 125

Table 3.2 R functions for processing text in character vectors

Function Description Try these examples

nchar Returns the number
of characters in each
element of a character
vector

x <- c("a", "ab", "abc", "abcd")

nchar(x)

substr Extract or replace
substrings in a
character vector

#extraction

mon <- substr(some.dates, 1, 2); mon

day <- substr(some.dates, 4, 5); day

yr <- substr(some.dates, 7, 8); yr

#replacement

mdy <- paste(mon, day, yr); mdy

substr(mdy, 3, 3) <- ’/’

substr(mdy, 6, 6) <- ’/’

mdy

paste Concatenate vectors
after converting to
character

rd <- paste(mon, "/", day, "/", yr,

sep="")

rd

strsplit Split the elements of
a character vector
into substrings

some.dates <- c("10/02/70", "02/04/67")

some.dates

strsplit(some.dates, "/")

However, if we want to sort one vector based on the ordering of elements from

another vector, use the order function. The order function generates an index-

ing/repositioning vector. Study the following example:

> x <- sample(1:20, 5); x

[1] 18 10 6 13 11

> sort(x) #sorts as expected

[1] 6 10 11 13 18

> y <- sample(1:20, 5); y

[1] 11 10 13 3 9

> order(y) #4th element to 1st position, 5th to 2nd, etc.

[1] 4 5 2 1 3

> x[order(y)] #use order(y) to sort elements of x

[1] 13 11 10 18 6

Based on this we can see that sort(x) is just x[order(x)].

Now let us see how to use the order function for data frames. First, we create a

small data set.

> sex <- rep(c("Male", "Female"), c(4, 4))

> ethnicity <- rep(c("White", "African American", "Latino",

+ "Asian"), 2)

> age <- sample(1:100, 8)

> dat <- data.frame(age, sex, ethnicity)

> dat <- dat[sample(1:8, 8),] #randomly order rows

> dat

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

126 3 Managing epidemiologic data in R

age sex ethnicity

5 57 Female White

8 93 Female Asian

1 7 Male White

4 65 Male Asian

6 38 Female African American

3 27 Male Latino

2 66 Male African American

7 72 Female Latino

Okay, now we will sort the data frame based on the ordering of one field, and then

the ordering of two fields:

> dat[order(dat$age),] #sort based on 1 variable

age sex ethnicity

1 7 Male White

3 27 Male Latino

6 38 Female African American

5 57 Female White

4 65 Male Asian

2 66 Male African American

7 72 Female Latino

8 93 Female Asian

> dat[order(datsex, datage),] #sort based on 2 variables

age sex ethnicity

6 38 Female African American

5 57 Female White

7 72 Female Latino

8 93 Female Asian

1 7 Male White

3 27 Male Latino

4 65 Male Asian

2 66 Male African American

3.4 Indexing (subsetting) data

For this section, please load the well known Oswego foodborne illness dataset:

> odat <- read.table("http://www.medepi.net/data/oswego.txt",

+ header = TRUE, as.is = TRUE, sep = "")

> str(odat)

‘data.frame’: 75 obs. of 21 variables:

$ id : int 2 3 4 6 7 8 9 10 14 16 ...

$ age : int 52 65 59 63 70 40 15 33 10 32 ...

$ sex : chr "F" "M" "F" "F" ...

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

3.4 Indexing (subsetting) data 127

$ meal.time : chr "8:00 PM" "6:30 PM" "6:30 PM" ...

$ ill : chr "Y" "Y" "Y" "Y" ...

$ onset.date : chr "4/19" "4/19" "4/19" "4/18" ...

$ onset.time : chr "12:30 AM" "12:30 AM" ...

$ baked.ham : chr "Y" "Y" "Y" "Y" ...

...

$ vanilla.ice.cream : chr "Y" "Y" "Y" "Y" ...

$ chocolate.ice.cream: chr "N" "Y" "Y" "N" ...

$ fruit.salad : chr "N" "N" "N" "N" ...

3.4.1 Indexing

Now, we will practice indexing rows from this data frame. First, we create a new

data set that contains only cases. To index the rows with cases we need to generate

a logical vector that is TRUE for every value of odat$ill that “is equivalent to”

"Y". For “is equivalent to” we use the == relational operator.

> cases <- odat$ill=="Y"

> cases

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

...

[73] FALSE FALSE FALSE

> odat.ca <- odat[cases,]

> odat.ca[, 1:8]

id age sex meal.time ill onset.date onset.time baked.ham

1 2 52 F 8:00 PM Y 4/19 12:30 AM Y

2 3 65 M 6:30 PM Y 4/19 12:30 AM Y

3 4 59 F 6:30 PM Y 4/19 12:30 AM Y

4 6 63 F 7:30 PM Y 4/18 10:30 PM Y

...

43 71 60 M 7:30 PM Y 4/19 1:00 AM N

44 72 18 F 7:30 PM Y 4/19 12:00 AM Y

45 74 52 M <NA> Y 4/19 2:15 AM Y

46 75 45 F <NA> Y 4/18 11:00 PM Y

It is very important to understand what we just did: we extracted the rows with cases

by indexing the data frame with a logical vector.

Now, we combine relational operators with logical operators to extract rows

based on multiple criteria. Let’s create a data set with female cases, age less than

the median age, and consumed vanilla ice cream.

> fem.cases.vic <- odat$ill=="Y" & odat$sex=="F" &

+ odat$vanilla.ice.cream=="Y" & odat$age < median(odat$age)

> odat.fcv <- odat[fem.cases.vic,]

> odat.fcv[, c(1:6, 19)]

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

128 3 Managing epidemiologic data in R

id age sex meal.time ill onset.date vanilla.ice.cream

8 10 33 F 7:00 PM Y 4/18 Y

10 16 32 F <NA> Y 4/19 Y

13 20 33 F <NA> Y 4/18 Y

14 21 13 F 10:00 PM Y 4/19 Y

18 27 15 F 10:00 PM Y 4/19 Y

23 36 35 F <NA> Y 4/18 Y

31 48 20 F 7:00 PM Y 4/19 Y

37 58 12 F 10:00 PM Y 4/19 Y

40 65 17 F 10:00 PM Y 4/19 Y

41 66 8 F <NA> Y 4/19 Y

42 70 21 F <NA> Y 4/19 Y

44 72 18 F 7:30 PM Y 4/19 Y

In summary, we see that indexing rows of a data frame consists of using rela-

tional operators (<, >, <=, >=, ==, !=) and logical operators (&, |, !)

to generate a logical vector for indexing the appropriate rows.

3.4.2 Subsetting

Subsetting a data frame using the subset function is equivalent to using logical

vectors to index the data frame. In general, we prefer indexing because it is general-

izable to indexing any R data object. However, the subset function is a convenient

alternative for data frames. Again, let’s create data set with female cases, age < me-

dian, and ate vanilla ice cream.

> odat.fcv <- subset(odat, subset = {ill=="Y" & sex=="F" &

+ vanilla.ice.cream=="Y" & age < median(odat$age)},

+ select = c(id:onset.date, vanilla.ice.cream))

> odat.fcv

id age sex meal.time ill onset.date vanilla.ice.cream

8 10 33 F 7:00 PM Y 4/18 Y

10 16 32 F . Y 4/19 Y

13 20 33 F . Y 4/18 Y

14 21 13 F 10:00 PM Y 4/19 Y

18 27 15 F 10:00 PM Y 4/19 Y

23 36 35 F . Y 4/18 Y

31 48 20 F 7:00 PM Y 4/19 Y

37 58 12 F 10:00 PM Y 4/19 Y

40 65 17 F 10:00 PM Y 4/19 Y

41 66 8 F . Y 4/19 Y

42 70 21 F . Y 4/19 Y

44 72 18 F 7:30 PM Y 4/19 Y

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

3.5 Transforming data 129

In the subset function, the first argument is the data frame object name, the

second argument (also called subset) evaluates to a logical vector, and third argu-

ment (called select) specifies the fields to keep. In the second argument,

subset = {...}

the curly brackets are included for convenience to group the logical and relational

operations. In the select argument, using the : operator, we can specify a range

of fields to keep.

3.5 Transforming data

Transforming fields in a data frame is very common. The most common transfor-

mations include the following:

• Numerical transformation of a numeric vector

• Discretizing a numeric vector into categories or levels (“categorical variable”)

• Re-coding integers that represent levels of a categorical variable

For each of these, we must decide whether the newly created vector should be a new

field in the data frame, overwrite the original field in the data frame, or not be a field

in the data frame (but rather a vector object in the workspace). For the examples that

follow load the well known Oswego foodborne illness dataset:

> odat <- read.table("http://www.medepi.net/data/oswego.txt",

+ header = TRUE, as.is = TRUE, sep = "")

3.5.1 Numerical transformation

> # transform age variable centering it

> # create new field in same data frame

> odat$age

[1] 52 65 59 63 70 40 15 33 10 32 62 36 33 13 7 3 59 15

...

[73] 17 36 14

> odat$age.centered <- odat$age - mean(odat$age)

> odat$age.centered

[1] 15.1866667 28.1866667 22.1866667 26.1866667

...

[73] -19.8133333 -0.8133333 -22.8133333

>

> # overwrite original field in same data frame (not recommended!!!)

> # odat$age <- odat$age - mean(odat$age)

>

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

130 3 Managing epidemiologic data in R

> # create new vector in workspace; data frame remains unchanged

> age.centered <- odat$age - mean(odat$age)

> age.centered

[1] 15.1866667 28.1866667 22.1866667 26.1866667

...

[73] -19.8133333 -0.8133333 -22.8133333

For convenience, the transform function facilitates the transformation of nu-

meric vectors in a data frame. The transform function comes in handy when we

plan on transforming many fields: we do not need to specify the data frame each

time we refer to a field name. For example, the following lines are are equivalent.

Both add a new transformed field to the data frame.

odat$age.centered <- odat$age - mean(odat$age)

odat <- transform(odat, age.centered = age - mean(age))

3.5.2 Creating categorical variables (factors)

Now, reload the Oswego data set to recover the original odat$age field. We are

going to create a new field with the following seven age categories (in years): < 1, 1

to 4, 5 to 14, 15 to 24, 25 to 44, 45 to 64, and 65+. We will demonstrate this using

several methods:

3.5.2.1 Using cut function (preferred method)

> agecat <- cut(odat$age, breaks = c(0, 1, 5, 15, 25, 45,

+ 65, 100))

> agecat

[1] (45,65] (45,65] (45,65] (45,65] (65,100] (25,45]

...

[73] (15,25] (25,45] (5,15]

Levels: (0,1] (1,5] (5,15] (15,25] (25,45] ... (65,100]

Note that the cut function generated a factor with 7 levels for each interval. The

notation (15, 25] means that the interval is open on the left boundary (> 15) and

closed on the right boundary (≤ 25). However, for age categories, it makes more

sense to have age boundaries closed on the left and open on the right: [a, b). To

change this we set the option right = FALSE

> agecat <- cut(odat$age, breaks = c(0, 1, 5, 15, 25, 45,

+ 65, 100), right = FALSE)

> agecat

[1] [45,65) [65,100) [45,65) [45,65) [65,100) [25,45)

...

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

3.5 Transforming data 131

[73] [15,25) [25,45) [5,15)

Levels: [0,1) [1,5) [5,15) [15,25) [25,45) ... [65,100)

> table(agecat)

agecat

[0,1) [1,5) [5,15) [15,25) [25,45) [45,65) [65,100)

0 1 14 13 18 20 9

Okay, this looks good, but we can add labels since our readers may not be familiar

with open and closed interval notation [a,b).

> agelabs <- c("<1", "1-4", "5-14", "15-24", "25-44", "45-64",

+ "65+")

> agecat <- cut(odat$age, breaks = c(0, 1, 5, 15, 25, 45,

+ 65, 100), right = FALSE, labels = agelabs)

> agecat

[1] 45-64 65+ 45-64 45-64 65+ 25-44 15-24

...

[71] 5-14 5-14 15-24 25-44 5-14

Levels: <1 1-4 5-14 15-24 25-44 45-64 65+

> table(agecat, case = odat$ill)

case

agecat N Y

<1 0 0

1-4 0 1

5-14 8 6

15-24 5 8

25-44 8 10

45-64 5 15

65+ 3 6

3.5.2.2 Using indexing and assignment (replacement)

The cut function is the preferred method to create a categorical variable. However,

suppose one does not know about the cut function. Applying basic R concepts

always works!

> agegroup <- odat$age

> agegroup[odat$age<1] <- 1

> agegroup[odat$age>=1 & odat$age<5] <- 2

> agegroup[odat$age>=5 & odat$age<15] <- 3

> agegroup[odat$age>=15 & odat$age<25] <- 4

> agegroup[odat$age>=25 & odat$age<45] <- 5

> agegroup[odat$age>=45 & odat$age<65] <- 6

> agegroup[odat$age>=65] <- 7

> #create factor

> agelabs <- c("<1", "1 to 4", "5 to 14", "15 to 24",

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

132 3 Managing epidemiologic data in R

+ "25 to 44", "45 to 64", "65+")

> agegroup <- factor(agegroup, levels = 1:7, labels = agelabs)

> agegroup

[1] 45 to 64 65+ 45 to 64 45 to 64 65+ 25 to 44

...

[73] 15 to 24 25 to 44 5 to 14

7 Levels: <1 1 to 4 5 to 14 15 to 24 25 to 44 ... 65+

> table(case = odat$ill, agegroup)

agegroup

case <1 1 to 4 5 to 14 15 to 24 25 to 44 45 to 64 65+

N 0 0 8 5 8 5 3

Y 0 1 6 8 10 15 6

In these previous examples, notice that agegroup is a factor object that is not

a field in the odat data frame.

3.5.3 “Re-coding” levels of a categorical variable

In the previous example the categorical variable was a numeric vector (1, 2, 3, 4, 5,

6, 7) that was converted to a factor and provided labels (“<1”, “1 to 4”, “5 to 14”,

. . .). In fact, categorical variables are often represented by integers (for example, 0

= no, 1 = yes; or 0 = non-case, 1 = case) and provided labels. Often, ASCII text data

files are integer codes that require a data dictionary to convert these integers into

categorical variables in a statistical package. In R, keeping track of integer codes

for categorical variables is unnecessary. Therefore, re-coding the underlying integer

codes is also unnecessary; however, if we feel the need to do so, here’s how.

> # Create categorical variable

> ethlabs <- c("White", "Black", "Latino", "Asian")

> ethnicity <- sample(ethlabs, 100, replace = T)

> ethnicity <- factor(ethnicity, levels = ethlabs)

> ethnicity

[1] Black Asian Latino White Black Asian White Black

...

[97] Black Black Asian Latino

Levels: White Black Latino Asian

The levels option allowed us to determine the display order, and the first level

becomes the reference level in statistical models. To display the underlying numeric

code use unclass function which preserves the levels attribute.9

> x <- unclass(ethnicity)

> x

[1] 2 4 3 1 2 4 1 2 1 3 4 3 2 1 3 2 1 1 1 3 1 2 2 1 3 4 2 3

9 The as.integer function also works but does not preserve the levels attribute.

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

3.5 Transforming data 133

...

[85] 2 2 3 3 3 3 1 3 4 4 1 1 2 2 4 3

attr(,"levels")

[1] "White" "Black" "Latino" "Asian"

To recover the original factor,

> factor(x,labels=levels(x))

[1] Black Asian Latino White Black Asian White

...

[92] Latino Asian Asian White White Black Black

[99] Asian Latino

Levels: White Black Latino Asian

Although one can extract the integer code, why would one need to do so? One

is tempted to use the integer codes as a way to share data sets. However, we rec-

ommend not using the integer codes, but rather just provide the data in its native

format.10 This way, the raw data is more interpretable and eliminates the interme-

diate step of needing to label the integer code. Also, if the data dictionary is lost or

not provided, the raw data is still interpretable.

In R, we can re-label the levels using the levels function and assigning to it a

character vector of new labels. Make sure the order of the new labels corresponds to

order of the factor levels.

> levels(ethnicity2) <- c("Caucasion", "African American",

+ "Hispanic", "Asian")

> table(ethnicity2)

ethnicity2

Caucasion African American Hispanic Asian

23 31 28 18

In R, we can re-order and re-label at the same time using the levels function

and assigning to it a list.

> table(ethnicity)

ethnicity

White Black Latino Asian

23 31 28 18

> ethnicity3 <- ethnicity

> levels(ethnicity3) <- list(Hispanic = "Latino", Asian = "Asian",

+ Caucasion = "White", "African American" = "Black")

> table(ethnicity3)

ethnicity3

Hispanic Asian Caucasion African American

28 18 23 31

The list function is necessary to assure the re-ordering. To re-order without re-

labeling just do the following:

10 For example, http://www.medepi.net/data/oswego.txt

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

134 3 Managing epidemiologic data in R

> table(ethnicity)

ethnicity

White Black Latino Asian

23 31 28 18

> ethnicity4 <- ethnicity

> levels(ethnicity4) <- list(Latino = "Latino", Asian = "Asian",

+ White = "White", Black = "Black")

> table(ethnicity4)

ethnicity4

Latino Asian White Black

28 18 23 31

In R, we can sort the factor levels by using the factor function in one of two

ways:

> table(ethnicity)

ethnicity

White Black Latino Asian

23 31 28 18

> ethnicity5a <- factor(ethnicity, sort(levels(ethnicity)))

> table(ethnicity5a)

ethnicity5a

Asian Black Latino White

18 31 28 23

> ethnicity5b <- factor(as.character(ethnicity))

> table(ethnicity5b)

ethnicity5b

Asian Black Latino White

18 31 28 23

In the first example, we assigned to the levels argument the sorted level names.

In the second example, we started from scratch by coercing the original factor into

a character vector which is then ordered alphabetically by default.

3.5.3.1 Setting factor reference level

The first level of a factor is the reference level for some statistical models (e.g.,

logistic regression). To set a different reference level use the relevel function.

> levels(ethnicity)

[1] "White" "Black" "Latino" "Asian"

> ethnicity6 <- relevel(ethnicity, ref = "Asian")

> levels(ethnicity6)

[1] "Asian" "White" "Black" "Latino"

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

3.5 Transforming data 135

Table 3.3 Categorical variable represented as a factor or a set of dummy variables

Factor Dummy variables

Ethnicity Asian Black Latino

White 0 0 0
Asian 1 0 0
Black 0 1 0
Latino 0 0 1

As we can see, there is tremendous flexibility in dealing with factors without

the need to “re-code” categorical variables. This approach facilitates reviewing our

work and minimizes errors.

3.5.4 Use factors instead of dummy variables

A nonordered factor (nominal categorical variable) with k levels can also be rep-

resented with k − 1 dummy variables. For example, the ethnicity factor has

four levels: white, Asian, black, and Latino. Ethnicity can also be represented using

3 dichotomous variables, each coded 0 or 1. For example, using white as the ref-

erence group, the dummy variables would be asian, black, and latino (see

Table 3.3). The values of those three dummy variables (0 or 1) are sufficient to

represents one of four possible ethnic categories. Dummy variables can be used in

statistical models. However, in R, it is unnecessary to create dummy variables, just

create a factor with the desired number of levels and set the reference level.

3.5.5 Conditionally transforming the elements of a vector

We can conditionally transform the elements of a vector using the ifelse func-

tion. This function works as follows: ifelse(test, if test = TRUE do

this, else do this).

> x <- sample(c("M", "F"), 10, replace = T); x

[1] "M" "F" "M" "F" "M" "F" "M" "F" "M" "F"

> y <- ifelse(x=="M", "Male", "Female")

> y

[1] "Male" "Female" "Male" "Female" "Male" "Female"

[7] "Male" "Female" "Male" "Female"

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

136 3 Managing epidemiologic data in R

Table 3.4 R functions for transforming variables in data frames

Function Description Try these examples

<- Transforming a
vector and assigning
it to a new data
frame variable name

dat <- data.frame(id=1:3, x=c(0.5,1,2));

dat

dat$logx <- log(x) #creates new field

dat

transform Transform one or
more variables from
a data frame

dat <- data.frame(id=1:3, x=c(0.5,1,2));

dat

dat <- transform(dat, logx = log(x))

dat

cut Creates a factor by
dividing the range of
a numeric vector into
intervals

age <- sample(1:100, 500, replace = TRUE)

cut into 2 intervals agecut <- cut(age,

2, right = FALSE)

table(agecut)

#cut using specified intervals agecut2 <-

cut(age, c(0, 50 100),

right = FALSE, include.lowest = TRUE)

table(agecut2)

levels Gives access to the
levels attribute of a
factor

sex <- sample(c("M","F","T"),500,

replace=T)

sex <- factor(sex)

table(sex)

relabel each level; use same order

levels(sex) <- c("Female", "Male",

"Transgender")

table(sex)

relabel/recombine

levels(sex) <- c("Female", "Male",

"Male")

table(sex)

reorder and/or relabel

levels(sex) <- list ("Men" = "Male",

"Women" = "Female")

table(sex)

relevel Set the reference
level for a factor

sex2 <- relevel(sex, ref = "Women")

table(sex2)

ifelse Conditionally
operate on elements
of a vector based on
a test

age <- sample(1:100, 1000, replace =

TRUE)

agecat <- ifelse(age<=50, "<=50", ">50")

table(agecat)

3.6 Merging data

In general, R’s strength is not data management but rather data analysis. Because

R can access and operate on multiple objects in the workspace it is generally not

necessary to merge data objects into one data object in order to conduct analyses.

On occasion, it may be necessary to merge two data frames into one data frames

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

3.6 Merging data 137

Data frames that contain data on individual subjects are generally of two types:

(1) each row contains data collected on one and only one individual, or (2) multiple

rows contain repeated measurements on individuals. The latter approach is more

efficient at storing data. For example, here are two approaches to collecting multiple

telephone numbers for two individuals.

> tab1

name wphone fphone mphone

1 Tomas Aragon 643-4935 643-2926 847-9139

2 Wayne Enanoria 643-4934 <NA> <NA>

>

> tab2

name telphone teletype

1 Tomas Aragon 643-4935 Work

2 Tomas Aragon 643-2926 Fax

3 Tomas Aragon 847-9139 Mobile

4 Wayne Enanoria 643-4934 Work

The first approach is represented by tab1, and the second approach by tab2.11

Data is more efficiently stored in tab2, and adding new types of telephone numbers

only requires assigning a new value (e.g., Pager) to the teletype field.

> tab2

name telphone teletype

1 Tomas Aragon 643-4935 Work

2 Tomas Aragon 643-2926 Fax

3 Tomas Aragon 847-9139 Mobile

4 Wayne Enanoria 643-4934 Work

5 Tomas Aragon 719-1234 Pager

In both these data frames, an indexing field identifies an unique individual that is

associated with each row. In this case, the name column is the indexing field for

both data frames.

Now, let’s look at an example of two related data frames that are linked by an

indexing field. The first data frame contains telephone numbers for 5 employees

and fname is the indexing field. The second data frame contains email addresses

for 3 employees and name is the indexing field.

> phone

fname phonenum phonetype

1 Tomas 643-4935 work

2 Tomas 847-9139 mobile

3 Tomas 643-4926 fax

4 Chris 643-3932 work

5 Chris 643-4926 fax

11 This approach is the basis for designing and implementing relational databases. A relational
database consists of multiple tables linked by an indexing field.

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

138 3 Managing epidemiologic data in R

6 Wayne 643-4934 work

7 Wayne 643-4926 fax

8 Ray 643-4933 work

9 Ray 643-4926 fax

10 Diana 643-3931 work

> email

name mail mailtype

1 Tomas aragon@berkeley.edu Work

2 Tomas aragon@medepi.net Personal

3 Wayne enanoria@berkeley.edu Work

4 Wayne enanoria@idready.org Work

5 Chris csiador@berkeley.edu Work

6 Chris csiador@yahoo.com Personal

To merge these two data frames use the merge function.

> dat <- merge(email, phone, by.x="name", by.y="fname")

> dat

name mail mailtype phonenum phonetype

1 Chris csiador@berkeley.edu Work 643-3932 work

2 Chris csiador@yahoo.com Personal 643-3932 work

3 Chris csiador@berkeley.edu Work 643-4926 fax

4 Chris csiador@yahoo.com Personal 643-4926 fax

5 Tomas aragon@berkeley.edu Work 643-4935 work

6 Tomas aragon@medepi.net Personal 643-4935 work

7 Tomas aragon@berkeley.edu Work 847-9139 mobile

8 Tomas aragon@medepi.net Personal 847-9139 mobile

9 Tomas aragon@berkeley.edu Work 643-4926 fax

10 Tomas aragon@medepi.net Personal 643-4926 fax

11 Wayne enanoria@berkeley.edu Work 643-4934 work

12 Wayne enanoria@idready.org Work 643-4934 work

13 Wayne enanoria@berkeley.edu Work 643-4926 fax

14 Wayne enanoria@idready.org Work 643-4926 fax

> dat <- merge(phone, email, by.x="fname", by.y="name")

> dat

fname phonenum phonetype mail mailtype

1 Chris 643-3932 work csiador@berkeley.edu Work

2 Chris 643-4926 fax csiador@berkeley.edu Work

3 Chris 643-3932 work cvsiador@yahoo.com Personal

4 Chris 643-4926 fax cvsiador@yahoo.com Personal

5 Tomas 643-4935 work aragon@berkeley.edu Work

6 Tomas 847-9139 mobile aragon@berkeley.edu Work

7 Tomas 643-4926 fax aragon@berkeley.edu Work

8 Tomas 643-4935 work aragon@medepi.net Personal

9 Tomas 847-9139 mobile aragon@medepi.net Personal

10 Tomas 643-4926 fax aragon@medepi.net Personal

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

3.7 Executing commands from, and directing output to, a file 139

11 Wayne 643-4934 work enanoria@berkeley.edu Work

12 Wayne 643-4926 fax enanoria@berkeley.edu Work

13 Wayne 643-4934 work enanoria@idready.org Work

14 Wayne 643-4926 fax enanoria@idready.org Work

The by.x and by.y options identify the indexing fields. By default, R selects the

rows from the two data frames that is based on the intersection of the indexing fields

(by.x, by.y). To merge the union of the indexing fields, set all=TRUE:

> dat <- merge(phone, email, by.x="fname", by.y="name",

+ all=TRUE)

> dat

fname phonenum phonetype mail mailtype

1 Chris 643-3932 work csiador@berkeley.edu Work

2 Chris 643-4926 fax csiador@berkeley.edu Work

3 Chris 643-3932 work csiador@yahoo.com Personal

4 Chris 643-4926 fax csiador@yahoo.com Personal

5 Diana 643-3931 work <NA> <NA>

6 Ray 643-4933 work <NA> <NA>

7 Ray 643-4926 fax <NA> <NA>

8 Tomas 643-4935 work aragon@berkeley.edu Work

9 Tomas 847-9139 mobile aragon@berkeley.edu Work

10 Tomas 643-4926 fax aragon@berkeley.edu Work

11 Tomas 643-4935 work aragon@medepi.net Personal

12 Tomas 847-9139 mobile aragon@medepi.net Personal

13 Tomas 643-4926 fax aragon@medepi.net Personal

14 Wayne 643-4934 work enanoria@berkeley.edu Work

15 Wayne 643-4926 fax enanoria@berkeley.edu Work

16 Wayne 643-4934 work enanoria@idready.org Work

17 Wayne 643-4926 fax enanoria@idready.org Work

To “reshape” tabular data look up and study the reshape and stack functions.

3.7 Executing commands from, and directing output to, a file

3.7.1 The source function

We use the source function to execute R commands are contained in an ASCII

text file. For example, consider the contents this source file (chap03.R):

i <- 1:5

x <- outer(i, i, "*")

show(x)

Here we run source from the R command prompt:

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

140 3 Managing epidemiologic data in R

> source("/home/tja/Documents/wip/epir/r/chap03.R")

[,1] [,2] [,3] [,4] [,5]

[1,] 1 2 3 4 5

[2,] 2 4 6 8 10

[3,] 3 6 9 12 15

[4,] 4 8 12 16 20

[5,] 5 10 15 20 25

Nothing is printed to the console unless we explicitly use the the show (or print)

function. This enables us to view only the results we want to review.

An alternative approach is to print everything to the console as if the R commands

were being enter directly at the command prompt. For this we do not need to use the

show function in the source file; however, we must set the echo option to TRUE

in the source function. Here is the edited source file (chap03.R)

i <- 1:5

x <- outer(i, i, "*")

x

Here we run source from the R command prompt:

> source("/home/tja/Documents/wip/epir/r/chap03.R", echo=TRUE)

> i <- 1:5

> x <- outer(i, i, "*")

> x

[,1] [,2] [,3] [,4] [,5]

[1,] 1 2 3 4 5

[2,] 2 4 6 8 10

[3,] 3 6 9 12 15

[4,] 4 8 12 16 20

[5,] 5 10 15 20 25

3.7.2 The sink and capture.output functions

We can add code to the source file to “sink” selected results to an output file using

the sink or capture.output functions. Consider our edited source file:

i <- 1:5

x <- outer(i, i, "*")

sink("/home/tja/Documents/wip/epir/r/chap03.log")

cat("Here are the results of the outer function", fill=TRUE)

show(x)

sink()

Here we run source from the R command prompt:

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

3.7 Executing commands from, and directing output to, a file 141

> source("/home/tja/Documents/wip/epir/r/chap03.R")

>

Nothing was printed to the console because sink sent it to the output file (chap03.log).

Here are the contents of chap03.log:

Here are the results of the outer function

[,1] [,2] [,3] [,4] [,5]

[1,] 1 2 3 4 5

[2,] 2 4 6 8 10

[3,] 3 6 9 12 15

[4,] 4 8 12 16 20

[5,] 5 10 15 20 25

The first sink opened a connection and created the output file (chap03.log). The

cat and show functions printed results to output file. The second sink close the

connection.

Alternatively, as before, if we use the echo = TRUE option in the source

function, everything is either printed to the console or output file. The sink con-

nection determines what is printed to the output file. Here is the edited source file

(chap03.R):

i <- 1:5

x <- outer(i, i, "*")

sink("/home/tja/Documents/wip/epir/r/chap03.log")

Here are the results of the outer function

x

sink()

Here we run source from the R command prompt:

> source("/home/tja/Documents/wip/epir/r/chap03.R", echo=T)

> i <- 1:5

> x <- outer(i, i, "*")

> sink("/home/tja/Documents/wip/epir/r/chap03.log")

>

Nothing was printed to the console after the first sink because it was printed to

output file (chap03.Rout). Here are the contents of chap03.Rout:

> # Here are the results of the outer function

> x

[,1] [,2] [,3] [,4] [,5]

[1,] 1 2 3 4 5

[2,] 2 4 6 8 10

[3,] 3 6 9 12 15

[4,] 4 8 12 16 20

[5,] 5 10 15 20 25

> sink()

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

142 3 Managing epidemiologic data in R

The sink and capture.output functions accomplish the same task: send-

ing results to an output file. The sink function works in pairs: open and closing

the connection to the output file. In contrast, capture.output function appears

once and only prints the last object to the output file. Here is the edited source file

(chap03.R) using capture.output instead of sink:

i <- 1:5

x <- outer(i, i, "*")

capture.output(

{

Here are the results of the outer function

x

}, file = "/home/tja/Documents/wip/epir/r/chap03.log")

Here we run source from the R command prompt:

> source("/home/tja/Documents/wip/epir/r/chap03.R", echo=TRUE)

> i <- 1:5

> x <- outer(i, i, "*")

> capture.output(

+ {

+ # Here are the results of the outer function

+ x

+ }, file = "/home/tja/Documents/wip/epir/r/chap03.Rout")

And, Here are the contents of chap03.log:

[,1] [,2] [,3] [,4] [,5]

[1,] 1 2 3 4 5

[2,] 2 4 6 8 10

[3,] 3 6 9 12 15

[4,] 4 8 12 16 20

[5,] 5 10 15 20 25

Even though the capture.output function can run several R commands (be-

tween curly brackets), only the final object (x) was printed to the output file. This

would be true even if the echo option was not set to TRUE in the source function.

In summary, the source function runs R commands contained in an external

source file. Setting the echo option to TRUE prints commands and results to the

console as if the commands were directly entered at the command prompt. The

sink and capture.output functions print results to an output file.

3.8 Working with missing and “not available” values

In R, missing values are represented by NA, but not all NAs represent missing values

— some are just “not available.” NAs can appear in any data object. The NA can

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

3.8 Working with missing and “not available” values 143

represent a true missing value, or it can result from an operation to which a value is

“not available.” Here are three vectors that contain true missing values.

x <- c(2, 4, NA, 5); x

y <- c("M", NA, "M", "F"); y

y <- c(F, NA, F, T); z

However, elementary numerical operations on objects that contain NA return a sin-

gle NA (“not available”). In this instance, R is saying “An answer is ‘not available’

until you tell R what to do with the NAs in the data object.” To remove NAs for a

calculation specify the na.rm (“NA remove”) option.

> sum(x) # answer not available

[1] NA

> mean(x) # answer not available

[1] NA

> sum(x, na.rm = TRUE) # better

[1] 11

> mean(x, na.rm = TRUE) # better

[1] 3.666667

Here are more examples where NA means an answer is not available:

> # Inappropriate coercion

> as.numeric(c("4", "six"))

[1] 4 NA

Warning message:

NAs introduced by coercion

> # Indexing out of range

> c(1:5)[7]

[1] NA

> df <- data.frame(v1 = 1:3, v2 = 4:6)

> df[4,] # There is no 4th row

v1 v2

NA NA NA

> # Indexing with non-existing name

> df["4th",]

v1 v2

NA NA NA

> # Operations with NAs

> NA + 8

[1] NA

> # Variance of a single number

> var(55)

[1] NA

In general, these NAs indicate a problem that we must or should be addressed.

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

144 3 Managing epidemiologic data in R

3.8.1 Testing, indexing, replacing, and recoding

Regardless of the source of the NAs — missing or not available values — using

the is.na function, we can generate a logical vector to identify which positions

contain or do not contain NAs. This logical vector can be used index the original or

another vector. Values that can be indexed can be replaced

> x <- c(10, NA, 33, NA, 57)

> y <- c(NA, 24, NA, 47, NA)

> is.na(x) #generate logical vector

[1] FALSE TRUE FALSE TRUE FALSE

> which(is.na(x)) #which positions are NA

[1] 2 4

> x[!is.na(x)] #index original vector

[1] 10 33 57

> y[is.na(x)] #index other vector

[1] 24 47

> x[is.na(x)] <- 999 #replacement

> x

[1] 10 999 33 999 57

For a vector, recoding missing values to NA is accomplished using replacement.

> x <- c(1, -99, 3, -88, 5)

> x[x==-99 | x==-88] <- NA

> x

[1] 1 NA 3 NA 5

For a matrix, we can recode missing values to NA by using replacement one column

at a time, or globablly like a vector.

> m <- m2 <- matrix (c(1, -99, 3, 4, -88, 5), 2, 3)

> m

[,1] [,2] [,3]

[1,] 1 3 -88

[2,] -99 4 5

> # Replacement one column at a time

> m[m[,1]==-99, 1] <- NA

> m

[,1] [,2] [,3]

[1,] 1 3 -88

[2,] NA 4 5

> m[m[,3]==-88, 3] <- NA

> m

[,1] [,2] [,3]

[1,] 1 3 NA

[2,] NA 4 5

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

3.8 Working with missing and “not available” values 145

> # Global replacement

> m2[m2==-99 | m2==-88] <- NA

> m2

[,1] [,2] [,3]

[1,] 1 3 NA

[2,] NA 4 5

Likewise, for a data frame, we can recode missing values to NA by using replace-

ment one field at a time, or globablly like a vector.

> fname <- c("Tom", "Unknown", "Jerry")

> age <- c(56, 34, -999)

> z1 <- z2 <- data.frame(fname, age)

> z1

fname age

1 Tom 56

2 Unknown 34

3 Jerry -999

> # Replacement one column at a time

> z1$fname[z1$fname=="Unknown"] <- NA

> z1$age[z1$age==-999] <- NA

> z1

fname age

1 Tom 56

2 <NA> 34

3 Jerry NA

> # Global replacement

> z2[z2=="Unknown" | z2==-999] <- NA

> z2

fname age

1 Tom 56

2 <NA> 34

3 Jerry NA

3.8.2 Importing missing values with the read.table function

When importing ASCII data files using the read.table function, use the na.strings

option to specify what characters are to be converted to NA. The default setting is

na.strings="NA". Blank fields are also considered to be missing values in logi-

cal, integer, numeric, and complex fields. For example, suppose the data set contains

999, 888, and . to represent missing values, then import the data like this:

mydat <- read.table("dataset.txt", na.strings = c(999, 888, "."))

If a number, say 999, represents a missing value in one field but a valid value in

another field, then import the data using the as.is=TRUE option. Then replace

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

146 3 Managing epidemiologic data in R

the missing values in the data frame one field at a time, and convert categorical field

to factors.

3.8.3 Working with NA values in data frames and factors

There are several function for working with NA values in data frames. First, the

na.fail function tests whether a data frame contains any NA values, returning an

error message if it contains NAs.

> name <- c("Jose", "Ana", "Roberto", "Isabel", "Jen")

> gender <- c("M", "F", "M", NA, "F")

> age <- c(34, NA, 22, 18, 34)

> df <- data.frame(name, gender, age)

> df

name gender age

1 Jose M 34

2 Ana F NA

3 Roberto M 22

4 Isabel <NA> 18

5 Jen F 34

> na.fail(df) # NAs in data frame

Error in na.fail.default(df) : missing values in object

> na.fail(df[c(1, 3, 5),]) # no NAs in data frame

name gender age

1 Jose M 34

3 Roberto M 22

5 Jen F 34

Both na.omit and na.exclude remove observations for any field that contain

NAs. na.exclude differs from na.omit only in the class of the “na.action”

attribute of the result, which is “exclude” (see help for details).

> na.omit(df)

name gender age

1 Jose M 34

3 Roberto M 22

5 Jen F 34

> na.exclude(df)

name gender age

1 Jose M 34

3 Roberto M 22

5 Jen F 34

The complete.cases function returns a logical vector for observations that are

“complete” (i.e., do not contain NAs).

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

3.8 Working with missing and “not available” values 147

> complete.cases(df)

[1] TRUE FALSE TRUE FALSE TRUE

> df[complete.cases(df),] # equivalent to na.omit

name gender age

1 Jose M 34

3 Roberto M 22

5 Jen F 34

3.8.3.1 NA values in factors

By default, factor levels do not include NA. To include NA as a factor level, use the

factor function, setting the exclude option to NULL. Including NA as a factor

level enables counting and displaying the number of NAs in tables, and analyzing

NA values in statistical models.

> df$gender

[1] M F M <NA> F

Levels: F M

> xtabs(˜gender, data = df)

gender

F M

2 2

> df$gender.na <- factor(df$gender, exclude = NULL)

> xtabs(˜gender.na, data = df)

gender.na

F M <NA>

2 2 1

3.8.3.2 Indexing data frames that contain NAs

Using the original data frame (that can contain NAs), we can index sujects with ages

less than 25.

> df$age # age field

[1] 34 NA 22 18 34

> df[df$age<25,] # index ages < 25

name gender age

NA <NA> <NA> NA

3 Roberto M 22

4 Isabel <NA> 18

The row that corresponds to the age that is missing (NA) has been converted to

NAs (“not available”) by R. To remove this uninformative row we use the is.na

function.

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

148 3 Managing epidemiologic data in R

> df[df$age<25 & !is.na(df$age),]

name gender age

3 Roberto M 22

4 Isabel <NA> 18

This differs from the na.omit, na.exclude, and complete.cases func-

tions that remove all missing values from the data frame first.

3.8.4 Viewing number of missing values in tables

By default, NAs are not tabulated in tables produced by the table and xtabs

functions. The table function can tabulate character vectors and factors. The

xtabs function only works with fields in a data frame. To tabulate NAs in charac-

ter vectors using the table function, set the exclude function to NULL in the

table function.

> df$gender.chr <- as.character(df$gender)

> df$gender.chr

[1] "M" "F" "M" NA "F"

> table(df$gender.chr)

F M

2 2

> table(df$gender.chr, exclude = NULL)

F M <NA>

2 2 1

However, this will not work with factors: we must change the factor levels first.

> table(df$gender) #does not tabulate NAs

F M

2 2

> table(df$gender, exclude = NULL) #does not work

F M

2 2

> df$gender.na <- factor(df$gender, exclude = NULL) #works

> table(df$gender.na)

F M <NA>

2 2 1

Finally, whereas the exclude option works on character vectors tabulated with

table function, it does not work on character vectors or factors tabulated with the

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

3.8 Working with missing and “not available” values 149

xtabs function. In a data frame, we must convert the character vector to a factor

(setting the exclude option to NULL), then the xtabs functions tabulates the

NA values.

> xtabs(˜gender, data=df, exclude=NULL) # does not work

gender

F M

2 2

> xtabs(˜gender.chr, data=df, exclude=NULL) # still does not work

gender.chr

F M

2 2

> df$gender.na <- factor(df$gender, exclude = NULL) #works

> xtabs(˜gender.na, data = df)

gender.na

F M <NA>

2 2 1

3.8.5 Setting default NA behaviors in statistical models

Statistical models, for example the glm function for generalized linear models, have

default NA behaviors that can be reset locally using the na.action option in

the glm function, or reset globally using the na.action option setting in the

options function.

> options("na.action") # display global setting

$na.action

[1] "na.omit"

> options(na.action="na.fail") # reset global setting

> options("na.action")

$na.action

[1] "na.fail"

By default, na.action is set to “na.omit” in the options function. Globally (in-

side the options function) or locally (inside a statistical function), na.action

can be set to the following:

• “na.fail”

• “na.omit”

• “na.exclude”

• “na.pass”

With “na.fail”, a function that calls na.action will return an error if the data ob-

ject contains NAs. Both “na.omit” and “na.exclude” will remove row observations

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

150 3 Managing epidemiologic data in R

from a data frame that contain NAs.12 With na.pass, the data object is returned

unchanged.

3.8.6 Working with finite, infinite, and NaN numbers

In R, some numerical operations result in negative infinity, positive infinity, or an

indeterminate value (NAN for “not a number”). To assess whether values are finite

or infinite, use the is.finite or is.infinite functions, respectively. To as-

sess where a value is NAN, use the is.nan function. While is.na can identify

NANs, is.nan cannot identify NAs.

> x <- c(-2:2)/c(2, 0, 0, 0, 2)

> x

[1] -1 -Inf NaN Inf 1

> is.infinite(x)

[1] FALSE TRUE FALSE TRUE FALSE

> x[is.infinite(x)]

[1] -Inf Inf

> is.finite(x)

[1] TRUE FALSE FALSE FALSE TRUE

> x[is.finite(x)]

[1] -1 1

> is.nan(x)

[1] FALSE FALSE TRUE FALSE FALSE

> x[is.nan(x)]

[1] NaN

> is.na(x) # does index NAN

[1] FALSE FALSE TRUE FALSE FALSE

> x[is.na(x)]

[1] NaN

> x[is.nan(x)] <- NA

> x

[1] -1 -Inf NA Inf 1

> is.nan(x) # does not index NA

[1] FALSE FALSE FALSE FALSE FALSE

12 If na.omit removes cases, the row numbers of the cases form the “na.action” attribute of the
result, of class “omit”. na.exclude differs from na.omit only in the class of the “na.action”
attribute of the result, which is “exclude”. See help for more details.

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

3.9 Working with dates and times 151

Fig. 3.4 Displayed are functions to convert calendar date and time data into R date-time classes
(as.Date, strptime, as.POSIXlt, as.POSIXct), and the format function converts
date-time objects into character dates, days, weeks, months, times, etc.

3.9 Working with dates and times

There are 60 seconds in 1 minute, 60 minutes in 1 hour, 24 hours in 1 day, 7 days in

1 week, and 365 days in 1 year (except every 4th year we have a leap year with 366

days). Although this seems straightforward, doing numerical calculations with these

time measures is not. Fortunately, computers make this much easier. Functions to

deal with dates are available in the base, chron, and survival packages.

Summarized in Figure 3.4 is the relationship between recorded data (calendar

dates and times) and their representation in R as date-time class objects (Date,

POSIXlt, POSIXct). The as.Date function converts a calendar date into a Date

class object. The strptime function converts a calendar date and time into a date-

time class object (POSIXlt, POSIXct). The as.POSIXlt and as.POSIXct func-

tions convert date-time class objects into POSIXlt and POSIXct, respectively.

The format function converts date-time objects into human legible character

data such as dates, days, weeks, months, times, etc. These functions are discussed

in more detail in the paragraphs that follow.

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

152 3 Managing epidemiologic data in R

3.9.1 Date functions in the base package

3.9.1.1 The as.Date function

Let’s start with simple date calculations. The as.Date function in R converts cal-

endar dates (e.g., 11/2/1949) into a Date objects—a numeric vector of class Date.

The numeric information is the number of days since January 1, 1970—also called

Julian dates. However, because calendar date data can come in a variety of formats,

we need to specify the format so that as.Date does the correct conversion. Study

the following analysis carefully.

> bdays <- c("11/2/1959", "1/1/1970")

> bdays

[1] "11/2/1959" "1/1/1970"

> #convert to Julian dates

> bdays.julian <- as.Date(bdays, format = "%m/%d/%Y")

> bdays.julian

[1] "1959-11-02" "1970-01-01"

Although this looks like a character vectors, it is not: it is class “Date” and mode

“numeric”.

> #display Julian dates

> as.numeric(bdays.julian)

[1] -3713 0

> #calculate age as of today’s date

> date.today <- Sys.Date()

> date.today

[1] "2005-09-25"

> age <- (date.today - bdays.julian)/365.25

> age

Time differences of 45.89733, 35.73169 days

> #the display of ’days’ is not correct

> #truncate number to get "age"

> age2 <- trunc(as.numeric(age))

> age2

[1] 45 35

> #create date frame

> bd <- data.frame(Birthday = bdays, Standard = bdays.julian,

+ Julian = as.numeric(bdays.julian), Age = age2)

> bd

Birthday Standard Julian Age

1 11/2/1959 1959-11-02 -3713 45

2 1/1/1970 1970-01-01 0 35

To summarize, as.Date converted the character vector of calendar dates into

Julian dates (days since 1970-01-01) are displayed in a standard format (yyyy-mm-

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

3.9 Working with dates and times 153

dd). The Julian dates can be used in numerical calculations. To see the Julian dates

use as.numeric or julian function. Because the calendar dates to be converted

can come in a diversity of formats (e.g., November 2, 1959; 11-02-59; 11-02-1959;

02Nov59), one must specify the format option in as.Date. Below are selected

format options; for a complete list see help(strptime).

"%a" Abbreviated weekday name.

"%A" Full weekday name.

"%b" Abbreviated month name.

"%B" Full month name.

"%d" Day of the month as decimal number (01-31)

"%j" Day of year as decimal number (001-366).

"%m" Month as decimal number (01-12).

"%U" Week of the year as decimal number (00-53) using the

first Sunday as day 1 of week 1.

"%w" Weekday as decimal number (0-6, Sunday is 0).

"%W" Week of the year as decimal number (00-53) using the

first Monday as day 1 of week 1.

"%y" Year without century (00-99). If you use this on input,

which century you get is system-specific. So don’t!

Often values up to 69 (or 68) are prefixed by 20 and

70-99 by 19.

"%Y" Year with century.

Here are some examples of converting dates with different formats:

> as.Date("November 2, 1959", format = "%B %d, %Y")

[1] "1959-11-02"

> as.Date("11/2/1959", format = "%m/%d/%Y")

[1] "1959-11-02"

> #caution using 2-digit year

> as.Date("11/2/59", format = "%m/%d/%y")

[1] "2059-11-02"

> as.Date("02Nov1959", format = "%d%b%Y")

[1] "1959-11-02"

> #caution using 2-digit year

> as.Date("02Nov59", format = "%d%b%y")

[1] "2059-11-02"

> #standard format does not require format option

> as.Date("1959-11-02")

[1] "1959-11-02"

Notice how Julian dates can be used like any integer:

> as.Date("2004-01-15"):as.Date("2004-01-23")

[1] 12432 12433 12434 12435 12436 12437 12438 12439 12440

> seq(as.Date("2004-01-15"), as.Date("2004-01-18"), by = 1)

[1] "2004-01-15" "2004-01-16" "2004-01-17" "2004-01-18"

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

154 3 Managing epidemiologic data in R

3.9.1.2 The weekdays, months, quarters, julian functions

Use the weekdays, months, quarters, or julian functions to extract infor-

mation from Date and other date-time objects in R.

> mydates <- c("2004-01-15","2004-04-15","2004-10-15")

> mydates <- as.Date(mydates)

> weekdays(mydates)

[1] "Thursday" "Thursday" "Friday"

> months(mydates)

[1] "January" "April" "October"

> quarters(mydates)

[1] "Q1" "Q2" "Q4"

> julian(mydates)

[1] 12432 12523 12706

attr(,"origin")

[1] "1970-01-01"

3.9.1.3 The strptime function

So far we have worked with calendar dates; however, we also need to be able to

work with times of the day. Whereas as.Date only works with calendar dates, the

strptime function will accept data in the form of calendar dates and times of the

day (HH:MM:SS, where H = hour, M = minutes, S = seconds). For example, let’s

look at the Oswego foodborne ill outbreak that occurred in 1940. The source of the

outbreak was attributed to the church supper that was served on April 18, 1940. The

food was available for consumption from 6 pm to 11 pm. The onset of symptoms

occurred on April 18th and 19th. The meal consumption times and the illness onset

times were recorded.

> odat <- read.table("http://www.medepi.net/data/oswego.txt",

+ sep = "", header = TRUE, as.is = TRUE)

> str(odat)

‘data.frame’: 75 obs. of 21 variables:

$ id : int 2 3 4 6 7 8 9 10 14 16 ...

$ age : int 52 65 59 63 70 40 15 33 10 32 ...

$ sex : chr "F" "M" "F" "F" ...

$ meal.time : chr "8:00 PM" "6:30 PM" "7:30 PM" ...

$ ill : chr "Y" "Y" "Y" "Y" ...

$ onset.date : chr "4/19" "4/19" "4/19" "4/18" ...

$ onset.time : chr "12:30 AM" "10:30 PM" ...

...

$ vanilla.ice.cream : chr "Y" "Y" "Y" "Y" ...

$ chocolate.ice.cream: chr "N" "Y" "Y" "N" ...

$ fruit.salad : chr "N" "N" "N" "N" ...

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

3.9 Working with dates and times 155

To calculate the incubation period, for ill individuals, we need to subtract the

meal consumption times (occurring on 4/18) from the illness onset times (occurring

on 4/18 and 4/19). Therefore, we need two date-time objects to do this arithmetic.

First, let’s create a date-time object for the meal times:

> # look at existing data for meals

> odat$meal.time[1:5]

[1] "8:00 PM" "6:30 PM" "6:30 PM" "7:30 PM" "7:30 PM"

> # create character vector with meal date and time

> mdt <- paste("4/18/1940", odat$meal.time)

> mdt[1:4]

[1] "4/18/1940 8:00 PM" "4/18/1940 6:30 PM"

[3] "4/18/1940 6:30 PM" "4/18/1940 7:30 PM"

> # convert into standard date and time

> meal.dt <- strptime(mdt, format = "%m/%d/%Y %I:%M %p")

> meal.dt[1:4]

[1] "1940-04-18 20:00:00" "1940-04-18 18:30:00"

[3] "1940-04-18 18:30:00" "1940-04-18 19:30:00"

> # look at existing data for illness onset

> odat$onset.date[1:4]

[1] "4/19" "4/19" "4/19" "4/18"

> odat$onset.time[1:4]

[1] "12:30 AM" "12:30 AM" "12:30 AM" "10:30 PM"

> # create vector with onset date and time

> odt <- paste(paste(odat$onset.date, "/1940", sep=""),

+ odat$onset.time)

> odt[1:4]

[1] "4/19/1940 12:30 AM" "4/19/1940 12:30 AM"

[3] "4/19/1940 12:30 AM" "4/18/1940 10:30 PM"

> # convert into standard date and time

> onset.dt <- strptime(odt, "%m/%d/%Y %I:%M %p")

> onset.dt[1:4]

[1] "1940-04-19 00:30:00" "1940-04-19 00:30:00"

[3] "1940-04-19 00:30:00" "1940-04-18 22:30:00"

> # calculate incubation period

> incub.period <- onset.dt - meal.dt

> incub.period

Time differences of 4.5, 6.0, 6.0, 3.0, 3.0, 6.5, 3.0, 4.0,

6.5, NA, NA, NA, NA, 3.0, NA, NA, NA, 3.0, NA, NA,

...

NA, NA, NA, NA, NA, NA, NA hours

> mean(incub.period, na.rm = T)

Time difference of 4.295455 hours

> median(incub.period, na.rm = T)

Error in Summary.difftime(..., na.rm = na.rm) :

sum not defined for "difftime" objects

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

156 3 Managing epidemiologic data in R

> # try ’as.numeric’ on ’incub.period’

> median(as.numeric(incub.period), na.rm = T)

[1] 4

To summarize, we used strptime to convert the meal consumption date and

times and illness onset dates and times into date-time objects (meal.dt and

onset.dt) that can be used to calculate the incubation periods by simple sub-

traction (and assigned name incub.period).

Notice that incub.period is an atomic object of class difftime:

> str(incub.period)

Class ’difftime’ atomic [1:75] 4.5 6 6 3 3 6.5 3 4 NA ...

..- attr(*, "tzone")= chr ""

..- attr(*, "units")= chr "hours"

This is why we had trouble calculating the median (which should not be the case).

We got around this problem by coercion using as.numeric:

> as.numeric(incub.period)

[1] 4.5 6.0 6.0 3.0 3.0 6.5 3.0 4.0 6.5 NA NA NA NA 3.0

...

Now, what kind of objects were created by the strptime function?

> str(meal.dt)

’POSIXlt’, format: chr [1:75] "1940-04-18 18:30:00" ...

> str(onset.dt)

’POSIXlt’, format: chr [1:75] "1940-04-19 00:30:00" ...

The strptime function produces a named list of class POSIXlt. POSIX

stands for “Portable Operating System Interface,” and “lt” stands for “legible

time”.13

3.9.1.4 The POSIXlt and POSIXct functions

The POSIXlt list contains the date-time data in human readable forms. The named

list contains the following vectors:

’sec’ 0-61: seconds

’min’ 0-59: minutes

’hour’ 0-23: hours

’mday’ 1-31: day of the month

’mon’ 0-11: months after the first of the year.

’year’ Years since 1900.

’wday’ 0-6 day of the week, starting on Sunday.

’yday’ 0-365: day of the year.

13 For more information visit the Portable Application Standards Committee site at
http://www.pasc.org/

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

3.9 Working with dates and times 157

’isdst’ Daylight savings time flag. Positive if in force,

zero if not, negative if unknown.

Let’s examine the onset.dt object we created from the Oswego data.

> is.list(onset.dt)

[1] TRUE

> names(onset.dt)

[1] "sec" "min" "hour" "mday" "mon" "year" "wday"

[8] "yday" "isdst"

> onset.dt$min

[1] 30 30 30 30 30 0 0 0 0 30 30 15 0 0 0 45 45 0

...

> onset.dt$hour

[1] 0 0 0 22 22 2 1 23 2 10 0 22 22 1 23 21 21 1

...

> onset.dt$mday

[1] 19 19 19 18 18 19 19 18 19 19 19 18 18 19 18 18 18 19

...

> onset.dt$mon

[1] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

...

> onset.dt$year

[1] 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40

...

> onset.dt$wday

[1] 5 5 5 4 4 5 5 4 5 5 5 4 4 5 4 4 4 5

...

> onset.dt$yday

[1] 109 109 109 108 108 109 109 108 109 109 109 108 108 109

...

The POSIXlt list contains useful date-time information; however, it is not in a

convenient form for storing in a data frame. Using as.POSIXct we can convert it

to a “continuous time” object that contains the number of seconds since 1970-01-01

00:00:00. as.POSIXlt coerces a date-time object to POSIXlt.

> onset.dt.ct <- as.POSIXct(onset.dt)

> onset.dt.ct[1:5]

[1] "1940-04-19 00:30:00 Pacific Daylight Time"

[2] "1940-04-19 00:30:00 Pacific Daylight Time"

[3] "1940-04-19 00:30:00 Pacific Daylight Time"

[4] "1940-04-18 22:30:00 Pacific Daylight Time"

[5] "1940-04-18 22:30:00 Pacific Daylight Time"

> as.numeric(onset.dt.ct[1:5])

[1] -937326600 -937326600 -937326600 -937333800 -937333800

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

158 3 Managing epidemiologic data in R

3.9.1.5 The format function

Whereas the strptime function converts a character vector of date-time informa-

tion into a date-time object, the format function converts a date-time object into a

character vector. The format function gives us great flexibility in converting date-

time objects into numerous outputs (e.g., day of the week, week of the year, day of

the year, month of the year, year). Selected date-time format options are listed on

page 153, for a complete list see help(strptime).

For example, in public health, reportable communicable diseases are often re-

ported by “disease week” (this could be week of reporting or week of symptom

onset). This information is easily extracted from R date-time objects. For weeks

starting on Sunday use the “%U” option in the format function, and for weeks

starting on Monday use the “%W” option.

> decjan <- seq(as.Date("2003-12-15"), as.Date("2004-01-15"),

+ by =1)

> decjan

[1] "2003-12-15" "2003-12-16" "2003-12-17" "2003-12-18"

...

[29] "2004-01-12" "2004-01-13" "2004-01-14" "2004-01-15"

> disease.week <- format(decjan, "%U")

> disease.week

[1] "50" "50" "50" "50" "50" "50" "51" "51" "51" "51" "51"

[12] "51" "51" "52" "52" "52" "52" "00" "00" "00" "01" "01"

[23] "01" "01" "01" "01" "01" "02" "02" "02" "02" "02"

3.9.2 Date functions in the chron and survival packages

The chron and survival packages have customized functions for dealing with

dates. Both packages come with the default R installation. To learn more about date

and time classes read R News, Volume 4/1, June 2004.14

3.10 Exporting data objects

On occassion, we need to export R data objects. This can be done in several ways,

depending on our needs:

• Generic ASCII text file

• R ASCII text file

• R binary file

14 http://cran.r-project.org/doc/Rnews

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

3.10 Exporting data objects 159

Table 3.5 R functions for exporting data objects

Function Description Try these examples

Export to Generic ASCII text file

write.table
write.csv

Write tabular data as a data
frame to an ASCII text file;
read file back in using
read.table function

write.table(infert,"infert.dat")

write.csv(infert,"infert.csv")

write Write matrix elements to an
ASCII text file

x <- matrix(1:4, 2, 2)

write(t(x), "x.txt")

Export to R ASCII text file

dump “Dumps” list of R objects as R
code to an ASCII text file; read
back in using source
function

dump("Titanic", "titanic.R")

dput Writes an R object as R code
(but without the object name)
to the console, or an ASCII
text file; read file back in using
dget function

dput(Titanic, "titanic.R")

Export to R binary file

save “Saves” list of R objects as
binary filename.Rdata file;
read back in using load
function

save(Titanic, "titanic.Rdata")

Export to non-R ASCII text file

write.foreign From foreign package:
writes text files (SPSS, Stata,
SAS) and code to read them

write.foreign(infert,

datafile="infert.dat",

codefile="infert.txt", package

= "SPSS")

Export to non-R binary file

write.dbf From foreign package:
writes DBF files

write.dbf(infert,

"infert.dbf")

write.dta From foreign package:
writes files in Stata binary
format

write.dta(infert,

"infert.dta")

• Non-R ASCII text files

• Non-R binary file

3.10.1 Exporting to a generic ASCII text file

3.10.1.1 The write.table function

We use the write.table function to exports a data frame as a tabular ASCII text

file which can be read by most statistical packages. If the object is not a data frame,

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

160 3 Managing epidemiologic data in R

it converts to a data frame before exporting it. Therefore, this function only make

sense with tabular data objects. Here are the default arguments:

> args(write.table)

function (x, file = "", append = FALSE, quote = TRUE,

sep = " ", eol = "\n", na = "NA", dec = ".",

row.names = TRUE, col.names = TRUE,

qmethod = c("escape", "double"))

The 1st argument will be the data frame name (e.g., infert), the 2nd will be the name

for the output file (e.g., infert.dat), the sep argument is set to be space-delimited,

and the row.names argument is set to TRUE.

The following code:

write.table(infert,"infert.dat")

produces this ASCII text file:

"education" "age" "parity" "induced" "case" ...

"1" "0-5yrs" 26 6 1 1 2 1 3

"2" "0-5yrs" 42 1 1 1 0 2 1

"3" "0-5yrs" 39 6 2 1 0 3 4

"4" "0-5yrs" 34 4 2 1 0 4 2

"5" "6-11yrs" 35 3 1 1 1 5 32

...

Because row.names=TRUE, the number field names in the header (row 1) will

one less that the number of columns (starting with row 2). The default row names is

a character vector of integers. The following code:

write.table(infert,"infert.dat", sep=",", row.names=FALSE)

produces a commna-delimited ASCII text file without row names:

"education","age","parity","induced","case", ...

"0-5yrs",26,6,1,1,2,1,3

"0-5yrs",42,1,1,1,0,2,1

"0-5yrs",39,6,2,1,0,3,4

"0-5yrs",34,4,2,1,0,4,2

"6-11yrs",35,3,1,1,1,5,32

...

Note that the write.csv function produces a comma-delimited data file by de-

fault.

3.10.1.2 The write function

The write function writes the contents of a matrix in a columnwise order to an

ASCII text file. To get the same appearance as the matrix, we must transpose the

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

3.10 Exporting data objects 161

matrix and specify the number of columns (the default is 5). If we set file="",

then the output is written to the screen:

> infert.tab1 <- xtabs(˜case+parity,data=infert)

> infert.tab1

parity

case 1 2 3 4 5 6

0 66 54 24 12 4 5

1 33 27 12 6 2 3

> write(infert.tab1, file="") #not what we want

66 33 54 27 24

12 12 6 4 2

5 3

> #much better

> write(t(infert.tab1), file="", ncol=ncol(infert.tab1))

66 54 24 12 4 5

33 27 12 6 2 3

To read the raw data back into R, we would use the scan function. For example,

if the data had been written to data.txt, then the following code reads the data

back into R:

> matrix(scan("data.txt"), ncol=6, byrow=TRUE)

Read 12 items

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 66 54 24 12 4 5

[2,] 33 27 12 6 2 3

Of course, all the labeling was lost.

3.10.2 Exporting to R ASCII text file

Data objects can also be exported as R code in an ASCII text file using the dump

and dput functions. This has advantages for complex R objects (e.g., arrays, lists)

that do not have simple tabular structures, and the R code makes the raw data human

legible.

3.10.2.1 The dump function

The dump function exports multiple objects as R code as the next example illus-

trates:

> infert.tab1 <- xtabs(˜case+parity,data=infert)

> infert.tab2 <- xtabs(˜education+parity+case,data=infert)

> infert.tab1 #display matrix

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

162 3 Managing epidemiologic data in R

parity

case 1 2 3 4 5 6

0 66 54 24 12 4 5

1 33 27 12 6 2 3

> infert.tab2 #display array

, , case = 0

parity

education 1 2 3 4 5 6

0-5yrs 2 0 0 2 0 4

6-11yrs 28 28 14 8 2 0

12+ yrs 36 26 10 2 2 1

, , case = 1

parity

education 1 2 3 4 5 6

0-5yrs 1 0 0 1 0 2

6-11yrs 14 14 7 4 1 0

12+ yrs 18 13 5 1 1 1

> dump(c("infert.tab1", "infert.tab2"),"infert_tab.R") #export

The dump function produced the following R code in the infert tab.R text file.

‘infert.tab1‘ <-

structure(c(66, 33, 54, 27, 24, 12, 12, 6, 4, 2, 5, 3),

.Dim = c(2L, 6L), .Dimnames = structure(list(case = c("0", "1"),

parity = c("1", "2", "3", "4", "5", "6")), .Names = c("case",

"parity")), class = c("xtabs", "table"), call = quote(xtabs(

formula = ˜case + parity, data = infert)))

‘infert.tab2‘ <-

structure(c(2, 28, 36, 0, 28, 26, 0, 14, 10, 2, 8, 2, 0, 2,

2, 4, 0, 1, 1, 14, 18, 0, 14, 13, 0, 7, 5, 1, 4, 1, 0, 1, 1,

2, 0, 1), .Dim = c(3L, 6L, 2L), .Dimnames = structure(list(

education = c("0-5yrs", "6-11yrs", "12+ yrs"), parity = c("1",

"2", "3", "4", "5", "6"), case = c("0", "1")), .Names =

c("education", "parity", "case")), class = c("xtabs", "table"),

call = quote(xtabs(formula = ˜education + parity + case,

data = infert)))

Notice that the 1st argument was a character vector of object names. The infert tab.R

file can be run in R using the source function to recreate all the objects in the

workspace.

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

3.10 Exporting data objects 163

3.10.2.2 The dput function

The dput function is similar to the dump function except that the object name is

not written. By default, the dput function prints to the screen:

> dput(infert.tab1)

structure(c(66, 33, 54, 27, 24, 12, 12, 6, 4, 2, 5, 3),

.Dim = c(2L, 6L), .Dimnames = structure(list(case = c("0", "1"),

parity = c("1", "2", "3", "4", "5", "6")), .Names = c("case",

"parity")), class = c("xtabs", "table"), call = quote(xtabs(

formula = ˜case + parity, data = infert)))

To export to an ASCII text file, give a new file name as the second argument, similar

to dump. To get back the R code use the dget function:

> dput(infert.tab1, "infert_tab1.R")

> dget("infert_tab1.R")

parity

case 1 2 3 4 5 6

0 66 54 24 12 4 5

1 33 27 12 6 2 3

3.10.3 Exporting to R binary file

3.10.3.1 The save function

The save function exports R data objects to binary file (filename.RData) which is

the most effient, compact method to export objects. The first argument(s) can be the

names of the objects to save followed by the output file name, or list with a character

vector of object names followed by the output file name. Here is an example of the

first option:

> x <- 1:5; y <- xˆ3

> save(x, y, file="xy.RData")

> rm(x, y)

> ls()

character(0)

> load(file="xy.RData")

> ls()

[1] "x" "y"

Notice that we used the load function to load the binary file back into the

workspace.

Now here is an example of the second option using a list:

> x <- 1:5; y <- xˆ3

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

164 3 Managing epidemiologic data in R

> save(list=c("x", "y"), file="xy.RData")

> rm(x, y)

> ls()

character(0)

> load(file="xy.RData")

> ls()

[1] "x" "y"

In fact, the save.image function we use to save the entire workspace is just the

following:

save(list = ls(all=TRUE), file = ".RData")

3.10.4 Exporting to non-R ASCII text and binary files

The foreign package contains functions for exporting R data frames to non-R

ASCII text and binary files. The write.foreign function write two ASCII text

files: the first file is the data file, and the second file is the code file for reading

the data file. The code file contains either SPSS, Stata, or SAS programming code.

The write.dbf function writes a data frame to a binary DBF file, which can be

read back into R using the read.dbf function. Finally, the write.dta function

writes a data frame to a binary Stata file, which can be read back into R using the

read.dta function.

3.11 Working with regular expressions

A regular expression is a special text string for describing a search pattern which

can be used for searching text strings, indexing data objects, and replacing object

elements. For example, we applied Global Burden of Disease methods to evaluate

causes of premature deaths in San Francisco [4]. Using regular expressions we were

able to efficiently code over 14,000 death records, with over 900 ICD-10 cause of

death codes, into 117 mutually exclusive cause of death categories. Without regular

expressions, this local study would have been prohibitively tedious.

A regular expression is built up from specifying one character at a time. Using

this approach, we cover the following:

• Single character: matching a single character;

• Character class: matching a single character from among a list of characters;

• Concatenation: combining single characters into a new match pattern;

• Repetition: specifying how many times a single character or match pattern might

be repeated;

• Alternation: a regular expression may be matched from among two or more reg-

ular expressions; and

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

3.11 Working with regular expressions 165

• Metacharacters: special characters that require special treatment.

3.11.1 Single characters

The search pattern is built up from specifying one character at a time. For example,

the pattern "x" looks for the letter x in a text string. Next, consider a character

vector of text strings. We can use the grep function to search for a pattern in this

data vector.

> vec1 <- c("x", "xa bc", "abc", "ax bc", "ab xc", "ab cx")

> grep("x", vec1)

[1] 1 2 4 5 6

> vec1[grep("x", vec1)] #index by position

[1] "x" "xa bc" "ax bc" "ab xc" "ab cx"

The grep function returned an integer vector indicating the positions in the data

vector that contain a match. We used this integer vector to index by position.

The caret ˆ matches the empty string at the beginning of a line. Therefore, to

match this pattern at the beginning of a line we add the ˆ character to the regular

expression:

> grep("ˆx", vec1)

[1] 1 2

> vec1[grep("ˆx", vec1)] #index by position

[1] "x" "xa bc"

The $ character matches the empty string at the end of a line. Therefore, to match

this pattern at the end of a line we add the $ character to the regular expression:

> vec1[grep("x$", vec1)] #index by position

[1] "x" "ab cx"

The ˆ and $ characters are examples of metacharacters (more on these later).

To match this pattern at the beginning of a word, but not the beginning of a line,

we add a space to the regular expression:

> vec1[grep(" x", vec1)] #index by position

[1] "ab xc"

To match this pattern at the end of a word, but not the end of a line, we add a space

to the regular expression:

> vec1[grep("x ", vec1)] #index by position

[1] "ax bc"

The period “.” matches any single character, including a space.

> vec1[grep(".bc", vec1)]

[1] "xa bc" "abc" "ax bc"

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

166 3 Managing epidemiologic data in R

Table 3.6 Predefined character classes for regular expressions

Predefined Description Alternative

[[:lower:]] Lower-case letters in the current locale [a-z]

[[:upper:]] Upper-case letters in the current locale [A-Z]

[[:alpha:]] Alphabetic characters [A-Za-z]

[[:digit:]] Digits [0-9]

[[:alnum:]] Alphanumeric characters [A-Za-z0-9]

[[:punct:]] Punctuation characters: ! " # $

% & ’ () * + , - . / : ;

< = > ? @ [\] ˆ ‘ { |
} ˜

"[]...ˆ...-]" (], ˆ, and -
require special placement in character
classes. See p. 171)

[[:space:]] Space characters: tab, newline,
vertical tab, form feed, carriage return,
and space

[[:graph:]] Graphical characters [[:alnum:][:punct:]]

[[:print:]] Printable characters [[:alnum:][:punct:][:space:]]

[[:xdigit:]]Hexadecimal digits: [0-9A-Fa-f]

3.11.2 Character class

A character class is a list of characters enclosed by square brackets [and] which

matches any single character in that list. For example, "[fhr]" will match the

single character f, h, or r. This can be combined with metacharacters for more

specificity; for example, "ˆ[fhr]" will match the single character f, h, or r at

the beginning of a line.

> vec2 <- c("fat", "bar", "rat", "elf", "mach", "hat")

> grep("ˆ[fhr]", vec2)

[1] 1 3 6

> vec2[grep("ˆ[fhr]", vec2)] #index by position

[1] "fat" "rat" "hat"

As already shown, ˆ character matches the empty string at the beginning of a

line. However, when ˆ is the first character in a character class list, it matches any

character not in the list. For example, "ˆ[ˆfhr]" will match any single character

at the beginning of a line except f, h, or r.

> vec2 <- c("fat", "bar", "rat", "elf", "mach", "hat")

> vec2[grep("ˆ[ˆfhr]", vec2)] #index by position

[1] "bar" "elf" "mach"

Character classes can be specified as a range of possible characters. For example,

[0-9] matches a single digit with possible values from 0 to 9, [A-Z] matches a

single letter with possible values from A to Z, and [a-z] matches a single letter

from a to z. The pattern [0-9A-Za-z]matches any single alphanumeric character.

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

3.11 Working with regular expressions 167

For convenience, certain character classes are predefined and their interpreta-

tion depend on locale.15 For example, to match a single lower case letter we place

[:lower:] inside square brackets like this: "[[:lower:]]", which is equiv-

alent to "[a-z]". Table 3.6 on the facing page lists predefined character classes.

This is very convenient for matching punctuation characters and multiple types of

spaces (e.g., tab, newline, carriage return).

In this final example, "ˆ.[ˆa].” will match any first character, followed by

any character except a, and followed by any character one or more times:

> vec2[grep("ˆ.[ˆa].+", vec2)] #index by position

[1] "elf"

Combining single character matches is call concatenation.

3.11.3 Concatenation

Single characters (including character classes) can be concatenated; for example,

the pattern "ˆ[fhr]at$" will match the single, isolated words fat, hat, or rat.

> vec3 <- c("fat", "bar", "rat", "fat boy", "elf", "mach",

+ "hat")

> vec3[grep("ˆ[fhr]at$", vec3)] #index by position

[1] "fat" "rat" "hat"

The concatenation "[ct]a[br]" will match the pattern that starts with c or t,

followed by a, and followed by b or r.

> vec4 <- c("cab", "carat", "tar", "bar", "tab", "batboy",

+ "care")

> vec4[grep("[ct]a[br]", vec4)] #index by position

[1] "cab" "carat" "tar" "tab" "care"

To match single, 3-letter words use "ˆ[ct]a[br]$".

> vec4[grep("ˆ[ct]a[br]$", vec4)] #index by position

[1] "cab" "tar" "tab"

The period (.) is another metacharacter: it matches any single character. For

example, "f.t" matches the pattern f + any character+ t.

> vec5 <- c("fate", "rat", "fit", "bat", "futbol")

> vec5[grep("f.t", vec5)] #index by position

[1] "fate" "fit" "futbol"

15 The locale describes aspects of the internationalization of a program. Initially most aspects of
the locale of R are set to “C” (which is the default for the C language and reflects North-American
usage).

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

168 3 Managing epidemiologic data in R

Table 3.7 Regular expressions may be followed by a repetition quantifier

Repetition quantifier Description

? Preceding pattern is optional and will be matched at most once

* Preceding pattern will be matched zero or more times

+ Preceding pattern will be matched one or more times

{n} Preceding pattern is matched exactly n times

{n,} Preceding pattern is matched n or more times

{n, m} Preceding pattern is matched at least n times, but not more than m times

3.11.4 Repetition

Regular expressions (so far: single characters, character classes, and concatenations)

can be qualified by whether a pattern can repeat (Table 3.7). For example, the pattern

"ˆf.+t$" matches single, isolated words that start with f or F, followed by 1 or

more of any character, and ending with t.

> vec6 <- c("fat", "fate", "feat", "bat", "Fahrenheit", "bat",

+ "foot")

> vec6[grep("ˆ[fF].+t$", vec6)] #index by position

[1] "fat" "feat" "Fahrenheit" "foot"

Repetition quantifiers gives us great flexibility to specify how often preceding pat-

terns can repeat.

3.11.5 Alternation

Two or more regular expressions (so far: single characters, character classes, con-

catenations, and repetitions) may be joined by the infix operator |. The resulting

regular expression can match the pattern of any subexpression. For example, the

World Health Organization (WHO) Global Burden of Disease (GBD) Study used

International Classification of Diseases, 10th Revision (ICD-10) codes (ref). The

GBD Study ICD-10 codes for hepatitis B are the following:

B16, B16.0, B16.1, B16.2, B16.3, B16.4, B16.5, B16.7, B16.8, B16.9, B17, B17.0, B17.2,
B17.8, B18, B18.0, B18.1, B18.8, B18.9

Notice that B16 and B16.0 are not the same ICD-10 code! The GBD Study methods

were used to study causes of death in San Francisco, California (ref). Underlying

causes of death were obtained from the State of California, Center for Health Statis-

tics. The ICD-10 code field did not have periods so that the hepatitis B codes were

the following.

B16, B160, B161, B162, B163, B164, B165, B167, B168, B169, B17, B170, B172, B178,
B18, B180, B181, B188, B189

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

3.11 Working with regular expressions 169

To match the pattern of ICD-10 codes representing hepatitis B, the following

regular expression was used (without spaces):

"ˆB16[0-9]?$|ˆB17[0,2,8]?$|ˆB18[0,1,8,9]?$"

This regular expression matches ˆB16[0-9]?$ or ˆB17[0,2,8]?$ or ˆB18[0,1,8,9]?$.

Similar to the first and third pattern, the second regular expression, ˆB17[0,2,8]?$,

matches B17, B170, B172, or B178 as isolated text strings.

To see how this works, we can match each subexpression individually and then

as an alternation:

> hepb <- c("B16", "B160", "B161", "B162", "B163", "B164",

+ "B165", "B167", "B168", "B169", "B17", "B170",

+ "B172", "B178", "B18", "B180", "B181", "B188",

+ "B189")

> grep("ˆB16[0-9]?$", hepb) #match 1st subexpression

[1] 1 2 3 4 5 6 7 8 9 10

> grep("ˆB17[0,2,8]?$", hepb) #match 2nd subexpression

[1] 11 12 13 14

> grep("ˆB18[0,1,8,9]?$", hepb) #match 3rd subexpression

[1] 15 16 17 18 19

> #match any subexpression

> grep("ˆB16[0-9]?$|ˆB17[0,2,8]?$|ˆB18[0,1,8,9]?$", hepb)

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A natural use for these pattern matches is for indexing and replacement. We

illustrate this using the 2nd subexpression.

> #indexing

> hepb[grep("ˆB17[0,2,8]?$", hepb)]

[1] "B17" "B170" "B172" "B178"

> #replacement

> hepb[grep("ˆB17[0,2,8]?$", hepb)] <- "HBV"

> hepb

[1] "B16" "B160" "B161" "B162" "B163" "B164" "B165" "B167"

[9] "B168" "B169" "HBV" "HBV" "HBV" "HBV" "B18" "B180"

[17] "B181" "B188" "B189"

Using regular expression alternations allowed us to efficiently code over 14,000

death records, with over 900 ICD-10 cause of death codes, into 117 mutually ex-

clusive cause of death categories for our San Francisco study. Suppose sfdat was

the data frame with San Francisco deaths for 2003–2004. Then the following code

would tabulate the deaths caused by hepatatis B:

> sfdat$hepb <- rep("No", nrow(sfdat)) #new field

> get.hepb <- grep("ˆB16[0-9]?$|ˆB17[0,2,8]?$|ˆB18[0,1,8,9]?$",

+ sfdat$icd10)

> sfdat$hepb[get.hepb] <- "Yes"

> table(sfdat$hepb)

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

170 3 Managing epidemiologic data in R

No Yes

14125 23

Therefore, in San Francisco, during the period 2003-2004, there were 23 deaths

caused by hepatitis B. Without regular expressions, this mortality analysis would

have been prohibitively tedious.

In this next example we use regular expressions to correct misspelled data. Sup-

pose we have a data vector containing my first name (“Tomas”), but sometimes

misspelled. We want to locate the most common misspellings and correct them:

tdat <- c("Tom", "Thomas", "Tomas", "Tommy", "tomas")

> misspelled <- grep("ˆ[Tt]omm?y?$|ˆ[Tt]homas$|ˆtomas$", tdat)

> misspelled

[1] 1 2 4 5

> tdat[misspelled] <- "Tomas"

> tdat

[1] "Tomas" "Tomas" "Tomas" "Tomas" "Tomas"

3.11.6 Repetition > Concatenation > Alternation

Repetition takes precedence over concatenation, which in turn takes precedence

over alternation. A whole subexpression may be enclosed in parentheses to override

these precedence rules. For example, consider how the following regular expression

changes when parentheses are used give concatenation precedence over repetition:

> vec7 <- c("Tommy", "Tomas", "Tomtom")

> #repetition takes precedence

> vec7[grep("[Tt]om{2,}", vec7)]

[1] "Tommy"

> #concatenation takes precedence

> vec7[grep("([Tt]om){2,}", vec7)]

[1] "Tomtom"

Recall that {2,} means repeat the previous 2 or more times.

3.11.7 Metacharacters

Any character, or combination of characters, can be use to specify a pattern except

for these metacharacters:

. \ | () [{ ˆ $ * + ?

Metacharacters have special meaning in regular expressions, and these have already

been presented and are summarized in Table 3.8. However, inside a character class,

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

3.11 Working with regular expressions 171

Table 3.8 Metacharacters used by regular expressions

Char.

Description Example Literal search

ˆ Matches empty string at beginning of line "ˆmy car" See p. 171

When 1st character in character class,
matches any single character not in the list

"[ˆabc]" See p. 171

$ Matches empty string at end of line "my car$" "[$]"

[Character class "[[]"

. Matches any single character "p.t" "[.]"

? Repetition quantifier (Table 3.7) ".?" "[?]"

* Repetition quantifier (Table 3.7) ".*" "[*]"

+ Repetition quantifier (Table 3.7) ".+" "[+]"

() Grouping subexpressions "([Tt]om){2,}" "[(]" or "[)]"

| Join subexpresions, any of which can be
matched

"Tomas|Luis" "[|]"

{ Not used in R regular expressions n/a "[{]"

metacharacters have their literal interpretation. For example, to search for data vec-

tor elements that contain one or more periods use:

> vec8 <- c("oswego.dat", "oswego", "infert.dta", "infert")

> vec8[grep("[.]", vec8)]

[1] "oswego.dat" "infert.dta"

If we want to include the following characters inside a character class, they re-

quire special placement:

] - ˆ

To include a literal], place it first in the list. Similarly, to include a literal -, place

it first or last in the list.16 Finally, to include a literal ˆ, place it anywhere but first.

> ages <- c("<1ˆ1", "[1,15)", "15-34", "[35,65)", "[65,110]")

> ages[grep("[]ˆ-]", ages)]

[1] "<1ˆ1" "15-34" "[65,110]"

To search for a literal ˆ as a single character is tricky because it must be placed

inside a character class but preceded by another character ("ˆ" will not work, and

"[ˆ]" returns an error). Because we are only interested in finding ˆ, then the first

character in the list should be any character we expect not to find in the data vector

("[/ˆ]" should work). Study the example that follows:

> vec9 <- c("8ˆ2", "89", "yˆx", "time")

> grep("/", vec9) #test that / is not in data

integer(0)

> vec9[grep("[/ˆ]", vec9)]

[1] "8ˆ2" "yˆx"

16 Although the - sign is not a metacharacter, it does have special meaning inside a character class
because it is used to specify a range of characters; e.g., [A-Za-z0-9].

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

172 3 Managing epidemiologic data in R

Table 3.9 Commonly used functions that use regular expressions

Function Description

grep Searches for pattern matches within a character vector; returns integer vector
indicating vector positions containing pattern

regexpr Similar to grep but returns integer vectors with detailed information for the first
occurrence of a pattern match within text string elements of a character vector

gregexpr Similar to regexpr but returns a list with detailed information for the multiple
occurrences of a pattern match within text string elements of a character vector

sub Searches and replaces the first occurrence of a pattern match within text string
elements of a character vector

gsub Searches and replaces multiple occurrences of a pattern match within text string
elements of a character vector

The first character in the list (/) was selected because there was no match in the data

vector.

3.11.8 Other regular expression functions

For most epidemiologic applications, the grep function will meet our regular ex-

pression needs. Table 3.9 summarizes other functions that use regular expressions.

Whereas the grep function enables indexing and replacing elements of a character

vector, the sub and gsub functions searches and replaces single or multiple pat-

tern matches within text string elements of a character vector. Review the following

example:

> vec10 <- c("California", "MiSSISSIppi")

> grep("SSI", vec10) #can be used for replacement

[1] 2

> sub("SSI", replacement="ssi", vec10) #replace 1st occurrence

[1] "California" "MissiSSIppi"

> gsub("SSI", replacement="ssi", vec10) #replace all occurrences

[1] "California" "Mississippi"

The regexpr function provides detailed information on the first pattern match

within text string elements of a character vector. It returns two integer vectors. In the

first vector, -1 indicates no match, and nonzero positive integers indicate the char-

acter position where the first match begins within a text string. In the second vector,

the nonzero positive integers indicate the match length. In contrast, the gregexpr

function provides detailed information on multiple pattern matches within text string

elements of a character vector. It returns a list where each bin contains detailed in-

formation (similar to regexpr) for each text string element of a character vector.

Study the following examples:

> regexpr("SSI", vec10)

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

3.11 Working with regular expressions 173

[1] -1 3

attr(,"match.length")

[1] -1 3

> gregexpr("SSI", vec10)

[[1]]

[1] -1

attr(,"match.length")

[1] -1

[[2]]

[1] 3 6

attr(,"match.length")

[1] 3 3

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

174 3 Managing epidemiologic data in R

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

3.11 Working with regular expressions 175

Problems

3.1. Using RStudio and the data from Table 3.1 on page 107 Create the following

data frame:

> dat

Status Treatment Agegrp Freq

1 Dead Tolbutamide <55 8

2 Survived Tolbutamide <55 98

3 Dead Placebo <55 5

4 Survived Placebo <55 115

5 Dead Tolbutamide 55+ 22

6 Survived Tolbutamide 55+ 76

7 Dead Placebo 55+ 16

8 Survived Placebo 55+ 69

3.2. Select 3 to 5 classmates and collect data on first name, last name, affiliation,

two email addresses, and today’s date. Using a text editor, create a data frame with

this data.

3.3. Review the United States data on AIDS cases by year available at http://

www.medepi.net/data/aids.txt. Read this data into a data frame. Graph

a calendar time series of AIDS cases.

Hint

plot(x, y, type = "l", xlab = "x axis label", lwd = 2,

ylab = "y axis label", main = "main title")

3.4. Review the United States data on measles cases by year available at http:

//www.medepi.net/data/measles.txt. Read this data into a data frame.

Graph a calendar time series of measle cases using an arithmetic and semi-logarithmic

scale.

Hint

plot(x, y, type = "l", lwd = 2, xlab = "x axis label",

ylab="y axis label", main = "main title")

plot(x, y, type = "l", lwd = 2, xlab = "x axis label", log = "y",

ylab="y axis label", main = "main title")

3.5. Review the United States data on hepatitis B cases by year available at http:

//www.medepi.net/data/hepb.txt. Read this data into a data frame. Us-

ing the R code below, plot a times series of AIDS and hepatitis B cases.

matplot(hepb$year, cbind(hepb$cases,aids$cases),

type = "l", lwd = 2, xlab = "Year", ylab = "Cases",

main = "Reported cases of Hepatitis B and AIDS,

United States, 1980-2003")

legend(1980, 100000, legend = c("Hepatitis B", "AIDS"),

lwd = 2, lty = 1:2, col = 1:2)

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

176 3 Managing epidemiologic data in R

Table 3.10 Data dictionary for Evans data set

Variable Variable name Variable type Possible values

id Subject identifier Integer

chd Coronary heart disease Categorical-nominal 0 = no
1 = yes

cat Catecholamine level Categorical-nominal 0 = normal
1 = high

age Age Continuous years

chl Cholesterol Continuous > 0

smk Smoking status Categorical-nominal 0 = never smoked
1 = ever smoked

ecg Electrocardiogram Categorical-nominal 0 = no abnormality
1 = abnormality

dbp Diastolic blood pressure Continuous mm Hg

sbp Systolic blood pressure Continuous mm Hg

hpt High blood pressure Categorical-nominal 0 = no
1 = yes
(dbp ≥ 95 or
sbp ≥ 160)

ch cat × hpt Categorical product term

cc cat × chl Continuous product term

3.6. Review data from the Evans cohort study in which 609 white males were fol-

lowed for 7 years, with coronary heart disease as the outcome of interest (http:

//www.medepi.net/data/evans.txt). The data dictionary is provided in

Table 3.10.

a Recode the binary variables (0, 1) into factors with 2 levels.

b Discretized age into a factor with more than 2 levels.

c Create a new hyptertension categorical variable based on the current classifica-

tion scheme17:

Normal: SBP< 120 and DBP< 80;

Prehypertension: SBP=[120, 140) or DBP=[80, 90);

Hypertension-Stage 1: SBP=[140, 160) or DBP=[90, 100); and

Hypertension-Stage 2: SBP≥ 160 or DBP≥ 100.

d Using R, construct a contigency table comparing the old and new hypertension

variables.

3.7. Review the California 2004 surveillance data on human West Nile virus cases

available at http://www.medepi.net/data/wnv/wnv2004raw.txt. Read

in the data, taking into account missing values. Convert the calendar dates into the

international standard format. Using the write.table function export the data

as an ASCII text file.

17 http://www.nhlbi.nih.gov/guidelines/hypertension/phycard.pdf

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

3.11 Working with regular expressions 177

3.8. On April 19, 1940, the local health officer in the village of Lycoming, Os-

wego County, New York, reported the occurrence of an outbreak of acute gas-

trointestinal illness to the District Health Officer in Syracuse. Dr. A. M. Rubin,

epidemiologist-in-training, was assigned to conduct an investigation. (See Ap-

pendix A.2 on page 184 for data dictionary.)

When Dr. Rubin arrived in the field, he learned from the health officer that all

persons known to be ill had attended a church supper held on the previous evening,

April 18. Family members who did not attend the church supper did not become

ill. Accordingly, Dr. Rubin focused the investigation on the supper. He completed

Interviews with 75 of the 80 persons known to have attended, collecting information

about the occurrence and time of onset of symptoms, and foods consumed. Of the

75 persons interviewed, 46 persons reported gastrointestinal illness.

The onset of illness in all cases was acute, characterized chiefly by nausea, vom-

iting, diarrhea, and abdominal pain. None of the ill persons reported having an ele-

vated temperature; all recovered within 24 to 30 hours. Approximately 20% of the

ill persons visited physicians. No fecal specimens were obtained for bacteriologic

examination. The investigators suspected that this was a vehicle-borne outbreak,

with food as the vehicle. Dr. Rubin put his data into a line listing.18

The supper was held in the basement of the village church. Foods were con-

tributed by numerous members of the congregation. The supper began at 6:00 p.m.

and continued until 11:00 p.m. Food was spread out on a table and consumed over

a period of several hours. Data regarding onset of illness and food eaten or water

drunk by each of the 75 persons interviewed are provided in the line listing. The ap-

proximate time of eating supper was collected for only about half the persons who

had gastrointestinal illness.

a. Using RStudio plot the cases by time of onset of illness (include appropriate

labels and title). What does this graph tell you? (Hint: Process the text data and

then use the hist function.)

b. Are there any cases for which the times of onset are inconsistent with the general

experience? How might they be explained?

c. How could the data be sorted by illness status and illness onset times?

d. Where possible, calculate incubation periods and illustrate their distribution with

an appropriate graph. Use the truehist function in the MASS package. De-

termine the mean, median, and range of the incubation period.

18 See data set at http://www.medepi.net/data/oswego/oswego.txt.

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

Part II

Applied Epidemiology

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

Appendixes

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

APPENDIX A

Available data sets

A.1 Latina Mothers and their Newborn

From 1980 to 1990 data was collected on 427 Latino mothers that gave birth at

the University of California, San Francisco [12, 13]. Data was collected on the

characteristics of the mothers and their newborn infants (Table A.1). Mothers were

weighed at each prenatal visit. Rate of weight gain during each trimester was based

on a linear regression interpolation. The data set can be viewed and downloaded

from http://www.medepi.net/data/birthwt9.txt.

Table A.1 Data dictionary for Latina mothers and their newborn infants

Variable Description Possible values

age Maternal age In years (self-reported)

parity Parity Count of previous live births

gest Gestation Reported in days

sex Gender Male = 1, Female = 2

bwt Birth weight Grams

cigs Smoking Number of cigarettes per day
(self-reported)

ht Maternal height Measured in centimeters

wt Maternal weight Pre-pregnancy weight (self-reported)

r1 Rate of weight gain (1st trimester) Kilograms per day (estimated)

r2 Rate of weight gain (2nd trimester) Kilograms per day (estimated)

r2 Rate of weight gain (3rd trimester) Kilograms per day (estimated)

183

184 A Available data sets

A.2 Oswego County (outbreak)

On April 19, 1940, the local health officer in the village of Lycoming, Oswego

County, New York, reported the occurrence of an outbreak of acute gastrointestinal

illness to the District Health Officer in Syracuse. Dr. A. M. Rubin, epidemiologist-

in-training, was assigned to conduct an investigation.

When Dr. Rubin arrived in the field, he learned from the health officer that all

persons known to be ill had attended a church supper held on the previous evening,

April 18. Family members who did not attend the church supper did not become

ill. Accordingly, Dr. Rubin focused the investigation on the supper. He completed

Interviews with 75 of the 80 persons known to have attended, collecting information

about the occurrence and time of onset of symptoms, and foods consumed. Of the

75 persons interviewed, 46 persons reported gastrointestinal illness.

The onset of illness in all cases was acute, characterized chiefly by nausea, vom-

iting, diarrhea, and abdominal pain. None of the ill persons reported having an el-

evated temperature; all recovered within 24 to 30 hours. Approximately 20 physi-

cians. No fecal specimens were obtained for bacteriologic examination.

The supper was held in the basement of the village church. Foods were con-

tributed by numerous members of the congregation. The supper began at 6:00 p.m.

and continued until 11:00 p.m. Food was spread out on table and consumed over

a period of several hours. Data regarding onset of illness and food eaten or water

drunk by each of the 75 persons interviewed are provided in the attached line listing

(Oswego dataset). The approximate time of eating supper was collected for only

about half the persons who had gastrointestinal illness.

The data set can be viewed and downloaded from http://www.medepi.

net/data/oswego.txt. The data dictionary is provided in Table A.2 on the

facing page.

A.3 Western Collaborative Group Study (cohort)

The Western Collaborative Group Study (WCGS), a prospective cohort studye, re-

cruited middle-aged men (ages 39 to 59) who were employees of 10 California com-

panies and collected data on 3154 individuals during the years 1960–1961. These

subjects were primarily selected to study the relationship between behavior pat-

tern and the risk of coronary hearth disease (CHD). A number of other risk factors

were also measured to provide the best possible assessment of the CHD risk associ-

ated with behavior type. Additional variables collected include age, height, weight,

systolic blood pressure, diastolic blood pressure, cholesterol, smoking, and corneal

arcus. The median follow up time was 8.05 years.

The data set can be viewed and downloaded from http://www.medepi.

net/data/wcgs.txt. The data dictionary is provided in Table A.3 on page 186.

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

A.5 Myocardial infarction case-control study 185

Table A.2 Data dictionary for Oswego County data set

Variable Possible values

id Subject identificaton number

age Age in years

sex Sex: F = Female, M = Male

meal.time Meal time on April 18th

ill Developed illness: Y = Yes N = No

onset.date Onset date: ”4/18” = April 18th, ”4/19” = April 19th

onset.time Onset time: HH:MM AM/PM

baked.ham Consumed item: Y = Yes; N = No

spinach Consumed item: Y = Yes; N = No

mashed.potato Consumed item: Y = Yes; N = No

cabbage.salad Consumed item: Y = Yes; N = No

jello rolls Consumed item: Y = Yes; N = No

brown.bread Consumed item: Y = Yes; N = No

milk Consumed item: Y = Yes; N = No

coffee Consumed item: Y = Yes; N = No

water Consumed item: Y = Yes; N = No

cakes Consumed item: Y = Yes; N = No

vanilla.ice.cream Consumed item: Y = Yes; N = No

chocolate.ice.cream Consumed item: Y = Yes; N = No

fruit.salad Consumed item: Y = Yes; N = No

A.4 Evans County (cohort)

The Evans County data set is used to demonstrate a standard logistic regression

(unconditional) [15]. The data are from a cohort study in which 609 white males

were followed for 7 years, with coronary heart disease as the outcome of interest.

The data set can be viewed and downloaded from http://www.medepi.

net/data/evans.txt. The data dictionary is provided in Table A.4 on the fol-

lowing page.

A.5 Myocardial infarction case-control study

The myocardial infarction (MI) data set [15] is used to demonstrate conditional

logistic regression. The study is a case-control study that involves 117 subjects in

39 matched strata (matched by age, race, and sex). Each stratum contains three

subjects, one of whom is a case diagnosed with myocardial infarction and the other

two are matched controls.

The data set can be viewed and downloaded from http://www.medepi.

net/data/mi.txt. The data dictionary is provided in Table A.5 on page 187.

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

186 A Available data sets

Table A.3 Data dictionary for Western Collaborative Group Study data set

Variable Variable name Variable type Possible values

id Subject ID Integer 2001–22101

age0 Age Continuous 39–59 years

height0 Height Continuous 60–78 in

weight0 Weight Continuous 78–320 lb

sbp0 Systolic blood pressure Continuous 98–230 mm Hg

dbp0 Diastolic blood pressure Continuous 58–150 mm Hg

chol0 Cholesterol Continuous 103–645 mg/100 ml

behpat0 Behavior pattern Categorical 1 = Type A1
2 = Type A2
3 = Type B1
4 = Type B2

ncigs0 Smoking Integer Cigarettes/day

dibpat0 Behavior pattern Categorical 0 = Type B
1 = Type A

chd69 Coronary heart disease event Categorical 0 = None
1 = Yes

typechd Coronary heart disease event Categorical 0 = CHD event
1 = Symptomatic MI
2 = Silent MI
3 = Classical angina

time169 Observation (follow up) time Continuous 18–3430 days

arcus0 Corneal arcus Categorical 0 = None
1 = Yes

Table A.4 Data dictionary for Evans data set

Variable Variable name Variable type Possible values

id Subject identifier Integer

chd Coronary heart disease Categorical-nominal 0 = no
1 = yes

cat Catecholamine level Categorical-nominal 0 = normal
1 = high

age Age Continuous years

chl Cholesterol Continuous > 0

smk Smoking status Categorical-nominal 0 = never smoked
1 = ever smoked

ecg Electrocardiogram Categorical-nominal 0 = no abnormality
1 = abnormality

dbp Diastolic blood pressure Continuous mm Hg

sbp Systolic blood pressure Continuous mm Hg

hpt High blood pressure Categorical-nominal 0 = no
1 = yes
(dbp≥ 95 or sbp≥ 160)

ch cat × hpt Categorical product term

cc cat × chl Continuous product term

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

A.10 Novel influenza A (H1N1) pandemic 187

Table A.5 Data dictionary for myocardial infarction (MI) case-control data set

Variable Variable name Variable type Possible values

match Matching strata Integer 1–39

person Subject identifier Integer 1–117

mi Myocardial infarction Categorical-
nominal

0 = No
1 = Yes

smk Smoking status Categorical-
nominal

0 = Not current smoker
1 = Current smoker

sbp Systolic blood pressure Categorical-
ordinal

120, 140, or 160

ecg Electrocardiogram Categorical-
nominal

0 = No abnormality
1 = abnormality

A.6 AIDS surveillance cases

http://www.medepi.net/data/aids.txt

A.7 Hepatitis B surveillance cases

http://www.medepi.net/data/hepb.txt

A.8 Measles surveillance cases

http://www.medepi.net/data/measles.txt

A.9 University Group Diabetes Program

http://www.medepi.net/data/ugdp.txt

A.10 Novel influenza A (H1N1) pandemic

A.10.1 United States reported cases and deaths as of July 23, 2009

http://www.medepi.net/data/h1n1panflu23jul09usa.txt

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

APPENDIX B

Outbreak analysis template in R

We provide an analysis template using R (and the ’epitools’ package). Examples in-

volve human West Nile virus surveillance, other data sets (AIDS, measles, hepatitis

B, etc.).

Read data

Human West Nile virus disease surveillance, California, 2004.

wnv <-read.table("http://www.medepi.net/data/wnv/wnv2004raw.txt",

sep = ",", header = TRUE, na.strings = ".")

str(wnv) #display data set structure

head(wnv) #display first 6 lines

edit(wnv) #browse data frame

fix(wnv) #browse with ability to edit (be careful!!!)

Convert non-standard dates to Julian dates

wnv$date.onset2 <- as.Date(wnv$date.onset, format="%m/%d/%Y")

wnv$date.tested2 <- as.Date(wnv$date.tested, format="%m/%d/%Y")

Display histogram of onset dates (epidemic curve)

hist(wnv$date.onset2, breaks= 26, freq=TRUE, col="slategray1")

189

190 B Outbreak analysis template in R

Describe a continuous variable (e.g., age)

summary(wnv$age) # no standard deviation provided

range(wnv$age, na.rm=TRUE); mean(wnv$age, na.rm=TRUE)

median(wnv$age, na.rm=TRUE); sd(wnv$age, na.rm=TRUE)

Describe continuous variable, stratified by a categorical variable

tapply(wnvage, wnvsex, mean, na.rm = TRUE)

tapply(wnvage, wnvcounty, mean, na.rm = TRUE)

Display a continuous variable

hist(wnv$age, xlab="x", ylab="y", main="title", col="skyblue")

Describe a categorical variable (e.g., sex)

sex.tab <- xtabs(˜sex, data = wnv)

sex.dist <- prop.table(sex.tab)

cbind(sex.tab, sex.dist)

Display a categorical variable (e.g. sex)

barplot(sex.tab, col="pink", ylab="Frequency", main="title")

Re-code continuous variable to categorical (e.g., age)

wnv$age3 <- cut(wnv$age, breaks=c(0,45,65,100), right=FALSE)

age3.tab <- xtabs(˜age3, data = wnv)

age3.dist <- prop.table(age3.tab)

cbind(age3.tab, age3.dist)

Describe two categorical variables (e.g. sex and age)

sexage <- xtabs(˜sex + age3, data = wnv)

sexage

prop.table(sexage) #joint distribution

prop.table(sexage, 1) #row distribution

prop.table(sexage, 2) #column distribution

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

B Outbreak analysis template in R 191

Plot age vs sex distribution

barplot(sexage, legend.text=TRUE,

xlab="Age", ylab="Frequency", main="title")

barplot(sexage, legend.text=TRUE, beside=TRUE,

xlab="Age", ylab="Frequency", main="title")

barplot(t(sexage), legend.text=TRUE, ylim=c(0, 650),

xlab="Sex", ylab="Frequency", main="title")

barplot(t(sexage), legend.text=TRUE, beside=TRUE, ylim=c(0, 300),

xlab="Sex", ylab="Frequency", main="title")

Hypothesis testing using 2-way contingency tables

From the main menu select Packages > Install Package(s). Select CRAN mirror

near you. Select epitools package.

library(epitools) #load ’epitools’; only needed once per session

tab.age3 <- xtabs(˜age3 + death, data = wnv)

epitab(tab.age3) #default is odds ratio

epitab(tab.age3, method = "riskratio")

prop.table(tab.age3, 1) #display row distribution (2=column)

prop.test(tab.age3[,2:1]) #remember to reverse columns

chisq.test(tab.age3) #Chi-square test

fisher.test(tab.age3) #Fisher exact test

Graphical display of epidemiologic data

Histogram (continuous numbers or date objects)

hist(wnv$age, xlab="x", ylab="y", main="title", col="skyblue")

hist(wnv$date.onset2, breaks= 26, freq=TRUE, col="slategray1")

Bar chart (categorical variable)

barplot(table(wnv$sex), col="skyblue", xlab="Sex", ylab="Freq",

main="title", legend = TRUE, ylim=c(0,600))

Stacked bar chart (2 or more categorical variables)

barplot(table(wnvsex, wnvage3), col=c("blue","green"),

xlab="Sex", ylab="Freq", main="WNV Disease, Sex by Age",

legend = TRUE, ylim=c(0,400))

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

192 B Outbreak analysis template in R

Group bar chart (2 or more categorical variables):

barplot(table(wnvsex, wnvage3), beside=TRUE, xlab="Sex",

ylab="Freq", main="Sex by Age", col=c("blue","green"),

legend = TRUE, ylim=c(0,250))

Proportion bar chart (2 or more categorical variables)

sexage <- xtabs(˜sex + age3, data = wnv)

barplot(prop.table(sexage, 2), xlab="Sex", ylab="Proportion",

main="WNV Disease, Sex by Age", col=c("blue","green"),

legend = TRUE, ylim=c(0,1.2))

Time series (single x values vs. single y values)

United States measles surveillance data

measles <- read.table("http://www.medepi.net/data/measles.txt",

sep="", header=TRUE)

str(measles); head(measles)

plot(measles$year, measles$cases, type="l", lwd=2, col="navy")

plot(measles$year, measles$cases, type="l", lwd=2, log="y")

Time series (multiple x values vs multiple y values)

United State AIDS and hepatitis B surveillance data

aids <- read.table("http://www.medepi.net/data/aids.txt",

sep="", header=TRUE, na.strings=".")

hepb <- read.table("http://www.medepi.net/data/hepb.txt",

sep="", header=TRUE)

years <- cbind(aids$year, hepb$year)

cases <- cbind(aids$cases, hepb$cases)

matplot(years, cases, type="l", lwd=2, col=1:2, main="title")

legend(x=1980, y=80000, legend= c("AIDS","Hepatitis B"),

lty=1:2, col=1:2, lwd=2)

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

B Outbreak analysis template in R 193

Working with dates and times

Convert non-standard dates to standard Julian dates

dates <- c("11-02-1959","1959Nov02","November 2, 1959")

jdates<-as.Date(dates, format=c("%m-%d-%Y","%Y%b%d","%B %d, %Y"))

jdates; julian(jdates)

Converting non-standard dates and times to R date-time object:

dtim <- c("4/19/1940 12:30 AM", "4/18/1940 9:45 PM")

std.dt <- strptime(dtim, format="%m/%d/%Y %I:%M %p")

std.dt

Try ?strptime to see all format options.

Manually creating an epidemic curve

Single variable

labs <- c("Sun", "Mon","Tue","Wed","Thu","Fri", "Sat")

cases <- c(0, 25, 15, 5, 10, 20, 0)

names(cases) <- labs

barplot(cases, space=0, col="skyblue", xlab="Day", ylab="Cases",

main="Title")

Single variable—Change x-axis labels to perpendicular

xv <- barplot(cases, space=0, col="red", xlab="Day",

ylab="Cases", main="Title", axisnames=FALSE)

axis(side=1, at=xv, labels=labs, las=2)

Stratified by second variable

male.cases <- c(0, 15, 10, 3, 5, 5, 0)

female.cases <- c(0, 10, 5, 2, 5, 15, 0)

cases2 <- rbind(Male = male.cases, Female = female.cases)

colnames(cases2) <- labs

xv <- barplot(cases2, space=0, col=c("blue", "green"),

xlab="Day", ylab="Cases", main="Title",

axisnames=FALSE, legend.text=TRUE, ylim=c(0, 30))

axis(side=1, at=xv, labels=labs, las=2)

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

194 B Outbreak analysis template in R

Running batch jobs

source("c:/myoutbreak/job01.R") #run program file called job01.R

Creating output log files

From within job01.R program file

x <- 1:5

y <- xˆ2

Sink printed objects to log file

sink("c:/temp/job.log")

print(x)

sink()

Capture output without requiring print command

capture.output(cbind(x, y),

file="c:/temp/job.log", append=TRUE)

Multivariable analysis

Logistic regression (binomial data: cohort, case-control)

Using WNV data with age3 variable created previously:

mod1 <- glm(death ˜ age3, family=binomial, data=wnv)

summary(mod1) #full results

exp(mod1$coef) #calculate odds ratio

mod2 <- glm(death ˜ age3 + sex, family=binomial, data=wnv)

summary(mod2) #full results

exp(mod2$coef) #calculate odds ratio

Conditional logistic regression (matched case-control)

Here is a case-control study of myocardial infarction (Kleinbaum 2002): one case

was matched to two controls on age, race, and sex.

library(survival) #load survival package

chd <- read.table("http://www.medepi.net/data/chd.txt", sep=",",

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

B Outbreak analysis template in R 195

header=TRUE)

head(chd)

chd$mi2 <- ifelse(chd$mi=="Yes", 1, 0) #re-code case status

mod1 <- clogit(mi2˜smk+strata(match), data=chd)

summary(mod1)

mod2 <- clogit(mi2˜smk+sbp+strata(match), data=chd)

summary(mod2)

mod3 <- clogit(mi2˜smk+sbp+ecg+strata(match), data=chd)

summary(mod3)

anova(mod1,mod2,mod3, test="Chisq") #compare nested models

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

APPENDIX C

Programming and creating R functions

“Good programmers write good code, great programmers borrow good code.”

R is a comprehensive and powerful programming language. In this section we

briefly summarize how to use R for introductory programming, including writing

and executing functions.

C.1 Basic programming

Basic epidemiologic programming in R is just a list of R expressions, that are col-

lected and executed as a batch job. The list of R expressions in an ASCII text file

with a .R extension. In RStudio, from the main menu, select File → New → R

Script. This script file will be saved with an .R extension. This script file can be

edited and executed within RStudio. Alternatively, we can edit this file using our

favorite text editor (e.g., GNU Emacs).

What are the characteristics of good R programming?

• Use a good text editor (or RStudio) for programming

• Organize batch jobs into numbered sequential files (e.g., job01.R)

• Avoid graphical menu-driven approaches

First, use a good text editor (or RStudio) for programming. Each R expression

will span one or more lines. Although one could write and submit each line at the

R console, this approach is inefficient and not recommended. Instead, type the ex-

pressions into your favorite text editor and save with a .R extension. Then, selected

expressions or the whole file can be executed in R. Use the text editor that comes

with R, or text editors customized to work with R (e.g., RStudio, Emacs with ESS).

197

198 C Programming and creating R functions

Second, we organize batch jobs into sequential files. Data analysis is a se-

ries of tasks involving data entry, checking, cleaning, analysis, and reporting. Al-

though data analysts are primarily involved in analysis and reporting, they may

be involved in earlier phases of data preparation. Regardless of stage of involve-

ment, data analysts should organize, conduct, and document their analytics tasks

and batch jobs in chronological order. For example, batch jobs might be named

as follows: job01-cleaning.R, job02-recoding.R, job03-descriptive.R, job04-

logistic.R, etc. Naming the program file has two components: ’jobs’ represent ma-

jor tasks and are always numbered in chronological order (job01-*.R, job02-*.R,

etc.); and a brief descriptor can be appended to the first component of the file name

(job01-recode-data.R, job02-bivariate-analysis.R).

If one needs to repeat parts of a previous job, then add new jobs, not edit old

jobs. This way our analysis can always be reviewed, replicated, and audited exactly

in order it was conducted. We avoid editing earlier jobs. If we edit previous jobs,

then we must rerun all subsequent jobs in chronological order.

Third, we avoid graphical, menu-driven approaches. While this is a tempting ap-

proach, our work cannot be documented, replicated, and audited. The best approach

is to collect R expressions into batch jobs and run them using the source function.

C.2 Intermediate programming

The next level of R programming involves (1) implementing control flow (decision

points); (2) implementing dependencies in calculations or data manipulation; and

(3) improving execution efficiency,

C.2.1 Control statements

Control flow involves one or more decision points. A simplest decision point goes

like this: if a condition is TRUE, do {this} and then continue; if it is FALSE, do not

do {this} and then continue. When R continues, the next R expression can be any

valid expression, including another decision point.

C.2.1.1 The if function

We use the if function to implement single decision points.

if(TRUE) {execute these R expressions}
If the condition if false, R skips the bracketed expression and continues executing

subsequent lines. Study this example:

> x <- c(1, 2, NA, 4, 5)

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

C.2 Intermediate programming 199

> y <- c(1, 2, 3, 4, 5)

> if(any(is.na(x))) {x[is.na(x)] <- 999}

> x

[1] 1 2 999 4 5

> if(any(is.na(y))) {y[is.na(y)] <- 999}

> y

[1] 1 2 3 4 5

The first if condition evaluated to TRUE and the missing value was replaced. The

second if condition evaluated to FALSE and the bracketed expressions were not

evaluated.

C.2.1.2 The else functions

Up to now the if condition had only one possible response. If there are two, mutu-

ally exclusive possible responses, add one else statement:

if(TRUE) {
execute these R expressions

} else {
execute these R expressions

}
Here is an example:

> x <- c(1, 2, NA, 4, 5);

> y <- c(1, 2, 3, 4, 5)

> if(any(is.na(x))) {

+ x[is.na(x)] <- 999; cat("NAs replaced\n")

+ } else {cat("No missing values; no replacement\n")}

NAs replaced

> if(any(is.na(y))) {

+ y[is.na(y)] <- 999; cat("NAs replaced\n")

+ } else {cat("No missing values; no replacement\n")}

No missing values; no replacement

> x

[1] 1 2 999 4 5

> y

[1] 1 2 3 4 5

> y

[1] 1 2 3 4 5

Therefore, use the if and else combination if one needs to evaluat of one of two

possible collection of R expressions.

If one needs to evaluate possibly one of two possible collection of R expressions

then use the following pattern:

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

200 C Programming and creating R functions

if(TRUE) {
execute these R expressions

} else if(TRUE) {
execute these R expressions

}
The if and else functions can be combined to achieve any desired control flow.

C.2.1.3 The “short circuit” logical operators

The “short circuit” && and || logical operators are used for control flow in if

functions. If logical vectors are provided, only the first element of each vector is

used. Therefore, for element-wise comparisons of 2 or more vectors, use the & and |

operators but not the && and || operators (discussed in Chapter 2). For if function

comparisons use the && and || operators.

Suppose we want to square the elements of a numeric vector but not if it is a

matrix.

> x <- 1:5

> y <- matrix(1:4, 2, 2)

> if(is.numeric(x) && !is.matrix(x)) {

+ xˆ2

+ } else cat("Either not numeric or is a matrix\n")

[1] 1 4 9 16 25

> if(!is.matrix(y) && is.numeric(y)) {

+ yˆ2

+ } else cat("Either not numeric or is a matrix\n")

Either not numeric or is a matrix

The && and || operators are called “short circuit” operators because not all its

arguments may be evaluated: moving from left to right, only sufficient arguments

are evaluated to determine if the if function should return TRUE or FALSE. This

can save considerable time if some the arguments are complex functions that require

significant computing time to evaluate to either TRUE or FALSE. In the previous

example, because !is.matrix(y) evaluates to FALSE, it was not necessary to

evaluate is.numeric(y).

C.2.2 Vectorized approach

An important advantage of R is the availability of functions that perform vectorized

calculations. For example, suppose we wish to add to columns of a matrix. Here is

one approach:

> tab <- matrix(1:12, 3, 4)

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

C.2 Intermediate programming 201

> tab

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

> colsum <- tab[,1]+tab[,2]+tab[,3]+tab[,4]

> colsum

[1] 22 26 30

However, this can be accomplished more efficiently using the apply function:

> colsum2 <- apply(tab, 1, sum)

> colsum2

[1] 22 26 30

In general, we want to use these types of functions (e.g., tapply, sweep,

outer, mean, etc.) because they have been optimized to performed vectorized

calculations.

C.2.2.1 The ifelse function

The ifelse function is a vectorized element-wise implementation of the if and

else functions. We demonstrate using the practical example of recoding a 2-level

variable.

> sex <- c("M", NA, "F", "F", NA, "M", "F", "M")

> sex2 <- ifelse(sex=="M", "Male", "Female")

> sex2

[1] "Male" NA "Female" "Female" NA "Male" "Female" "Male"

If an element of sex contains ”M” (TRUE), it is recoded to ”Male” (in sex2), and

otherwise (FALSE) it is recoded to ”Female”. This assumes that there are only ”M”s

and ”F”s in the data vector.

C.2.3 Looping

Looping is a common programming approach that is discouraged in R because it

is inefficient. It is much better to conduct vectorized calculations using existing

functions. For example, suppose we want to sum a numeric vector.

> x <- 1:10

> xsum <- 0

> for (i in 1:10){

+ xsum <- xsum + x[i]

+ }

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

202 C Programming and creating R functions

> xsum

[1] 55

A much better approach is to use the sum function:

> sum(x)

[1] 55

Unless it is absolutely necessary, we avoid looping.

Looping is necessary when (1) there is no R function to conduct a vectorized cal-

culation, and (2) when the result of an element depends on the result of a preceding

element which may not be known beforehand (e.g., when it is the result of a random

process).

C.2.3.1 The for function

The previous example was a for loop. Here is the syntax:

for (i in somevector{
do some calcuation with ith element of somevector

}
In the for function R loops and uses the ith element of somevector either directly

or indirectly (e.g., indexing another vector). Here is using the vector directly:

> for(i in 1:3){

+ cat(iˆ2,"\n")

+ }

1

4

9

The letters contain the American English alphabet. Here we use an integer vec-

tor for indexing letters:

> for(i in 1:3){

+ cat(letters[i],"\n")

+ }

a

b

c

Somevector can be any vector:

> kids <- c("Tomasito", "Luisito", "Angela")

> for (i in kids) {print(i)}

[1] "Tomasito"

[1] "Luisito"

[1] "Angela"

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

C.2 Intermediate programming 203

C.2.3.2 The while function

The while function will continue to evaluate a collection of R expressions while a

condition is true. Here is the syntax:

while(TRUE) {
execute these R expressions

}
Here is a trivial example:

> x <- 1; z <- 0

> while(z < 5){

+ show(z)

+ z <- z + x

+ }

[1] 0

[1] 1

[1] 2

[1] 3

[1] 4

The while function is used for optimization functions that are converging to a

numerical value.

C.2.3.3 The break and next functions

The break expression will break out of a for or while loop if a condition is met,

and transfers control to the first statement outside of the inner-most loop. Here is the

general syntax:

for (i in somevector{
do some calcuation with ith element of somevector

if(TRUE) break

}
The next expression halts the processing of the current iteration and advances

the looping index. Here is the general syntax:

for (i in somevector{
do some calcuation with ith element of somevector

if(TRUE) next

}
Both break and next apply only to the innermost of nested loops.

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

204 C Programming and creating R functions

C.2.3.4 double for

In the next example we nest two for loop to generate a multiplication table for the

integers 6 to 10:

> x <- 6:10

> mtab <- matrix(NA, 5, 5)

> rownames(mtab) <- x

> colnames(mtab) <- x

> for(i in 1:5){

+ for(j in 1:5){

+ mtab[i, j] <- x[i]*x[j]

+ }

+ }

> mtab

6 7 8 9 10

6 36 42 48 54 60

7 42 49 56 63 70

8 48 56 64 72 80

9 54 63 72 81 90

10 60 70 80 90 100

C.3 Writing R functions

Writing R functions involves three steps:

• Prepare inputs

• Do calculations

• Collect results

The best way to learn these steps is to incorporate them into our regular R pro-

gramming. For example, suppose we are writing R code to calculate the odds ratio

from a 2×2 table with the appropriate format. For this we will use the Oswego data

set available from the epitools package.

> ## Prepare inputs

> library(epitools)

> data(oswego)

> tab1 = xtabs(˜ ill + spinach, data = oswego)

> tab1

spinach

ill N Y

N 12 17

Y 20 26

> aa = tab1[1, 1]

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

C.3 Writing R functions 205

> bb = tab1[1, 2]

> cc = tab1[2, 1]

> dd = tab1[2, 2]

>

> ## Do calculations

> crossprod.OR = (aa*dd)/(bb*cc)

>

> ## Collect results

> list(data = tab1, odds.ratio = crossprod.OR)

$data

spinach

ill N Y

N 12 17

Y 20 26

$odds.ratio

[1] 0.9176471

Now that we are familiar of what it takes to calculate an odds ratio from a 2-way

table we can convert the code into a function and load it at the R console. Here is

new function:

myOR = function(x){

Prepare input

x = 2x2 table amenable to cross-product

aa = x[1, 1]

bb = x[1, 2]

cc = x[2, 1]

dd = x[2, 2]

Do calculations

crossprod.OR = (aa*dd)/(bb*cc)

Collect results

list(data = x, odds.ratio = crossprod.OR)

}

Now we can test the function:

> tab.test = xtabs(˜ ill + spinach, data = oswego)

> myOR(tab.test)

$data

spinach

ill N Y

N 12 17

Y 20 26

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

206 C Programming and creating R functions

$odds.ratio

[1] 0.9176471

C.3.1 Arguments default values

Now suppose we wish to add calculating a 95% confidence interval to this function.

We will use the following normal approximation standard error formula for an odds

ratio:

SE[log(OR)] =

√

1

A1
+

1

B1
+

1

A0
+

1

B0

And here is the (1−α)% confidence interval:

ORL,ORU = exp{log(OR)±Zα/2SE[log(OR)]}

Here is the improved function:

myOR2 = function(x, conf.level){

Prepare input

x = 2x2 table amenable to cross-product

aa = x[1, 1]

bb = x[1, 2]

cc = x[2, 1]

dd = x[2, 2]

if(missing(conf.level)) stop("Must specify confidence level")

Z <- qnorm((1 + conf.level)/2)

Do calculations

logOR <- log((aa*dd)/(bb*cc))

SE.logOR <- sqrt(1/aa + 1/bb + 1/cc + 1/dd)

OR <- exp(logOR)

CI <- exp(logOR + c(-1, 1)*Z*SE.logOR)

Collect results

list(data = x, odds.ratio = OR, conf.int = CI)

}

Notice that conf.level is a new argument, but with no default value. If a user

forgets to specify a default value, the following line handles this possibility:

if(missing(conf.level)) stop("Must specify confidence level")

Now we test this function:

> tab.test = xtabs(˜ ill + spinach, data = oswego)

> myOR2(tab.test)

Error in myOR2(tab.test) : Must specify confidence level

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

C.3 Writing R functions 207

> myOR2(tab.test, 0.95)

$data

spinach

ill N Y

N 12 17

Y 20 26

$odds.ratio

[1] 0.9176471

$conf.int

[1] 0.3580184 2.3520471

If an argument has a usual value, then specify this as an argument default value:

myOR3 = function(x, conf.level = 0.95){

Prepare input

x = 2x2 table amenable to cross-product

aa = x[1, 1]

bb = x[1, 2]

cc = x[2, 1]

dd = x[2, 2]

Z <- qnorm((1 + conf.level)/2)

Do calculations

logOR <- log((aa*dd)/(bb*cc))

SE.logOR <- sqrt(1/aa + 1/bb + 1/cc + 1/dd)

OR <- exp(logOR)

CI <- exp(logOR + c(-1, 1)*Z*SE.logOR)

Collect results

list(data = x, odds.ratio = OR, conf.int = CI)

}

We test our new function:

> tab.test = xtabs(˜ ill + spinach, data = oswego)

> myOR3(tab.test)

$data

spinach

ill N Y

N 12 17

Y 20 26

$odds.ratio

[1] 0.9176471

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

208 C Programming and creating R functions

$conf.int

[1] 0.3580184 2.3520471

> myOR3(tab.test, 0.90)

$data

spinach

ill N Y

N 12 17

Y 20 26

$odds.ratio

[1] 0.9176471

$conf.int

[1] 0.4165094 2.0217459

C.3.2 Passing optional arguments using the ... function

On occasion we will have a function nested inside one of our functions and we need

to be able to pass optional arguments to this nested function. This commonly occurs

when we write functions for customized graphics but only wish to specify some

arguments for the nested function and leave the remaining arguments optional. For

example, consider this function:

myplot = function(x, y, type = "b", ...){

plot(x, y, type = type, ...)

}

When using myplot one only needs to provide x and y arguments. The type

option has been set to a default value of ”b”. The ... function will pass any optional

arguments to the nested plot function. Of course, they optional arguments must be

valid options for plot function.

C.4 Advanced topics

C.4.1 Lexical scoping

The variables which occur in the body of a function can be divided into three classes;

formal parameters, local variables and free variables. The formal parameters of a

function are those occurring in the argument list of the function. Their values are

determined by the process of binding the actual function arguments to the formal

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

C.4 Advanced topics 209

parameters. Local variables are those whose values are determined by the evalu-

ation of expressions in the body of the functions. Variables which are not formal

parameters or local variables are called free variables. Free variables become local

variables if they are assigned to. Consider the following function definition.

f <- function(x){

y <- 2*x

print(x)

print(y)

print(z)

}

In this function, x is a formal parameter, y is a local variable and z is a free vari-

able. In R the free variable bindings are resolved by first looking in the environment

in which the function was created. This is called lexical scope. If the free

variable is not defined there, R looks in the enclosing environment. For the function

f this would be the global environment (workspace).

To understand the implications of lexical scope consider the following:

> rm(list = ls())

> ls()

character(0)

> f <- function(x){

+ y <- 2*x

+ print(x)

+ print(y)

+ print(z)

+ }

> f(5)

[1] 5

[1] 10

Error in print(z) : object ’z’ not found

> z = 99

> f(5)

[1] 5

[1] 10

[1] 99

In the f function z is a free variable. The first time f is executed z is not defined in

the function. R looks in the enclosing environment and does not find a value for z

and reports an error. However, when a object z is created in the global environment,

R is able to find it and uses it.

Lexical scoping is convenient because it allows nested functions with free vari-

ables to run provided the variable has been defined in an enclosing environment.

This convenience becomes obvious when one writes many programs. However,

there is a danger: an unintended free variable many find an unintended value in an

enclosing environment. This may go undetected because no error is reported. This

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

210 C Programming and creating R functions

can happen when there are many objects in the workspace from previous sessions. A

good habit is to clear the workspace of all objects at the beginning of every session.

Here is another example from the R introductory manual1. Consider a function

called cube.

cube <- function(n) {

sq <- function() n*n

n*sq()

}

The variable n in the function sq is not an argument to that function. Therefore it

is a free variable and the scoping rules must be used to ascertain the value that is to

be associated with it. Under static scope (S-Plus) the value is that associated with a

global variable named n. Under lexical scope (R) it is the parameter to the function

cube since that is the active binding for the variable n at the time the function sq

was defined. The difference between evaluation in R and evaluation in S-Plus is that

S-Plus looks for a global variable called n while R first looks for a variable called n

in the environment created when cube was invoked.

first evaluation in S

S> cube(2)

Error in sq(): Object "n" not found

Dumped

S> n <- 3

S> cube(2)

[1] 18

then the same function evaluated in R

R> cube(2)

[1] 8

1 http://cran.r-project.org/doc/manuals/r-release/R-intro.pdf

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

Solutions

Problems of Chapter 1

1.1 To download R go to http://cran.r-project.org/ and follow the

instructions for your operating system. Once installed, start R. The computer file

path to the workspace file, .RData, is obtained using the getwd function (see

Table 1.3 on page 12 for more useful functions).

> getwd()

[1] "/home/tja/Data/R/home"

This displayed in R the file path on the computer. To see the actual .RData file, we

must enable our computer system to view hidden files and then use the computer’s

program for viewing files. This is useful to know in case we want to physically move

the file to another location.

1.2 To list the R packages currently loaded, use the search function.

> search()

[1] ".GlobalEnv" "package:stats" "package:graphics"

[4] "package:grDevices" "package:utils" "package:datasets"

[7] "package:methods" "Autoloads" "package:base"

Alternatively, use the searchpaths function to see the file paths.

> searchpaths()

[1] ".GlobalEnv" "/usr/lib64/R/library/stats"

[3] "/usr/lib64/R/library/graphics" "/usr/lib64/R/library/grDevices"

[5] "/usr/lib64/R/library/utils" "/usr/lib64/R/library/datasets"

[7] "/usr/lib64/R/library/methods" "Autoloads"

[9] "/usr/lib64/R/library/base"

1.3

211

212 Solutions

ls()

rm(list=ls())

The ls function returns a character vector of object names. This character vector

can be used as the list argument in the rm function to remove all the objects.

Instead of ls we could have used the objects function.

1.4

inches <- 1:12

centimeters <- inches*2.54

cbind(inches, centimeters)

1.5

celsius <- c(0, 100)

fahrenheit <- ((9/5)*celsius) + 32

fahrenheit

Notice that we used a numeric vector so that the calculation requires fewer steps.

This is an example of a vectorized (or spreadsheat-like) operation.

1.6

celsius <- seq(0, 100, 5)

celsius

fahrenheit <- ((9/5)*celsius) + 32

fahrenheit

Notice that we used a numeric vector so that the calculation requires fewer steps.

This is an example of a vectorized (or spreadsheat-like) operation.

1.7 Suppose you weigh 150 lbs, what is your weight in kilograms? Hint: Remember

dimensional analysis?

150lb× 1kg

2.2lb
=

150kg

2.2

Suppose your height is 5 feet 8 inches, What is your height in meters? (5’ 8” = 5’ +

8/12” = 5.75 feet)

5.75ft× 1m

3.3ft
=

5.75m

3.3

mywt.lb <- 150

myht.ft <- 5.75

mywt.kg <- mywt.lb/2.2

myht.m <- myht.ft/3.3

bmi <- mywt.kg/myht.mˆ2

bmi

1.8

> 7/2 #divide

[1] 3.5

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

Solutions 213

0 1 2 3 4 5 6

−
2

−
1

0
1

x

lo
g(

x)

Fig. C.1 Plot of y = loge(x)

> 7%/%2 #integer divide

[1] 3

> 7%%2 #modulus = remainder

[1] 1

1.9 See Figure C.1. The number e is a very special number. When we take the loga-

rithm of a number using base e we map the values [0, +∞) into (−∞, +∞), where the

loge(1) = 0. More specifically, the number range [0,1] maps into (−∞, 0], and [1,

+∞) maps into [0, +∞). Of note, the loge(e) = 1. In epidemiology, disease counts

and physical measurements (e.g., weight) have the asymmetric range [0,+∞). The

natural logarithm transformation allows us to work with values between 0 and 1, in

a sense unbounding the left tail distribution.

1.10 See Figure C.2. The logit transformation is a double transformation. First, the

odds tranformation (R/(1−R)) unbounds the probabilities near 1; second, the nat-

ural logarithm of the log-odds, or the logit transformation, (log(odds)) unbounds

the probabilities near 0. In other words, the logit transformation maps the numeric

range [0,1] into (−∞, +∞), where the log(0.5/(1− 0.5)) = 0. The logit transfor-

mation allows us to work with probabilities that, of course, have the range [0,1].

1.11

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

214 Solutions

0.0 0.4 0.8

−
4

0
4

R

R
/(

1−
R

)
risk odds = R/(1−R)

0.0 0.4 0.8

−
4

0
4

R

lo
g(

R
/(

1−
R

))

log(risk odds) = logit

Fig. C.2 The logit transformation is a double transformation. First, the odds tranformation (R/(1−
R)) unbounds the probabilities near 1; second, the logit transformation (log(odds)) additionally
unbounds the probabilities near 0.

n <- 365

per.act.risk <- c(0.5, 1, 5, 6.5, 10, 30, 50, 67)/10000

risks <- 1-(1-per.act.risk)ˆn

risks

##label risks (optional)

act <- c("IOI", "ROI", "IPVI", "IAI", "RPVI", "PNS", "RAI", "IDU")

names(risks) <- act

risks

1.12 For this problem I put the following code into an ASCII text file named

job01.R:

n <- 365

per.act.risk <- c(0.5, 1, 5, 6.5, 10, 30, 50, 67)/10000

risks <- 1-(1-per.act.risk)ˆn

risks

##label risks (optional)

act <- c("IOI", "ROI", "IPVI", "IAI", "RPVI", "PNS", "RAI", "IDU")

names(risks) <- act

risks

Here is what happened when I sourced it:

> source("/home/tja/Documents/courses/ph251d/jobs/job01.R")

> source("/home/tja/Documents/courses/ph251d/jobs/ph251d-chp1-job01.R", echo =

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

Solutions 215

> n <- 365

> per.act.risk <- c(0.5, 1, 5, 6.5, 10, 30, 50, 67)/10000

> risks <- 1-(1-per.act.risk)ˆn

> risks

[1] 0.01808493 0.03584367 0.16685338 0.21126678 0.30593011

[6] 0.66601052 0.83951869 0.91402762

> ##label risks (optional)

> act <- c("IOI", "ROI", "IPVI", "IAI", "RPVI", "PNS", "RAI", "IDU")

> names(risks) <- act

> risks

IOI ROI IPVI IAI RPVI PNS

0.01808493 0.03584367 0.16685338 0.21126678 0.30593011 0.66601052

RAI IDU

0.83951869 0.91402762

Conclusion: running source alone runs R commands in a source file but does not

echo the input and output to the screen unless echo = TRUE.

1.13 I ran this code in R (Linux):

sink("/home/tja/Documents/courses/ph251d/jobs/job01.log1a")

source("/home/tja/Documents/courses/ph251d/jobs/job01.R")

sink() #closes connection

sink("/home/tja/Documents/courses/ph251d/jobs/job01.log1b")

source("/home/tja/Documents/courses/ph251d/jobs/job01.R", echo = TRUE)

sink() #closes connection

The job01.log1a is empty. Here are the contents of job01.log1b:

> n <- 365

> per.act.risk <- c(0.5, 1, 5, 6.5, 10, 30, 50, 67)/10000

> risks <- 1-(1-per.act.risk)ˆn

> risks

[1] 0.01808493 0.03584367 0.16685338 0.21126678 0.30593011

[6] 0.66601052 0.83951869 0.91402762

> ##label risks (optional)

> act <- c("IOI", "ROI", "IPVI", "IAI", "RPVI", "PNS", "RAI", "IDU")

> names(risks) <- act

> risks

IOI ROI IPVI IAI RPVI PNS

0.01808493 0.03584367 0.16685338 0.21126678 0.30593011 0.66601052

RAI IDU

0.83951869 0.91402762

Conclusion: running the sink function sends what would normally go to the screen

to a log file.

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

216 Solutions

1.14 Sourcing job02.R at the R command line looks like this:

> source("/home/tja/Documents/courses/ph251d/jobs/job02.R")

[1] 0.01808493 0.03584367 0.16685338 0.21126678 0.30593011

[6] 0.66601052 0.83951869 0.91402762

Conclusion: The source function, without echo = TRUE, will not return any-

thing to the screen unless the show (or print) function is used to “show” an R

object. This make complete sense. If one is sourcing a file with thousands of R ex-

pressions, we do not want to see all those expressions, we only want to selected data

objects with relevant results. Sinking a file only directs anything that would appear

on the screen to a log file.

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

Solutions 217

Problems of Chapter 2

2.1 n/a

2.2 See Table 2.1 on page 28.

2.3 We can index by position, by logical, and by name—if it exists.

2.4 Any R object component(s) that can be indexed, can be replaced.

2.5 Study and practice the following R code.

tab <- matrix(c(139, 443, 230, 502), nrow = 2, ncol = 2,

dimnames = list("Vital Status" = c("Dead", "Alive"),

Smoking = c("Yes", "No")))

tab

equivalent

tab <- matrix(c(139, 443, 230, 502), 2, 2)

dimnames(tab) <- list("Vital Status" = c("Dead", "Alive"),

Smoking = c("Yes", "No"))

tab

equivalent

tab <- matrix(c(139, 443, 230, 502), 2, 2)

rownames(tab) <- c("Dead", "Alive")

colnames(tab) <- c("Yes", "No")

names(dimnames(tab)) <- c("Vital Status", "Smoking")

tab

2.6 Using the tab object from Solution 2.5, study and practice the following R

code to recreate Table 2.38 on page 103.

rowt <- apply(tab, 1, sum)

tab2 <- cbind(tab, Total = rowt)

colt <- apply(tab2, 2, sum)

tab2 <- rbind(tab2, Total = colt)

names(dimnames(tab2)) <- c("Vital Status", "Smoking")

tab2

2.7 Using the tab object from Solution 2.5, study and practice the following R

code to calculate row, column, and joint distributions.

row distrib

rowt <- apply(tab, 1, sum)

rowd <- sweep(tab, 1, rowt, "/")

rowd

col distrib

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

218 Solutions

colt <- apply(tab, 2, sum)

cold <- sweep(tab, 2, colt, "/")

cold

joint distrib

jtd <- tab/sum(tab); jtd

distr <- list(row.distribution = rowd,

col.distribution = cold,

joint.distribution = jtd)

distr

2.8 Using the tab2 object from Solution 2.6, study and practice the following R

code to recreate Table 2.39 on page 103. Note that the column distributions from

Solution 2.7 can also be used.

risk = tab2[1,1:2]/tab2[3,1:2]

risk.ratio <- risk/risk[2]

odds <- risk/(1-risk)

odds.ratio <- odds/odds[2]

ratios <- rbind(risk, risk.ratio, odds, odds.ratio)

ratios

Interpretation: The risk of death among non-smokers is higher than the risk of death

among smokers, suggesting that there may be some confounding.

2.9 Implement analysis below.

wdat = read.table("http://www.medepi.net/data/whickham-engl.txt",

sep = ",", header = TRUE)

str(wdat)

wdat.vas = xtabs(˜Vital.Status + Age + Smoking, data = wdat)

wdat.vas

wdat.tol.vas = apply(wdat.vas, c(2, 3), sum)

wdat.risk.vas = sweep(wdat.vas, c(2, 3), wdat.tot.vas, "/")

round(wdat.risk.vas, 2)

Here are the final results:

> round(wdat.risk.vas, 2)

, , Smoking = No

Age

Vital.Status 18-24 25-34 35-44 45-54 55-64 65-74 75+

Alive 0.98 0.97 0.94 0.85 0.67 0.22 0.00

Dead 0.02 0.03 0.06 0.15 0.33 0.78 1.00

, , Smoking = Yes

Age

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

Solutions 219

Vital.Status 18-24 25-34 35-44 45-54 55-64 65-74 75+

Alive 0.96 0.98 0.87 0.79 0.56 0.19 0.00

Dead 0.04 0.02 0.13 0.21 0.44 0.81 1.00

Interpretation: The risk of death is not larger in non-smokers, in fact it is larger

among smokers in older age groups..

2.10 First, look at the data set at http://www.medepi.net/data/syphilis89c.

txt. Then read in.

std <- read.table("http://www.medepi.net/data/syphilis89c.txt",

head = TRUE, sep = ",")

str(std)

head(std)

lapply(std, table)

Creating 3-D array without attaching std data frame.

table(std$Race, std$Age, std$Sex)

xtabs(˜ Race + Age + Sex, data = std)

Now repeat attaching std data frame using attach function. Study the differ-

ences.

attach(std)

table(Race, Age, Sex)

xtabs(˜ Race + Age + Sex)

detach(std)

2.11

tab.ars <- table(stdAge, stdRace, std$Sex)

2-D tables

tab.ar <- apply(tab.ars, c(1, 2), sum); tab.ar

tab.as <- apply(tab.ars, c(1, 3), sum); tab.as

tab.rs <- apply(tab.ars, c(2, 3), sum); tab.rs

1-D tables

tab.a <- apply(tab.ars, 1, sum); tab.a

tab.r <- apply(tab.ars, 2, sum); tab.r

tab.s <- apply(tab.ars, 3, sum); tab.s

2.12 For this example, we’ll choose one 3-D array.

tab.ars <- table(stdAge, stdRace, std$Sex)

row distrib

rowt <- apply(tab.ars, c(1, 3), sum)

rowd <- sweep(tab.ars, c(1, 3), rowt, "/"); rowd

#confirm

apply(rowd, c(1, 3), sum)

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

220 Solutions

col distrib

colt <- apply(tab.ars, c(2, 3), sum)

cold <- sweep(tab.ars, c(2, 3), colt, "/"); cold

#confirm

apply(cold, c(2, 3), sum)

joint distrib

jtt <- apply(tab.ars, 3, sum)

jtd <- sweep(tab.ars, 3, jtt, "/"); jtd

#confirm

apply(jtd, 3, sum)

distr <- list(row.distribution = rowd,

col.distribution = cold,

joint.distribution = jtd)

distr

2.13 It is a good idea to understand how the rep function works with two vectors:

> rep(4:6, 1:3)

[1] 4 5 5 6 6 6

We can see that the second vector determines the frequency of the first vector ele-

ments. Now use this understanding with the syphilis data.

sdat89b <- read.csv("http://www.medepi.net/data/syphilis89b.txt")

str(sdat89b)

Sex <- rep(sdat89b$Sex, sdat89b$Freq)

Race <- rep(sdat89b$Race, sdat89b$Freq)

Age <- rep(sdat89b$Age, sdat89b$Freq)

sdat89.df <- data.frame(Sex, Race, Age)

str(sdat89.df)

2.14 PendingDiscuss in classDiscuss in class

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

Solutions 221

Problems of Chapter 3

3.1 First, we recognize that this data frame contains aggregrate-level data, not

individual-level data. Each row represents a unique covariate pattern, and the last

field is the frequency of that pattern. Because the data frame only has a few rows

here is one way:

Status <- rep(c("Dead", "Survived"), 4)

Treatment <- rep(c("Tobutamide", "Tobutamide",

"Placebo", "Placebo"), 2)

Agegrp <- c(rep("<55", 4), rep("55+", 4))

Freq <- c(8, 98, 5, 115, 22, 76, 16, 69)

dat <- data.frame(Status, Treatment, Agegrp, Freq)

dat

An alternative, and better way, is to create an array that reproduce the core data

from Table 3.1 on page 107. Then we use the data.frame and as.table func-

tions. Here we show a few ways to create this array object.

#answer 1

udat <- array(c(8, 98, 5, 115, 22, 76, 16, 69), dim =

c(2, 2, 2),

dimnames = list(Status = c("Dead", "Survived"),

Treatment = c("Tolbutamide", "Placebo"),

Agegrp = c("<55", "55+")))

dat <- data.frame(as.table(udat))

dat

#answer 2

Status <- rep(c("Dead", "Survived"), 4)

Treatment <- rep(rep(c("Tolbutamide", "Placebo"),

c(2, 2)), 2)

Agegrp <- rep(c("<55", "55+"), c(4, 4))

Freq <- c(8, 98, 5, 115, 22, 76, 16, 69)

dat <- data.frame(Status, Treatment, Agegrp, Freq)

dat

#answer 2b, equivalent to 2a

dat <- data.frame(

Status = rep(c("Dead", "Survived"), 4),

Treatment = rep(rep(c("Tolbutamide", "Placebo"),

c(2, 2)), 2),

Agegrp = rep(c("<55", "55+"), c(4, 4)),

Freq = c(8, 98, 5, 115, 22, 76, 16, 69)

)

dat

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

222 Solutions

3.2 See Chapter.

3.3

adat <- read.table("http://www.medepi.net/data/aids.txt", header=TRUE,

sep="", na.strings=".")

head(adat)

plot(adat$year, adat$cases, type = "l", xlab = "Year", lwd = 2,

ylab = "Cases", main = "Reported AIDS Cases in United States, 1980--2003")

3.4

mdat <- read.table("http://www.medepi.net/data/measles.txt",

header=TRUE, sep="")

head(mdat)

plot(mdat$year, mdat$cases, type = "l", xlab = "Year", lwd = 2,

ylab = "Cases",

main = "Reported Measles Cases in United States, 1980--2003")

plot(mdat$year, mdat$cases, type = "l", xlab = "Year", lwd = 2,

log = "y", ylab = "Cases",

main = "Reported Measles Cases in United States, 1980--2003")

3.5

aids <- read.table("http://www.medepi.net/data/aids.txt", sep="",

header = TRUE, na.strings=".")

hepb <- read.table("http://www.medepi.net/data/hepb.txt", sep="",

header = TRUE)

matplot(hepb$year, cbind(hepb$cases,aids$cases),

type = "l", lwd = 2, xlab = "Year", ylab = "Cases",

main = "Reported cases of Hepatitis B and AIDS,

United States, 1980-2003")

legend(1980, 100000, legend = c("Hepatitis B", "AIDS"),

lwd = 2, lty = 1:2, col = 1:2)

3.6 Answer to (a):

edat <- read.table("http://www.medepi.net/data/evans.txt",

header = TRUE, sep="")

str(edat)

#

table(edat$chd)

edat$chd2 <- factor(edat$chd, levels = 0:1,

labels = c("No", "Yes"))

table(edat$chd2)

#

table(edat$cat)

edat$cat2 <- factor(edat$cat, levels = 0:1,

labels = c("Normal", "High"))

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

Solutions 223

table(edat$cat2)

#

table(edat$smk)

edat$smk2 <- factor(edat$smk, levels = 0:1,

labels = c("Never", "Ever"))

table(edat$smk2)

#

table(edat$ecg)

edat$ecg2 <- factor(edat$ecg, levels = 0:1,

labels = c("Normal", "Abnormal"))

table(edat$ecg2)

#

table(edat$hpt)

edat$hpt2 <- factor(edat$hpt, levels = 0:1,

labels = c("No", "Yes"))

table(edat$hpt2)

Answer to (b):

quantile(edat$age)

edat$age4 <- cut(edat$age, quantile(edat$age),

right = FALSE, include.lowest = TRUE)

table(edat$age4)

Answer to (c):

hptnew <- rep(NA, nrow(edat))

normal <- edat$sbp<120 & edat$dbp<80

hptnew[normal] <- 1

prehyp <- (edat$sbp>=120 & edat$sbp<140) |

(edat$dbp>=80 & edat$dbp<90)

hptnew[prehyp] <- 2

stage1 <- (edat$sbp>=140 & edat$sbp<160) |

(edat$dbp>=90 & edat$dbp<100)

hptnew[stage1] <- 3

stage2 <- edat$sbp>=160 | edat$dbp>=100

hptnew[stage2] <- 4

edat$hpt4 <- factor(hptnew, levels=1:4,

labels=c("Normal", "PreHTN", "HTN.Stage1", "HTN.Stage2"))

table(edat$hpt4)

Answer to (d):

table("Old HTN"=edat$hpt2, "New HTN"=edat$hpt4)

3.7

wdat <- read.table("http://www.medepi.net/data/wnv/wnv2004raw.txt",

header=TRUE, sep=",", as.is=TRUE, na.strings=c(".","Unknown"))

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

224 Solutions

str(wdat)

wdat$date.onset2 <- as.Date(wdat$date.onset, format="%m/%d/%Y")

wdat$date.tested2 <- as.Date(wdat$date.tested, format="%m/%d/%Y")

write.table(wdat, "c:/temp/wnvdat.txt", sep=",", row.names=FALSE)

3.8 See Appendix A.2 on page 184 for Oswego data dictionary.

a. Using RStudio plot the cases by time of onset of illness (include appropriate

labels and title). What does this graph tell you? (Hint: Process the text data and

then use the hist function.)

Plotting an epidemic curve with this data has special challenges because we have

dates and times to process. To do this in R, we will create date objects that contain

both the date and time for each primary event of interest: meal time, and onset time

of illness. From this we can plot the distribution of onset times (epidemic curve). An

epidemic curve is the distribution of illness onset times and can be displayed with a

histogram. First, carefully study the Oswego data set at http://www.medepi.

net/data/oswego.txt. We need to do some data preparation in order to work

with dates and times. Our initial goal is to get the date/time data to a form that can

be passed to R’s strptime function for conversion in a date-time R object. To

construct the following curve, study, and implement the R code that follows:

odat <- read.table("http://www.medepi.net/data/oswego.txt",

sep = "", header = TRUE, na.strings = ".")

str(odat)

head(odat)

create vector with meal date and time

mdt <- paste("4/18/1940", odat$meal.time)

convert into standard date and time

meal.dt <- strptime(mdt, "%m/%d/%Y %I:%M %p")

create vector with onset date and time

odt <- paste(paste(odat$onset.date,"/1940",sep = ""), odat$onset.time)

convert into standard date and time

onset.dt <- strptime(odt, "%m/%d/%Y %I:%M %p")

hist(onset.dt, breaks = 30, freq = TRUE)

b. Are there any cases for which the times of onset are inconsistent with the general

experience? How might they be explained?

Now that we have our data frame in R, we can identify those subjects that correspond

to minimum and maximum onset times. We will implement R code that can be

interpreted as “which positions in vector Y correspond to the minimum values in

Y?” We then use these position numbers to indexing the corresponding rows in the

data frame.

##Generate logical vectors and identify ’which’ position

min.obs.pos <- which(onset.dt==min(onset.dt,na.rm=T))

min.obs.pos

max.obs.pos <- which(onset.dt==max(onset.dt,na.rm=T))

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

Solutions 225

max.obs.pos

##index data frame to display outliers

odat[min.obs.pos,]

odat[max.obs.pos,]

c. How could the data be sorted by illness onset times?

We can sort the data frame based values of one or more fields. Suppose we want to

sort on illness status and illness onset times. We will use our onset.times vector we

created earlier; however, we will need to convert it to “continuous time” in seconds

to sort this vector. Study and implement the R code below.

onset.ct <- as.POSIXct(onset.dt)

odat2 <- odat[order(odat$ill, onset.ct),]

odat2

d. Where possible, calculate incubation periods and illustrate their distribution with

an appropriate graph. Use the truehist function in the MASS package. De-

termine the mean, median, and range of the incubation period.

##Calculate incubation periods

incub.dt <- onset.dt - meal.dt

library(MASS) #load MASS package

truehist(as.numeric(incub.dt), nbins = 7, prob = FALSE,

col = "skyblue", xlab = "Incubation Period (hours)")

##Calculate mean, median, range; remember to remove NAs

mean(incub.dt, na.rm = TRUE)

median(incub.dt, na.rm = TRUE)

range(incub.dt, na.rm = TRUE)

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

References

1. Centers for Disease Control and Prevention. Antiretroviral postexposure prophylaxis after sex-
ual, injection-drug use, or other nonoccupational exposure to HIV in the United States: recom-
mendations from the U.S. Department of Health and Human Services. MMWR Recomm Rep.
2005 Jan;54(RR-2):1–20. Available from: http://www.cdc.gov/mmwr/preview/
mmwrhtml/rr5402a1.htm.

2. Olsen SJ, Chang HL, Cheung TYY, Tang AFY, Fisk TL, Ooi SPL, et al. Transmission of the
severe acute respiratory syndrome on aircraft. N Engl J Med. 2003 Dec;349(25):2416–2422.
Available from: http://dx.doi.org/10.1056/NEJMoa031349.

3. Rothman KJ. Epidemiology: An Introduction. 1st ed. Oxford University Press, USA; 2002.
4. Aragón TJ, Lichtensztajn DY, Katcher BS, Reiter R, Katz MH. Calculating expected years of

life lost for assessing local ethnic disparities in causes of premature death. BMC Public Health.
2008;8:116. Available from: http://dx.doi.org/10.1186/1471-2458-8-116.

5. Glass RI, Svennerholm AM, Stoll BJ, Khan MR, Hossain KM, Huq MI, et al. Pro-
tection against cholera in breast-fed children by antibodies in breast milk. N Engl J
Med. 1983 Jun;308(23):1389–1392. Available from: http://dx.doi.org/10.1056/
NEJM198306093082304.

6. Jewell NP. Statistics for Epidemiology. 1st ed. Chapman and Hall/CRC; 2003.
7. Rothman KJ, Greenland S, Lash TL. Modern Epidemiology. Third edition ed. Lippincott

Williams & Wilkins; 2008.
8. Centers for Disease Control & Prevention. Prevention and control of meningococcal dis-

ease. Recommendations of the Advisory Committee on Immunization Practices (ACIP).
MMWR Recomm Rep. 2005 May;54(RR-7):1–21. Available from: http://www.cdc.
gov/mmwr/PDF/rr/rr5407.pdf.

9. Selvin S. Statistical Tools for Epidemiologic Research. 1st ed. Oxford University Press, USA;
2011.

10. Selvin S. Survival Analysis for Epidemiologic and Medical Research (Practical Guides to
Biostatistics and Epidemiology). 1st ed. Cambridge University Press; 2008.

11. Selvin S. Statistical Analysis of Epidemiologic Data (Monographs in Epidemiology and Bio-
statistics). 3rd ed. Oxford University Press, USA; 2004.

12. Selvin S. Epidemiologic Analysis: A Case-Oriented Approach. 1st ed. Oxford University
Press, USA; 2001.

13. Abrams B, Carmichael S, Selvin S. Factors associated with the pattern of maternal weight
gain during pregnancy. Obstet Gynecol. 1995 Aug;86(2):170–176.

14. Dalgaard P. Introductory Statistics with R (Statistics and Computing). 2nd ed. Springer; 2008.

227

228 References

15. Kleinbaum DG, Klein M, Pryor ER. Logistic Regression: A self-learning text. 2nd ed.
Springer; 2002.

Applied Epidemiology Using R 14-Oct-2013 c© Tomás J. Aragón (www.medepi.com)

