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CHAPTER 1

Introduction

The primary purpose of a survival analysis is to model and analyze time-
to-event data; that is, data that have as a principal endpoint the time when
an event occurs. Such events are generally referred to as “failures.” Some
examples are time until an electrical component fails, time to first recurrence
of a tumor (i.e., length of remission) after initial treatment, time to death,
time to the learning of a skill, and promotion times for employees.

In these examples we can see that it is possible that a “failure” time will not
be observed either by deliberate design or due to random censoring. This
occurs, for example, if a patient is still alive at the end of a clinical trial period
or has moved away. The necessity of obtaining methods of analysis that accom-
modate censoring is the primary reason for developing specialized models and
procedures for failure time data. Survival analysis is the modern name
given to the collection of statistical procedures which accommodate
time-to-event censored data. Prior to these new procedures, incomplete
data were treated as missing data and omitted from the analysis. This resulted
in the loss of the partial information obtained and in introducing serious sys-
tematic error (bias) in estimated quantities. This, of course, lowers the efficacy
of the study. The procedures discussed here avoid bias and are more powerful
as they utilize the partial information available on a subject or item.

These course notes introduce the field of survival analysis without getting too
embroiled in the theoretical technicalities. Models for failure times describe
either the survivor function or hazard rate and their dependence on explana-
tory variables. Presented here are some frequently used parametric models
and methods; and the newer, very fashionable, due to their flexibility and
power, nonparametric procedures. The statistical tools treated are applicable
to data from medical clinical trials, public health, epidemiology, engineering,
economics, psychology, and demography as well. The S/R code is woven into
the text, which provides a self-learning opportunity.

Objectives of this chapter:

After studying Chapter 1, the student should be able to:

1. Recognize and describe the type of problem addressed by a survival anal-
ysis.

1



2 INTRODUCTION

2. Define, recognize, and interpret a survivor function.

3. Define, recognize, and interpret a hazard function.

4. Describe the relationship between a survivor function and hazard function.

5. Interpret or compare examples of survivor or hazard curves.

6. Define what is meant by censored data.

7. Define or recognize three censoring models.

8. Know the form of the likelihood function common to these three models.

9. Give three reasons why data may be randomly censored.

10. State the three goals of a survival analysis.

1.1 Motivation

Example 1. AML study

The data presented in Table 1.1 are preliminary results from a clinical trial
to evaluate the efficacy of maintenance chemotherapy for acute myelogenous
leukemia (AML). The study was conducted by Embury et al. (1977) at Stan-
ford University. After reaching a status of remission through treatment by
chemotherapy, the patients who entered the study were assigned randomly to
two groups. The first group received maintenance chemotherapy; the second,
or control, group did not. The objective of the trial was to see if maintenance
chemotherapy prolonged the time until relapse.

Table 1.1: Data for the AML maintenance study. A + indicates a
censored value

Group Length of complete remission (in weeks)

Maintained 9, 13, 13+, 18, 23, 28+, 31, 34, 45+, 48, 161+
Nonmaintained 5, 5, 8, 8, 12, 16+, 23, 27, 30, 33, 43, 45

A naive descriptive analysis of AML study:

We consider a couple of descriptive measures to compare the two groups of
data given in Example 1. The first approach is to throw out censored observa-
tions, the second is to treat the censored observations as exact ones, and the
last is to use them all as they are. We at least expect to see different results
among the three approaches. Let’s see just how different they are.
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• Analysis of AML data after throwing out censored observations

Measures Maintained Nonmaintained

Mean 25.1 21.7

Median 23.0 23.0

The mean for maintained group is slightly larger than that for nonmaintained
group while their medians are the same. That is, the distribution of maintained
group is slightly more skewed to the right than the nonmaintained group’s
distribution is. The difference between the two groups appears to be negligible.

• Analysis of AML data treating censored observations as exact

Measures Maintained Nonmaintained

Mean 38.5 21.3

Median 28.0 19.5

Both the mean and median for maintained group are larger than those for
nonmaintained group. The difference between the two groups seems to be non-
negligible in terms of both mean and median. The skewness of the maintained
group is even more pronounced. We expect, however, that these estimates are
biased in that they underestimate the true mean and median. The censored
times are smaller than the true unknown failure times. The next analysis is
done using a method which accommodates the censored data.

• Analysis of AML data accounting for the censoring

Measures Maintained Nonmaintained

Mean 52.6 22.7

Median 31.0 23.0

Both the mean and median for maintained group are larger than those for non-
maintained group. Further, the mean of the maintained group is much larger
than that of the nonmaintained group. Here we notice that the distribution of
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maintained group is much more skewed to the right than the nonmaintained
group’s distribution is. Consequently, the difference between the two groups
seems to be huge. From this small example, we have learned that appropriate
methods should be applied in order to deal with censored data. The method
used here to estimate the mean and median is discussed in Chapter 2.1.

1.2 Basic definitions

Let T denote a nonnegative random variable representing the lifetimes of
individuals in some population. (“Nonnegative” means T ≥ 0.) We treat the
case where T is continuous. For a treatment of discrete models see Lawless
(1982, page 10). Let F (·) denote the (cumulative) distribution function
(d.f.) of T with corresponding probability density function (p.d.f.) f(·).
Note f(t) = 0 for t < 0. Then

F (t) = P (T ≤ t) =

∫ t

0

f(x)dx. (1.1)

The probability that an individual survives to time t is given by the survivor
function

S(t) = P (T > t) = 1− F (t) =

∫ ∞

t

f(x)dx. (1.2)

This function is also referred to as the reliability function. Note that S(t) is
a monotone decreasing function with S(0) = 1 and S(∞) = limt→∞ S(t) = 0.
Conversely, we can express the p.d.f. as

f(t) = lim
∆t→0+

P (t < T ≤ t+∆t)

∆t
=

dF (t)

dt
= −dS(t)

dt
. (1.3)

The pth-quantile of the distribution of T is the value tp such that

F (tp) = P (T ≤ tp) = p. (1.4)

That is, tp = F−1(p). The pth-quantile is also referred to as the 100 × pth
percentile of the distribution. The hazard function specifies the instanta-
neous rate of failure at T = t given that the individual survived up to time t
and is defined as

h(t) = lim
∆t→0+

P (t < T ≤ t+∆t |T > t)

∆t
=

f(t)

S(t)
. (1.5)

We see here that h(t)∆t is approximately the probability of a death in (t, t+
∆t], given survival up to time t. The hazard function is also referred to as the
risk or mortality rate. We can view this as a measure of intensity at time t
or a measure of the potential of failure at time t. The hazard is a rate, rather
than a probability. It can assume values in [0,∞).

To understand why the hazard is a rate rather than a probability, in its def-
inition consider the expression to the right of the limit sign which gives the
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ratio of two quantities. The numerator is a conditional probability and the
denominator is ∆t, which denotes a small time interval. By this division, we
obtain a probability per unit time, which is no longer a probability but a
rate. This ratio ranges between 0 and ∞. It depends on whether time is mea-
sured in days, weeks, months, or years, etc. The resulting value will give a
different number depending on the units of time used. To illustrate this let
P = P (t < T ≤ t+∆t |T > t) = 1/4 and see the following table:

P ∆t P
∆t = rate

1
4

1
3day

1/4
1/3 = 0.75/day

1
4

1
21week

1/4
1/21 = 5.25/week

It is easily verified that h(t) specifies the distribution of T , since

h(t) = −dS(t)/dt

S(t)
= −

d log
(
S(t)

)
dt

.

Integrating h(u) over (0, t) gives the cumulative hazard function H(t):

H(t) =

∫ t

0

h(u)du = −log
(
S(t)

)
. (1.6)

In this book, unless otherwise specified, log denotes the natural logarithm, the
inverse function of the exponential function exp = e. Thus,

S(t) = exp
(
−H(t)

)
= exp

(
−
∫ t

0

h(u)du

)
. (1.7)

Hence, the p.d.f. of T can be expressed as

f(t) = h(t)exp

(
−
∫ t

0

h(u)du

)
.

Note that H(∞) =
∫∞
0

h(t)dt = ∞. Figures 1.1 & 1.2 display the relationships
between h(t), H(t) and S(t).

For a nonnegative random variable T the mean value, written E(T ) =
∫∞
0

t·
f(t)dt, can be shown to be

E(T ) =

∫ ∞

0

S(t)dt. (1.8)

WHY! Thus, mean survival time is the total area under the survivor curve
S(t). It follows from expression (1.7), for a given time t, the greater the risk,
the smaller S(t), and hence the shorter mean survival time E(T ), and vice
versa. The following picture should help you to remember this relationship.
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Figure 1.1 Graph of a cumulative hazard H(t) and several tangents h(t).
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Figure 1.2 Graph of a survivor curve S(t) and several tangents −h(t)× S(t).

Another basic parameter of interest is the mean residual life at time u,
denoted by mrl(u). For individuals of age u, this parameter measures their
expected remaining lifetime. It is defined as

mrl(u) = E(T − u | T > u).

For a continuous random variable it can be verified that

mrl(u) =

∫∞
u

S(t)dt

S(u)
. (1.9)

WHY! The mrl(u) is hence the area under the survival curve to the right of u
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divided by S(u). Lastly, note the mean life, E(T ) = mrl(0), is the total area
under the survivor curve. The graph in Figure 1.3 illustrates this definition.

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 

 

S(u)

u

mrl(u)S(u)

Figure 1.3 Mean residual life at time u.

Figure 1.4 Types of hazard rates and respective densities.

To end this section we discuss hazard functions and p.d.f.’s for three continu-
ous distributions displayed in Figure 1.4. Model (a) has an increasing hazard
rate. This may arise when there is a natural aging or wear. Model (b) has
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a decreasing hazard rate. Decreasing functions are less common but find oc-
casional use when there is an elevated likelihood of early failure, such as in
certain types of electronic devices or in patients experiencing certain types of
organ transplants. Model (c) has a bathtub-shaped hazard. Most often these
are appropriate for populations followed from birth. Similarly, some manufac-
tured equipment may experience early failure due to defective parts, followed
by a constant hazard rate which, in later stages of equipment life, increases.
Most population mortality data follow this type of hazard function where, dur-
ing an early period, deaths result, primarily from infant diseases, after which
the death rate stabilizes, followed by an increasing hazard rate due to the nat-
ural aging process. Not represented in these plots is the hump-shaped hazard;
i.e., the hazard is increasing early and then eventually begins declining. This
type of hazard rate is often used to model survival after successful surgery
where there is an initial increase in risk due to infection, hemorrhaging, or
other complications just after the procedure, followed by a steady decline in
risk as the patient recovers.

Remark:

Although different survivor functions can have the same basic shape, their
hazard functions can differ dramatically, as is the case with the previous three
models. The hazard function is usually more informative about the underlying
mechanism of failure than the survivor function. For this reason, modelling
the hazard function is an important method for summarizing survival data.

Hazard ratio:

For two treatment groups, say 0 and 1, their hazard ratio (HR) is

HR(t|1, 0) = h(t|1)
h(t|0)

.

The HR is a numeric measure that describes the treatment effect over time.
This descriptive measure plays a major role in a survival analysis. For example,
if HR(t∗|1, 0) = .75, this says treatment 1 cohort has three-fourths the risk
of dying at time = t∗ than the cohort receiving treatment 0. Equivalently,
the cohort receiving treatment 0 has 33% more risk of dying than the cohort
receiving treatment 1.
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1.3 Censoring models

We now present three types of censoring models. Let T1, T2, . . . , Tn be in-
dependent and identically distributed (iid) with distribution function (d.f.)
F .

Type I censoring

This type arises in engineering applications. In such situations there are tran-
sistors, tubes, chips, etc.; we put them all on test at time t = 0 and record
their times to failure. Some items may take a long time to “burn out” and we
will not want to wait that long to terminate the experiment. Therefore, we
terminate the experiment at a prespecified time tc. The number of observed
failure times is random. If n is the number of items put on test, then we could
observe 0, 1, 2, . . . , n failure times. The following illustrates a possible trial:

We call tc the fixed censoring time. Instead of observing the Ti, we observe
Y1, Y2, . . . , Yn where

Yi = min(Ti, tc) =

{
Ti if Ti ≤ tc
tc if tc < Ti.

Notice that the d.f. of Y has positive mass P (T > tc) > 0 at y = tc since the
P (Y = tc) = P (tc < T ) = 1−F (tc) > 0. That is, Y is a mixed random variable
with a continuous and discrete component. The (cumulative) d.f. M(y) of Y
is shown in Figure 1.5. It is useful to introduce a binary random variable δ
which indicates if a failure time is observed or censored,

δ =

{
1 if T ≤ tc
0 if tc < T .

Note that {δ = 0 and T ≤ tc} implies that the failure time was precisely
T = tc, which occurs with zero probability if T is a continuous variable. (Note
that for discrete distributions, we can set tc equal to the last attainable time
a failure may be observed. Hence, the probability P ({δ = 0} ∩ {T ≤ tc}) is
not equal to zero.) We then observe the iid random pairs (Yi, δi).

For maximum likelihood estimation (detailed in Chapter 3.2) of any parame-
ters of the distribution of T , we need to calculate the joint likelihood of the
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1

0 y   tc

M(y)

Figure 1.5 Cumulative d.f. of the mixed random variable Y.

pair (Y, δ). By likelihood we mean the rubric which regards the density as a
function of the parameter for a given (fixed) value (y, δ). For y < tc, P (Y ≤
y) = P (T ≤ y) = F (y) and P (δ = 1 | Y ≤ y) = 1. Therefore, the likelihood for
Y = y < tc and δ = 1 is the density f(y). For y = tc and δ = 0, the likelihood
for this event is the probability P (δ = 0, Y = tc) = P (T > tc) = S(tc).

We can combine these two expressions into one single expression
(
f(y)

)δ×(
S(tc)

)1−δ
. As usual, we define the likelihood function of a random sample

to be the product of the densities of the individual observations. That is, the
likelihood function for the n iid random pairs (Yi, δi) is given by

L =
n∏

i=1

(
f(yi)

)δi(
S(tc)

)1−δi
. (1.10)

Type II censoring

In similar engineering applications as above, the censoring time may be left
open at the beginning. Instead, the experiment is run until a prespecified
fraction r/n of the n items has failed. Let T(1), T(2), . . . , T(n) denote the ordered
values of the random sample T1, . . . , Tn. By plan, observations terminate after
the rth failure occurs. So we only observe the r smallest observations in a
random sample of n items. For example, let n = 25 and take r = 15. Hence,
when we observe 15 burn out times, we terminate the experiment. Notice that
we could wait an arbitrarily long time to observe the 15th failure time as T(15)

is random. The following illustrates a possible trial:



CENSORING MODELS 11

In this trial the last 10 observations are assigned the value of T(15). Hence we
have 10 censored observations. More formally, we observe the following full
sample.

Y(1) = T(1)

Y(2) = T(2)

...
...

...
Y(r) = T(r)

Y(r+1) = T(r)

...
...

...
Y(n) = T(r).

Formally, the data consist of the r smallest lifetimes T(1), . . . , T(r) out of the n
iid lifetimes T1, . . . , Tn with continuous p.d.f f(t) and survivor function S(t).
Then the likelihood function (joint p.d.f) of T(1), . . . , T(r) is given

L =
n!

(n− r)!
f(t(1)) · · · f(t(r)) ·

(
S(t(r))

)n−r

. (1.11)

WHY!

Remarks:

1. In Type I censoring, the endpoint tc is a fixed value and the number of
observed failure times is a random variable which assumes a value in the
set {0, 1, 2, . . . , n}.

2. In Type II censoring, the number of failure times r is a fixed value whereas
the endpoint Tr is a random observation. Hence we could wait possibly a
very long time to observe the r failures or, vice versa, see all r relatively
early on.

3. Although Type I and Type II censoring are very different designs, the form
of the observed likelihood function is the same in both cases. To
see this it is only necessary to note that the individual items whose lifetimes
are observed contribute a term f(y(i)) to the observed likelihood function,
whereas items whose lifetimes are censored contribute a term S(y(i)). The
factor n!/(n− r)! in the last equation reflects the fact that we consider the
ordered observations. For maximum likelihood estimation the factor will be
irrelevant since it does not depend on any parameters of the distribution
function.

Random censoring

Right censoring is presented here. Left censoring is analogous. Random cen-
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soring occurs frequently in medical studies. In clinical trials, patients typically
enter a study at different times. Then each is treated with one of several possi-
ble therapies. We want to observe their “failure” time but censoring can occur
in one of the following ways:

1. Loss to Follow-up. Patient moves away. We never see him again. We only
know he has survived from entry date until he left. So his survival time is
≥ the observed value.

2. Drop Out. Bad side effects forces termination of treatment. Or patient
refuses to continue treatment for whatever reasons.

3. Termination of Study. Patient is still “alive” at end of study.

The following illustrates a possible trial:

Study

start

Study

end

0

------------------------------------------------------

----------------

-------------

T1

T2

T3

1

2

3  .........

Here, patient 1 entered the study at t = 0 and died at time T1 to give an
uncensored observation; patient 2 entered the study, and by the end of the
study he was still alive resulting in a censored observation T+

2 ; and patient
3 entered the study and was lost to follow-up before the end of the study to
give another censored observation T+

3 . The AML and CNS lymphoma studies
in Examples 1 and 2 contain randomly right-censored data.

Let T denote a lifetime with d.f. F and survivor function Sf and C denote
a random censor time with d.f. G, p.d.f. g, and survivor function Sg. Each
individual has a lifetime Ti and a censor time Ci. On each of n individuals we
observe the pair (Yi, δi) where

Yi = min(Ti, Ci) and δi =

{
1 if Ti ≤ Ci

0 if Ci < Ti .

Hence we observe n iid random pairs (Yi, δi). The times Ti and Ci are usually
assumed to be independent. This is a strong assumption. If a patient drops out
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because of complications with the treatment (case 2 above), it is clearly of-
fended. However, under the independence assumption, the likelihood function
has a simple form (1.12), and even simpler in expression (1.13). Otherwise,
we lose the simplicity. The likelihood function becomes very complicated and,
hence, the analysis is more difficult to carry out.

LetM and Sm denote the distribution and survivor functions of Y = min(T,C)
respectively. Then by the independence assumption it easily follows that the
survivor function is

Sm(y) = P (Y > y) = P (T > y,C > y) = P (T > y)P (C > y) = Sf (y)Sg(y).

The d.f. of Y is M(y) = 1− Sf (y)Sg(y).

The likelihood function of the n iid pairs (Yi, δi) is given by

L =
n∏

i=1

(
f(yi)Sg(yi)

)δi
·
(
g(yi)Sf (yi)

)1−δi

=

(
n∏

i=1

(
Sg(yi)

)δi(
g(yi)

)1−δi

)(
n∏

i=1

(
f(yi)

)δi(
Sf (yi)

)1−δi

)
.(1.12)

Note: If the distribution of C does not involve any parameters of interest,
then the first factor plays no role in the maximization process. Hence, the
likelihood function can be taken to be

L =
n∏

i=1

(
f(yi)

)δi
·
(
Sf (yi)

)1−δi
, (1.13)

which has the same form as the likelihood derived for both Type I (1.10)
and Type II (1.11) censoring. Thus, regardless of which of the three types
of censoring is present, the maximization process yields the same estimated
quantities.

Here we see how censoring is incorporated to adjust the estimates. Each ob-
served value is (yi, δi). An individual’s contribution is either its p.d.f. f(yi);
or Sf (yi), the probability of survival beyond its observed censored value yi.
In the complete data setting, all δi = 1; that is, there is no censoring. The
likelihood has the usual form

L =
n∏

i=1

f(yi) .

The derivation of the likelihood is as follows:

P (Y = y, δ = 0) = P (C = y, C < T ) = P (C = y, y < T )

= P (C = y)P (y < T ) by independence

= g(y)Sf (y).

P (Y = y, δ = 1) = P (T = y, T < C) = P (T = y, y < C) = f(y)Sg(y) .
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Hence, the joint p.d.f. of the pair (Y, δ) (a mixed distribution as Y is continuous
and δ is discrete) is given by the single expression

P (y, δ) =
(
g(y)Sf (y)

)1−δ

·
(
f(y)Sg(y)

)δ
.

The likelihood of the n iid pairs (Yi, δi) given above follows.

Case 1 Interval Censored Data: Current Status Data Consider the
following two examples which illustrate how this type of censoring arises.

Example 3. Tumor free laboratory mice are injected with a tumor inducing
agent. The mouse must be killed in order to see if a tumor was induced. So after
a random period of time U for each mouse, it is killed and the experimenter
checks to see whether or not a tumor developed. The endpoint of interest is
T , “time to tumor”.

Example 4. An ophthalmologist developed a new treatment for a particular
eye disease. To test its effectiveness he must conduct a clinical trial on people.
His endpoint of interest is “time to cure the disease”. We see this trial could
produce right censored data. During the course of this study he notices an
adverse side-effect which impairs vision in some of the patients. So now he
wants to study “time to side-effect” where he has a control group to compare
to the treatment group to determine if this impairment is indeed due to the
new treatment. Let’s focus on the treatment group. All these patients received
the new treatment. In order to determine “time to side-effect” T , he takes a
snap-shot view. At a random point in time he checks all patients to see if
they developed the side-effect. The records ministry keeps very precise data
on when each patient received the new treatment for the disease. So the doctor
can look back in time from where he takes his snap-shop to the time of first
treatment. Hence for each patient we have an observed U which equals time
from receiving new treatment to the time of the snap-shot. If the patient has
the side-effect, then his T ≤ U . If the patient is still free of the side-effect,
then his T > U .

In both these examples the only available observed time is the U, the censoring
time. The following illustrates a possible trial of Example 3.
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More formally, we observe only the i.i.d. times Ui, i = 1, . . . , n and δi =
I{Ti ≤ Ui}. That is, δ = 1 if the event T ≤ U has occurred, and δ = 0 if the
event has not occurred. We assume the support (the interval over which the
distribution has positive probability) of U is contained in the support of T .
As before, the T ∼ F and the censor time U ∼ G and again we assume T and
U are independent random times. The derivation of the joint p.d.f. of the pair
of (U, δ) follows:

P (U = u, δ = 0) = P (δ = 0|U = u)P (U = u) = P (T > u)P (U = u) = Sf (u)g(u).

P (U = u, δ = 1) = P (δ = 1|U = u)P (U = u) = P (T ≤ u)P (U = u) = F (u)g(u).

We can write this joint p.d.f. of the pair (U, δ) (again a mixed distribution) in
a single expression

P (u, δ) = [Sf (u)]
1−δ[F (u)]δg(u).

The likelihood of the n i.i.d. pairs (Ui, δi) easily follows.

Left Censored and Doubly Censored Data The following two examples
illustrate studies where left censored, uncensored, and right censored observa-
tions could occur. When all these can occur, this is often referred to as doubly
censored data.

Example 5. A child psychiatrist visits a Peruvian village to study the age at
which children first learn to perform a particular task. Let T denote the age
a child learns to perform a specified task. The following picture illustrates the
possible outcomes:
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We read the recorded values as follows: T : exact age is observed (uncensored),
T−: age is left censored as the child already knew the task when s/he was
initially tested in the study, and T+: age is right censored since the child did
not learn the task during the study period.

Example 6. Extracted from Klein & Moeschberger (1997): High school boys
are interviewed to determine the distribution of the age of boys when they
first used marijuana. The question stated was “When did you first use mari-
juana?”. The three possible answers and respective recorded values are given
in the following table:

Possible answer: Recorded value:
a I used it but I cannot recall just
when the first time was.

b I first used it when I was .

c I never used it.

a T−: age of interview as exact age was earlier
but unknown

b T : exact age since it is known (uncensored)

c T+: age of interview since exact age occurs
sometime in the future

Interval Censoring The time-to-event T is known only to occur within an
interval. Such censoring occurs when patients in clinical trial or longitudinal
study have periodic follow-up. For example, women in a study are required
to have yearly PAP smear exams. Each patient’s event time Ti is only known
to fall in an interval (Li, Ri] which represents the time interval between the
visit prior to the visit when the event of interest is detected. The Li and Ri

denote respectively the left and right endpoints of the censoring interval. For
example, if the ith patient shows the sign of the symptom at her first follow-up
time, then Li is zero, in other words, the origin of the study and Ri is her first
follow-up time. Further, if she showed no sign of the symptom until her i−1th
follow-up times but shows the sign of the symptom at her ith follow-up, then
Li is her i − 1th follow-up and Ri is her ith follow-up. If she doesn’t exhibit
the symptom at her last follow-up, Li is her last follow-up and Ri is ∞. Note
that any combination of left, right, or interval censoring may occur in a study.
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Furthermore, we see that left censoring, right censoring, and current status
data are special cases of interval censoring.

Truncation Truncation is a procedure where a condition other than the main
event of interest is used to screen patients; that is, only if the patient has the
truncation condition prior to the event of interest will s/he be observed by
the investigator. Hence, there will be subjects “rejected” from the study so
that the investigator will never be aware of their existence. This truncation
condition may be exposure to a certain disease, entry into a retirement home,
or an occurrence of an intermediate event prior to death. In this case, the
main event of interest in said to be left-truncated. Let U denote the time at
which the truncation event occurs and let T denote the time of the main
event of interest to occur. Then for left-truncated samples, only individuals
with T ≥ U are observed. The most common type of left truncation occurs
when subjects enter the study at a random age and are followed from this
delayed entry time until the event of interest occurs or the subject is right-
censored. In this situation, all subjects who experience the event of interest
prior to the delayed entry time will not be known to the experimenter. The
following example of left-truncated data is described in Klein & Moeschberger
(1997, pages 15-17). In Chapter ?? we treat the analysis of left-truncated data.

Example 7. Death Times of Elderly Residents of a Retirement
Community Age in months when members of a retirement community died
or left the center (right-censored) and age when the members entered the
community (the truncation event) are recorded. Individuals must survive to
a sufficient age to enter the retirement community. Individuals who die at an
early age are excluded from the study. Hence, the life lengths in this data set
are left-truncated. Ignoring this truncation leads to problem of length-biased
sampling. We want a survival analysis to account for this type of bias.

Right truncation occurs when only individuals who have experienced the main
event of interest are included in the sample. All others are excluded. A mor-
tality study based on death records is a good example of this. The following
example of right-truncated data is described in Klein & Moeschberger (1997,
page 19).

Example 8. Time to AIDS Measurement of interest is the waiting time in
years from HIV infection to development of AIDS. In the sampling scheme,
only individuals who have developed AIDS prior to the end of the study are
included in the study. Infected individuals who have yet to develop AIDS are
excluded from the sample; hence, unknown to the investigator. This is a case
of right truncation.
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1.4 Course objectives

The objectives here are to learn methods to model and analyze the data like
those presented in the two examples in Section 1.1. We want these statistical
procedures to accommodate censored data and to help us attain the three
basic goals of survival analysis as so succinctly delineated by Kleinbaum
(1995, page 15).

In Table 1.2, the graph for Goal 1 illustrates the survivor functions give
very different interpretations. The left one shows a quick drop in survival
probabilities early in follow-up. Then the rate of decrease levels off later on.
The right function, in contrast, shows a very slow decrease for quite a long
while, then a sharp decrease much later on.

In Table 1.2, the plot for Goal 2 shows that up to 13 weeks, the graph for the
new method lies above that for the old. Thereafter the graph for old method
is above the new. Hence, this dual graph reveals that up to 13 weeks the new
method is more effective than the old; however, after 13 weeks, it becomes less
effective.

In Table 1.2, the graph for Goal 3 displays that, for any fixed point in time,
up to about 10 years of age, women are at greater risk to get the disease than
men are. From 10 to about 40 years of age, men now have a slightly greater
risk. For both genders the hazard function decreases as the person ages.

Remark:

As usual, the emphasis is on modelling and inference. Modelling the hazard
function or failure time in turn provides us with estimates of population fea-
tures such as the mean, the mean residual life, quantiles, HR’s, and survival
probabilities.
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Table 1.2: Goals of survival analysis

Goal 1. To estimate and interpret survivor and/or hazard
functions from survival data.
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1.5 Data entry and import/export of data files

The layout is a typical spreadsheet format which is virtually the same for all
data analytic software packages. Some examples are EXCEL, SPSS, MINITAB,
SAS. The spreadsheet in S-PLUS is the data object called a data.frame. On
the standard toolbar menu click sequentially on the white blank page at up-
per far left, File → New → Data Set → Ok. A new (empty) data.frame will
appear. This likens an EXCEL spreadsheet. Double right click on the cell just
below the column number to enter the variable name. Below is a table which
displays our S-PLUS data set “aml.data” along with a key. This data.frame
object contains the AML data first given in Table 1.1 under Example 1, page 2.
Note that status variable = the indicator variable δ. This data set is
saved as, e.g., “aml.sdd.” You can also save this data set as an Excel file. Just
click on File → ExportData → ToFile. Go to Save as and click Type →
MicrosoftExcelFiles (*.xls).

1 2 3

weeks group status

1 9 1 1

2 13 1 1

3 13 1 0 group = 1 for maintained,

4 18 1 1 group = 0 for nonmaintained.

· · · ·

· · · · status = 1 if uncensored

· · · · (relapse occurred),

11 161 1 0 status = 0 if censored (still in

12 5 0 1 remission; recorded with + sign).

13 5 0 1

14 8 0 1

· · · ·

· · · ·

· · · ·

23 45 0 1
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It seems that EXCEL has spread itself worldwide. All the mainstream statis-
tical packages can accept an EXCEL file. Feel free to first enter your data in
an EXCEL spreadsheet. To import into S-PLUS do the following sequentially:
in S-PLUS, click on File → ImportData → FromFile → FilesofType → Mi-
crosoftExcelFiles (*.xl*). In Look In, find your way to the directory where
your desired *.xls data file is. Then right-click on it and click on Open. It’s
now in an S-PLUS data sheet. You can save it in S-PLUS as an S-PLUS data
file (data.frame object). Click on File, then on Save. It should be clear from
this point. Your file will be saved as a *.sdd file.

To import your data file into S or R, first save your EXCEL file, or any other
file, as a *.txt file. Be sure to open this file first to see what the delimiter is;
that is, what is used to separate the data values entered on each row. Suppose
your data file, called your.txt, is in the C: directory. The S and R function
read.table imports your.txt file and creates a data.frame object. When a
comma is the delimiter, use the following S line command:

> your <- read.table("C://your.txt",header = T,sep = ",")

If the delimiter is ~, use sep = "~". If blank space separates the data values,
use sep = " ". If the space between columns has been tabbed, omit sep. In
R, to perform a survival analysis it is necessary to install the survival analysis
library. The R command is

> library(survival)

The R function require(survival) accomplishes the same.





CHAPTER 2

Nonparametric Methods

We begin with nonparametric methods of inference concerning the survivor
function S(t) = P (T > t) and, hence, functions of it.

Objectives of this chapter:

After studying Chapter 2, the student should:

1 Know how to compute the Kaplan-Meier (K-M) estimate of survival and
Greenwood’s estimate of asymptotic variance of K-M at time t.

2 Know how to estimate the hazard and cumulative hazard functions.

3 Know how to estimate the pth-quantile.

4 Know how to plot the K-M curve over time t in S.

5 Know how to implement the S function survfit to conduct nonparamtric
analyses.

6 Know how to plot two K-M curves to compare survival between two (treat-
ment) groups.

7 Be familiar with Fisher’s exact test.

8 Know how to compute the log-rank test statistic.

9 Know how to implement the S function survdiff to conduct the log-rank
test.

10 Understand why we might stratify and how this affects the comparison of
two survival curves.

11 Understand how the log-rank test statistic is computed when we stratify
on a covariate.

2.1 Kaplan-Meier estimator of survival

We consider the AML data again introduced in Table 1.1, Chapter 1.1. The
ordered data is included here in Table 2.1 for ease of discussion.

We first treat this data as if there were NO censored observations. Let ti

23
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Table 2.1: Data for the AML maintenance study

Group Length of complete remission(in weeks)

Maintained 9, 13, 13+, 18, 23, 28+, 31, 34, 45+, 48, 161+

Nonmaintained 5, 5, 8, 8, 12, 16+, 23, 27, 30, 33, 43, 45

A + indicates a censored value.

denote an ordered observed value. The empirical survivor function (esf),
denoted by Sn(t), is defined to be

Sn(t) =
# of observations > t

n
=

#{ti > t}
n

. (2.1)

The Sn(t) is the proportion of patients still in remission after t weeks.
Let’s consider the AML maintained group data (AML1) on a time line:

|———|—–|—–|—–|—|—|—–|———–|—|————————|—
0 9 13 18 23 28 31 34 45 48 161

The values of the esf on the maintained group are:

t 0 9 13 18 23 28 31 34 45 48 161

Sn(t)
11
11

10
11

8
11

7
11

6
11

5
11

4
11

3
11

2
11

1
11 0

The plot of this esf function in Figure 2.1 can be obtained by the following S
commands. Here status is an 11 × 1 vector of 1’s since we are ignoring that
four points are censored. We store the AML data in a data frame called aml.
The S function survfit calculates the Sn(t) values.

> aml1 <- aml[aml$group==1, ] # maintained group only

> status <- rep(1,11)

> esf.fit <- survfit(Surv(aml1$weeks,status)~1)

> plot(esf.fit,conf.int=F,xlab="time until relapse (in weeks)",

ylab="proportion without relapse",lab=c(10,10,7))

> mtext("The Empirical Survivor Function of the AML Data",3,-3)

> legend(75,.80,c("maintained group","assuming no censored

data"))

> abline(h=0)

The estimated median is the first value ti where the Sn(t) ≤ 0.5. Here the
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Figure 2.1 Empirical survivor function (esf).

m̂ed = 28 weeks. The estimated mean (expected value) is

m̂ean =

∫ ∞

0

Sn(t) dt = area under Sn(t) = t.

Sn(t) is a right continuous step function which steps down at each distinct ti.
The estimated mean then is just the sum of the areas of the ten rectangles on
the plot. This sum is simply the sample mean. Here the m̂ean = t = 423/11 =
38.45 weeks.

Note: The esf is a consistent estimator of the true survivor function S(t).
The exact distribution of nSn(t), for each fixed t, is binomial (n, p), where
n = the number of observations and p = P (T > t). Further, it follows from
the central limit theorem that for each fixed t,

Sn(t)
a∼ normal(p, p(1− p)/n),

where
a∼ is read “approximately distributed as.”

We now present the product-limit estimator of survival. This is commonly
called the Kaplan-Meier (K-M) estimator as it appeared in a seminal
1958 paper.

The Product-limit (PL) estimator of S(t) = P (T > t):

K-M adjusts the esf to reflect the presence of right-censored obser-
vations.

Recall the random right censoring model in Chapter 1.3. On each of n indi-
viduals we observe the pair (Yi, δi) where

Yi = min(Ti, Ci) and δi =

{
1 if Ti ≤ Ci

0 if Ci < Ti.

On a time line we have
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I1 I2 · · · Ii−1 Ii · · ·
|————|—————|————|———|——–|——
0 y(1) y(2) y(i−1) y(i)

where y(i) denotes the ith distinct ordered censored or uncensored observation
and is the right endpoint of the interval Ii, i = 1, 2, . . . , n′ ≤ n.

• death is the generic word for the event of interest.
In the AML study, a “relapse” (end of remission period) = “death”

• A cohort is a group of people who are followed throughout the course of
the study.

• The people at risk at the beginning of the interval Ii are those people who
survived (not dead, lost, or withdrawn) the previous interval Ii−1 .
Let R(t) denote the risk set just before time t and let

ni = # in R(y(i))

= # alive (and not censored) just before y(i)

di = # died at time y(i)

pi = P (surviving through Ii | alive at beginning Ii)

= P (T > y(i) | T > y(i−1))

qi = 1− pi = P (die in Ii | alive at beginning Ii).

Recall the general multiplication rule for joint events A1 and A2:

P (A1 ∩A2) = P (A2 | A1)P (A1).

From repeated application of this product rule the survivor function can be
expressed as

S(t) = P (T > t) =
∏

y(i)≤t

pi.

The estimates of pi and qi are

q̂i =
di
ni

and p̂i = 1− q̂i = 1− di
ni

=

(
ni − di

ni

)
.

The K-M estimator of the survivor function is

Ŝ(t) =
∏

y(i)≤t

p̂i =
∏

y(i)≤t

(
ni − di

ni

)
=

k∏
i=1

(
ni − di

ni

)
, (2.2)

where y(k) ≤ t < y(k+1).
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Let’s consider the AML1 data on a time line where a “+” denotes a right-
censored observed value. The censored time 13+ we place to the right of the
observed relapse time 13 since the censored patient at 13 weeks was still in
remission. Hence, his relapse time (if it occurs) is greater than 13 weeks.

|———|—–|–|—–|——|—|—–|—–|———–|—|————————|—
0 9 13 13+18 23 28+ 31 34 45+ 48 161+

Ŝ(0) = 1

Ŝ(9) = Ŝ(0)× 11−1
11 = .91

Ŝ(13) = Ŝ(9)× 10−1
10 = .82

Ŝ(13+) = Ŝ(13)× 9−0
9 = Ŝ(13) = .82

Ŝ(18) = Ŝ(13)× 8−1
8 = .72

Ŝ(23) = Ŝ(18)× 7−1
7 = .61

Ŝ(28+) = Ŝ(23)× 6−0
6 = Ŝ(23) = .61

Ŝ(31) = Ŝ(23)× 5−1
5 = .49

Ŝ(34) = Ŝ(31)× 4−1
4 = .37

Ŝ(45+) = Ŝ(34)× 3−0
3 = Ŝ(34) = .37

Ŝ(48) = Ŝ(34)× 2−1
2 = .18

Ŝ(161+) = Ŝ(48)× 1−0
1 = Ŝ(48) = .18

The K-M curve is a right continuous step function which steps down only
at an uncensored observation. A plot of this together with the esf curve is
displayed in Figure 2.2. The “+” on the K-M curve represents the survival
probability at a censored time. Note the difference in the two curves. K-M is
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Figure 2.2 Kaplan-Meier and esf estimates of survival.
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always greater than or equal to esf. When there are no censored data values
K-M reduces to the esf. Note the K-M curve does not jump down to zero as
the largest survival time (161+) is censored. We cannot estimate S(t) beyond

t = 48. Some refer to Ŝ(t) as a defective survival function. Alternatively,

F̂ (t) = 1− Ŝ(t) is called a subdistribution function as the total probability is
less than one.

Estimate of variance of Ŝ(t):

Greenwood’s formula (1926):

v̂ar
(
Ŝ(t)

)
= Ŝ2(t)

∑
y(i)≤t

di
ni(ni − di)

= Ŝ2(t)

k∑
i=1

di
ni(ni − di)

, (2.3)

where y(k) ≤ t < y(k+1).

Example with the AML1 data:

v̂ar
(
Ŝ(13)

)
= (.82)2

(
1

11(11− 1)
+

1

10(10− 1)

)
= .0136

s.e.
(
Ŝ(13)

)
=

√
.0136 = .1166

The theory tells us that for each fixed value t

Ŝ(t)
a∼ normal

(
S(t), v̂ar

(
Ŝ(t)

))
.

Thus, at time t, an approximate (1 − α) × 100% confidence interval for the
probability of survival, S(t) = P (T > t), is given by

Ŝ(t)± zα
2
× s.e.

(
Ŝ(t)

)
, (2.4)

where s.e.
(
Ŝ(t)

)
is the square root of Greenwood’s formula for the estimated

variance.

Smith (2002), among many authors, discusses the following estimates of haz-
ard and cumulative hazard. Let ti denote a distinct ordered death time,
i = 1, . . . , r ≤ n.

Estimates of hazard (risk):

1 Estimate at an observed death time ti:

h̃(ti) =
di
ni

. (2.5)
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2 Estimate of hazard in the interval ti ≤ t < ti+1:

ĥ(t) =
di

ni(ti+1 − ti)
. (2.6)

This is referred to as the K-M type estimate. It estimates the rate of death
per unit time in the interval [ti, ti+1).

3 Examples with the AML1 data:

h̃(23) =
1

7
= .143

ĥ(26) = ĥ(23) =
1

7 · (31− 23)
= .018

Estimates of H(·), cumulative hazard to time t:

1 Constructed with K-M:

Ĥ(t) = − log
(
Ŝ(t)

)
= − log

∏
y(i)≤t

(
ni − di

ni

)
, (2.7)

v̂ar
(
Ĥ(t)

)
=
∑

y(i)≤t

di
ni(ni − di)

. (2.8)

2 Nelson-Aalen estimate (1972, 1978):

H̃(t) =
∑

y(i)≤t

di
ni

, (2.9)

v̂ar
(
H̃(t)

)
=
∑

y(i)≤t

di
n2
i

. (2.10)

The Nelson-Aalen estimate is the cumulative sum of estimated conditional
probabilities of death from I1 through Ik where tk ≤ t < tk+1. This estimate
is the first order Taylor approximation to the first estimate. To see this let
x = di/ni and expand log(1− x) about x = 0.

3 Examples with the AML1 data:

Ĥ(26) = − log
(
Ŝ(26)

)
= − log(.614) = .488

H̃(26) =
1

11
+

1

10
+

1

8
+

1

7
= .4588

Kernel estimator of hazard:

The kernel estimator of h(t) is given by

h̃kernel(t) =
1

b

n′∑
i=1

K
(
t− y(i)

b

)
di
ni

. (2.11)
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The kernel function K is a bounded function which vanishes outside [−1, 1]
and has integral 1. The bandwidth or window size b is a positive parame-
ter. The kernel estimator smoothes the occurrence/exposure rates - the in-

crements di/ni of the Nelson-Aalen estimator H̃(t) (2.9). In fact, it is a
weighted average of the increments over [t − b, t + b]. This estimator was
proposed and studied by Ramlau-Hansen (1983). He establishes consistency
and asymptotic normality. One frequently used kernel is the Epanechnikov
kernel K(t) = 0.75(1 − t2), |t| ≤ 1. Another is the biweight kernel K(t) =
(15/16)(1− t2)2, |t| ≤ 1. The R function density in version 2.2.1 or later can
be used to compute a kernel estimate. The weights argument is essential and
is not available in S or in earlier versions of R. An example is delayed until
page 42, where we compare two empirical hazard functions resulting from two
treatment groups.

Estimate of quantiles:

Recall the definition:

the pth -quantile tp is such that F (tp) = p or S(tp) = 1− p. As usual, when S
is continuous, tp ≤ S−1(1− p).

As the K-M curve is a step function, the inverse is not uniquely defined. We
define the estimated quantile to be

t̂p = min{ti : Ŝ(ti) ≤ 1− p}. (2.12)

By applying the delta method (Chapter 3.2, page 58) to v̂ar
(
Ŝ(t̂p)

)
, Collett

(1994, pages 33 and 34) provides the following estimate of variance of t̂p:

v̂ar(t̂p) =
v̂ar
(
Ŝ(t̂p)

)
(
f̂(t̂p)

)2 , (2.13)

where v̂ar
(
Ŝ(t̂p)

)
is Greenwood’s formula for the estimate of the variance of

the K-M estimator, and f̂(t̂p) is the estimated probability density at t̂p. It is
defined as follows:

f̂(t̂p) =
Ŝ(ûp)− Ŝ(l̂p)

l̂p − ûp

, (2.14)

where ûp = max{ti|Ŝ(ti) ≥ 1 − p + ϵ}, and l̂p = min{ti|Ŝ(ti) ≤ 1 − p − ϵ},
for i = 1, . . . , r ≤ n with r being the number of distinct death times, and ϵ a
small value. An ϵ = 0.05 would be satisfactory in general, but a larger value
of ϵ will be needed if ûp and l̂p turn out to be equal. In the following example,
we take ϵ = 0.05.
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Example with the AML1 data:

The median t̂.5 = 31 weeks. We find û.5 = max{ti|Ŝ(ti) ≥ 0.55} = 23, l̂.5 =

min{ti|Ŝ(ti) ≤ 0.45} = 34, and f̂(31) = Ŝ(23)−Ŝ(34)
34−23 = 0.614−0.368

11 = 0.0224.
Therefore, its variance and s.e. are

v̂ar(31) =

(
.1642

.0224

)2

= 53.73 and s.e.(31) = 7.33.

An approximate 95% C.I. for the median is given by

31± 1.96× 7.33 ⇒
(
16.6 to 45.4

)
weeks.

The truncated mean survival time:

The estimated mean is taken to be

m̂ean =

∫ y(n)

0

Ŝ(t) dt, (2.15)

where y(n) = max(yi). If y(n) is uncensored, then this truncated integral is

the same as the integral over [0,∞) since over [y(n),∞), Ŝ(t) = 0. But if the

maximum data value is censored, the limt→∞ Ŝ(t) ̸= 0. Thus, the integral
over [0,∞) is undefined. That is, m̂ean = ∞. To avoid this we truncate the
integral. By taking the upper limit of integration to be the y(n), we redefined
the K-M estimate to be zero beyond the largest observation. Another way to
look at this is that we have forced the largest observed time to be uncensored.
This does give, however, an estimate biased towards zero. This estimate is the
total area under the K-M curve. As Ŝ(t) is a step function, we compute this
area as the following sum:

m̂ean =
n′∑
i=1

(
y(i) − y(i−1)

)
Ŝ(y(i−1)), (2.16)

where n′ = # of distinct observed yi’s, n
′ ≤ n, y(0) = 0, Ŝ(y(0)) = 1, and

Ŝ(y(i−1)) is the height of the function at y(i−1).

In the AML1 data, y(n) = 161 and, from the following S output, the estimated
expected survival time m̂ean = 52.6 weeks with s.e.(m̂ean) = 19.8 weeks. The
variance formula for this estimator is given in Remark 5. An estimate of the
truncated mean residual life, mrl(t), along with a variance estimate is given
in Remark 6.

Note: As survival data are right skewed, the median is the preferred descrip-
tive measure of the typical survival time.
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S/R application:

survfit:

This is the main S nonparametric survival analysis function. Its main ar-
gument takes a Surv(time,status) object. We have modified some of the
output. Data for both groups in the AML study are in a data frame called
aml. The “group” variable = 1 for maintained group, = 0 for nonmaintained.

> aml1 <- aml[aml$group == 1, ] # Creates a data frame with

# maintained group data only.

> Surv(aml1$weeks,aml1$status) # Surv object

[1] 9 13 13+ 18 23 28+ 31 34 45+ 48 161+

> km.fit <- survfit(Surv(weeks,status),type="kaplan-meier",

data = aml1)

> plot(km.fit,conf.int=F,xlab="time until relapse (in weeks)",

ylab="proportion in remission",lab=c(10, 10, 7))

> mtext("K-M survival curve for the AML data",3,line=-1,cex=2)

> mtext("maintained group",3,line = -3)

> abline(h=0) # Figure 2.3 is now complete.

> km.fit

n events mean se(mean) median 0.95LCL 0.95UCL

11 7 52.6 19.8 31 18 NA

> summary(km.fit) # survival is the estimated S(t).

time n.risk n.event survival std.err 95% LCL 95% UCL

9 11 1 0.909 0.0867 0.7541 1.000

13 10 1 0.818 0.1163 0.6192 1.000

18 8 1 0.716 0.1397 0.4884 1.000

23 7 1 0.614 0.1526 0.3769 0.999

31 5 1 0.491 0.1642 0.2549 0.946

34 4 1 0.368 0.1627 0.1549 0.875

48 2 1 0.184 0.1535 0.0359 0.944

> attributes(km.fit) # Displays the names of objects we can

# access.

$names:

[1] "time" "n.risk" "n.event" "surv" "std.err" "upper"

[7] "lower" "conf.type" "conf.int" "call"

$class: [1] "survfit"

# Example: to access "time" and "surv"

> t.u <- summary(km.fit)$time # t.u is a vector with the

# seven uncensored times.

> surv.u <- summary(km.fit)$surv # Contains the estimated

# S(t.u).
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Figure 2.3 Kaplan-Meier survival curve. A + indicates a censored value.

Remarks:

1 Notice the effect of accommodating the censored data points. The median
time in complete remission is increased from 28 weeks to 31 weeks. The
expected time is increased from 38.45 weeks to 52.6 weeks. This explains
the third method alluded to in the A naive descriptive analysis of
AML study presented in Chapter 1.1, page 2.

2 survfit uses a simple graphical method of finding a confidence interval for
the median. Upper and lower confidence limits for the median are defined
in terms of the confidence intervals for S(t): the upper confidence limit is
the smallest time at which the upper confidence limit for S(t) is ≤ 0.5.
Likewise, the lower confidence limit is the smallest time at which the lower
confidence limit for S(t) is ≤ 0.5. That is, draw a horizontal line at 0.5 on
the graph of the survival curve, and use intersections of this line with the
curve and its upper and lower confidence bands. If, for example, the UCL

for S(t) never reaches 0.5, then the corresponding confidence limit for the
median is unknown and it is represented as an NA. See pages 242 and 243,
S-PLUS 2000, Guide to Statistics, Vol.II.

3 Confidence intervals for pth-quantile without using an estimate of the den-
sity (2.14) at t̂p are also available. See Chapter 4.5, Klein & Moesch-
berger (1997).

4 The default confidence intervals for S(t) produced by survfit are not con-
structed solely with the Greenwood’s standard errors (std.err) provided
in the output. To obtain confidence intervals which use the Greenwood’s
s.e. directly, you must specify conf.type="plain" in the survfit func-
tion. These correspond to the formula (2.4).
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The default intervals in survfit are called "log" and the formula is:

exp
(
log
(
Ŝ(t)

)
± 1.96 s.e.

(
Ĥ(t)

))
, (2.17)

where Ĥ(t) is the estimated cumulative hazard function (2.7) and s.e.
(
Ĥ(t)

)
is the square root of the variance (2.8). These "log" intervals are derived
using the delta method defined in Chapter 3.2, page 58. The log-transform
on Ŝ(t) produces more efficient intervals as we remove the source of vari-

ation due to using Ŝ(t) in the variance estimate. Hence, this approach is
preferred.

Sometimes, both of these intervals give limits outside the interval [0, 1].
This is not so appealing as S(t) is a probability! Kalbfleisch & Prentice

(1980) suggest using the transformation W = log(− log(Ŝ(t))) to estimate
the log cumulative hazard parameter log(− log(S(t))), and to then trans-
form back. Using the delta method, an estimate of the asymptotic variance
of this estimator is given by

v̂ar(W ) ≈ 1(
log
(
Ŝ(t)

))2 v̂ar(− log
(
Ŝ(t)

))
=

1(
log
(
Ŝ(t)

))2 ∑
y(i)≤t

di
ni(ni − di)

.

(2.18)
An approximate (1− α)× 100% C.I. for the quantity S(t) is given by

(
Ŝ(t)

)exp{zα
2
s.e.(W )}

≤ S(t) ≤
(
Ŝ(t)

)exp{−zα
2
s.e.(W )}

. (2.19)

To get these intervals specify conf.type="log-log" in the survfit func-
tion. These intervals will always have limits within the interval [0, 1].

5 The variance of the estimated truncated mean survival time (2.15) is

v̂ar(m̂ean) =
n′∑
i=1

(∫ y(n)

y(i)

Ŝ(u)du

)2
di

ni(ni − di)
. (2.20)

The quantity se(mean) reported in the survfit output is the square root
of this estimated variance.

6 An estimate of the truncated mean residual life at time t (1.9), denoted by

m̂rl(t), is taken to be

m̂rl(t) =

∫ y(n)

t

Ŝ(u)du

Ŝ(t)
(2.21)
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with estimated variance

v̂ar
(
m̂rl(t)

)
=

1

Ŝ2(t)

 ∑
t≤y(i)≤y(n)

(∫ y(n)

y(i)

Ŝ(u)du

)2
di

ni(ni − di)

−
(
m̂rl(t)

)2 ∑
y(i)≤t

di
ni(ni − di)

 .

(2.22)

The hazard.km and quantile.km functions:

The function hazard.km takes a survfit object for its argument. It outputs
ĥ(t), h̃(ti), Ĥ(t), se(Ĥ(t)), H̃(t), and se(H̃(t)). The function quantile.km

computes an estimated pth-quantile along with its standard error and an
approximate (1− α)× 100% confidence interval. It has four arguments:
(data,p,eps,z), where data is a survfit object, p is a scalar between 0 and
1, eps (ϵ) is .05 or a little larger, and z is the standard normal z-score needed
for the desired confidence level.

> hazard.km(km.fit)

time ni di hihat hitilde Hhat se.Hhat Htilde se.Htilde

1 9 11 1 0.0227 0.0909 0.0953 0.0953 0.0909 0.0909

2 13 10 1 0.0200 0.1000 0.2007 0.1421 0.1909 0.1351

3 18 8 1 0.0250 0.1250 0.3342 0.1951 0.3159 0.1841

4 23 7 1 0.0179 0.1429 0.4884 0.2487 0.4588 0.2330

5 31 5 1 0.0667 0.2000 0.7115 0.3345 0.6588 0.3071

6 34 4 1 0.0179 0.2500 0.9992 0.4418 0.9088 0.3960

7 48 2 1 NA 0.5000 1.6923 0.8338 1.4088 0.6378

> quantile.km(km.fit,.25,.05,1.96) # the .25th-quantile

[1] "summary"

qp se.S.qp f.qp se.qp LCL UCL

1 18 0.1397 0.0205 6.8281 4.617 31.383 # in weeks

Remarks:

1 In the case of no censoring, quantile.km differs from the S function quantile.
Try quantile(1:10,c(.25,.5,.75)) and compare
quantile.km after using survfit(Surv(1:10,rep(1,10))).

2 If we extend the survfit graphical method to find the confidence limits for
a median to the .25th quantile, we get 13 and NA as the lower and upper
limits, respectively. WHY! See Remark 2, page 33.

2.2 Comparison of survivor curves: two-sample problem

For the AML data the variable “weeks” contains all 23 observations from both
groups.
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There is now the variable group:

group =

{
1 for maintained
0 for nonmaintained.

A plot of the K-M curves for both groups is displayed in Figure 2.4. A summary
of the survival estimation using the survfit function follows:

> km.fit <- survfit(Surv(weeks,status)~group,data=aml)

> plot(km.fit,conf.int=F,xlab="time until relapse (in weeks)",

ylab="proportion without relapse",

lab=c(10,10,7),cex=2,lty=1:2)

> summary(km.fit) # This displays the survival probability

# table for each group. The output is omitted.

> km.fit

n events mean se(mean) median 0.95LCL 0.95UCL

group=0 12 11 22.7 4.18 23 8 NA

group=1 11 7 52.6 19.83 31 18 NA
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Figure 2.4 A comparison of two K-M curves.

• Notice the estimated mean, median, and survivor curve of “maintained”
group are higher than those of the other group.

• Is there a significant difference between the two survivor curves?
Does maintenance chemotherapy statistically prolong time until relapse?

To test H0 : F1 = F2, we present the Mantel-Haenszel (1959) test, also called
the log-rank test. Another well known test is the Gehan (1965) test, which
is an extension of the Wilcoxon test to accommodate right-censored data.
See Miller (1981, Chapter 4.1) for a presentation of this test. To motivate
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the construction of the Mantel-Haenszel test statistic, we first briefly study
Fisher’s exact test.

Comparing two binomial populations:

Suppose we have two populations, and an individual in either population can
have one of two characteristics. For example, Population 1 might be cancer
patients under a certain treatment and Population 2 cancer patients under a
different treatment. The patients in either group may either die within a year
or survive beyond a year. The data are summarized in a 2 × 2 contingency
table. Our interest here is to compare the two binomial populations, which is
common in medical studies.

Dead Alive

Population 1 a b n1

Population 2 c d n2

m1 m2 n

Denote

p1 = P{Dead|Population 1},
p2 = P{Dead|Population 2}.

Want to test

H0 : p1 = p2.

Fisher’s exact test:

The random variable A, which is the entry in the (1, 1) cell of the 2× 2 table,
has the following exact discrete conditional distribution under H0:
Given n1, n2,m1,m2 fixed quantities, it has a hypergeometric distribution
where

P{A = a} =

(
n1

a

)(
n2

m1−a

)(
n
m1

) .

The test based on this exact distribution is called the Fisher’s exact test.
The S function fisher.test computes an exact p -value. The mean and vari-
ance of the hypergeometric distribution are

E0(A) =
n1m1

n
,

V ar0(A) =
n1n2m1m2

n2(n− 1)
.
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We can also conduct an approximate chi-square test when samples are large
as

χ2 =

(
a− E0(A)√
V ar0(A)

)2

a∼ χ2
(1),

where χ2
(1) denotes a chi-square random variable with 1 degree of freedom.

Mantel-Haenszel/log-rank test:

Now suppose we have a sequence of 2×2 tables. For example, we might have k
hospitals; at each hospital, patients receive either Treatment 1 or Treatment 2
and their responses are observed. Because there may be differences among
hospitals, we do not want to combine all k tables into a single 2× 2 table. We
want to test

H0 : p11 = p12, and . . . , and pk1 = pk2,

where

pi1 = P{Dead|Treatment 1,Hospital i},
pi2 = P{Dead|Treatment 2,Hospital i}.

Dead Alive

Treatment 1 a1 n11

Treatment 2 n12

m11 m12 n1

Hospital 1

...

Dead Alive

Treatment 1 ak nk1

Treatment 2 nk2

mk1 mk2 nk

Hospital k
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Use the Mantel-Haenszel (1959) statistic

MH =

∑k
i=1(ai − E0(Ai))√∑k

i=1 V ar0(Ai)
. (2.23)

If the tables are independent, then MH
a∼ N(0, 1) either when k is fixed and

ni → ∞ or when k → ∞ and the tables are also identically distributed.

In survival analysis the MH statistic is applied as follows: Combine the two
samples, order them, and call them z(i). Construct a 2 × 2 table for each
uncensored time point z(i). Compute the MH statistic for this sequence of
tables to test H0 : F1 = F2. The theory tells us that asymptotic normality
still holds even though these tables are clearly not independent.

We illustrate how to compute the MH with the following fictitious data:

Treatment Old 3, 5, 7, 9+, 18

Treatment New 12, 19, 20, 20+, 33+

Computations for the MH are given in the following table. Denote the com-
bined ordered values by z. Note that n is the total number of patients at risk
in both groups; m1 the number of patients who died at the point z; n1 the
number at risk in treatment Old at time z; a equals 1 if death in Old or 0 if
death in New. Remember that

E0(A) =
m1n1

n
and V ar0(A) =

m1(n−m1)

n− 1
× n1

n

(
1− n1

n

)
.

trt z n m1 n1 a E0(A) r m1(n−m1)
n−1

n1

n

(
1− n1

n

)
Old 3 10 1 5 1 .50 .50 1 .2500
Old 5 9 1 4 1 .44 .56 1 .2469
Old 7 8 1 3 1 .38 .62 1 .2344
Old 9+ 0 0
New 12 6 1 1 0 .17 −.17 1 .1389
Old 18 5 1 1 1 .20 .80 1 .1600
New 19 4 1 0 0 0 0 1 0
New 20 3 1 0 0 0 0 1 0
New 20+
New 33+

Total 4 1.69 2.31 1.0302
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where r = (a− E0(A)). Then

MH =
sum of (a− E0(A))√

sum of
(

m1(n−m1)
n−1 × n1

n (1− n1

n )
)

=
2.31

1.02
= 2.26

p - value = 0.012 (one -tailed Z test).

The S function survdiff provides the log-rank (= MH) test by default. Its
first argument takes a Surv object. It gives the square of the MH statistic
which is then an approximate chi-square statistic with 1 degree of freedom.
This is a two-tailed test. Hence, the p -value is twice that of the MH above.
Except for round-off error, everything matches.

> grouph <- c(1,1,1,1,1,2,2,2,2,2) # groups: 1=old; 2=new

> hypdata <- c(3,5,7,9,18,12,19,20,20,33) # the data

> cen <- c(1,1,1,0,1,1,1,1,0,0) # censor status:

# 1=uncensored; 0=censored

> survdiff(Surv(hypdata,cen)~grouph)

N Observed Expected (O-E)^2/E (O-E)^2/V

grouph=1 5 4 1.69 3.18 5.2

grouph=2 5 3 5.31 1.01 5.2

Chisq = 5.2 on 1 degrees of freedom, p = 0.0226

# This p-value corresponds to a two-tailed Z-test

# conducted with MH.

> sqrt(5.2) # square root of log-rank test statistic.

[1] 2.280351 # MH.

# .0226 = (1 - pnorm(2.280351))*2: p-value for two-sided test

> .0226/2

[1] 0.0113 # p-value for one-sided test.

The log-rank test on the AML data is:

> survdiff(Surv(week,status)~group,data=aml)

N Observed Expected (O-E)^2/E (O-E)^2/V

group=1 11 7 10.69 1.27 3.4

group=2 12 11 7.31 1.86 3.4

Chisq= 3.4 on 1 degrees of freedom, p= 0.0653
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There is mild evidence to suggest that maintenance chemotherapy prolongs
the remission period since the one-sided test is appropriate and its p -value is
.0653/2 = .033.

Remark:

The survdiff function contains a “rho” parameter. The default value, rho =
0, gives the log-rank test. When rho = 1, this gives the Peto test. This test
was suggested as an alternative to the log-rank test by Prentice and Marek
(1979). The Peto test emphasizes the beginning of the survival curve in that
earlier failures receive larger weights. The log-rank test emphasizes the tail
of the survival curve in that it gives equal weight to each failure time. Thus,
choose between the two according to the interests of the study. The choice of
emphasizing earlier failure times may rest on clinical features of one’s study.

Hazard ratio as a measure of effect:

The hazard ratio is a descriptive measure of the treatment (group) effect on

survival. Here we use the two types of empirical hazard functions, h̃(ti) and

ĥ(t), defined on page 28, to form ratios and then interpret them in the context
of the AML study. The function emphazplot contains an abridged form of the
hazard.km function (page 35) and produces two plots, one for each of the two
types of hazard estimates. Modified output and plots follow.

> attach(aml)

> Surv0 <- Surv(weeks[group==0],status[group==0])

> Surv1 <- Surv(weeks[group==1],status[group==1])

> data <- list(Surv0,Surv1)

> emphazplot(data,text="solid line is maintained group")

nonmaintained maintained

time hitilde hihat time hitilde hihat

1 5 0.167 0.056 1 9 0.091 0.023

2 8 0.200 0.050 2 13 0.100 0.020

3 12 0.125 0.011 3 18 0.125 0.025

4 23 0.167 0.042 4 23 0.143 0.018

5 27 0.200 0.067 5 31 0.200 0.067

6 30 0.250 0.083 6 34 0.250 0.018

7 33 0.333 0.033 7 48 0.500 0.018

8 43 0.500 0.250

9 45 1.000 0.250

> detach()

Consider the following two hazard ratios of nonmaintained to maintained:

ĥnm(15)

ĥm(15)
=

.011

.020
= .55 and

ĥnm(25)

ĥm(25)
=

.042

.018
= 2.33 .
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Figure 2.5 A comparison of empirical hazards. Left plot displays h̃(ti). Right plot

displays ĥ(t).

The nonmaintained group has 55% of the risk of those maintained of relapsing
at 15 weeks. However, on the average, those nonmaintained have 2.33 times
the risk of those maintained of relapsing at 25 weeks.

Neither of the two plots in Figure 2.5 displays roughly parallel curves over
time. In the second plot, the hazard curves cross over time. One group’s risk
is not always lower than the other’s with respect to time. This causes the
above HR’s to change values. Both plots indicate the hazard ratio is not
constant with respect to follow-up time, which says the hazard functions
of the two groups are not proportional. The notion of proportional hazards
is a central theme threaded throughout survival analyses. It is discussed in
detail in Chapters 4, 5, and 6.

With larger datasets the plots in Figure 2.5 will be chaotic. The smoothed
di/ni obtained via the kernel estimator (2.11) provide a far clearer picture of
hazard and are very useful when comparing curves. The essential pieces of R
code follow: Let g = 0, 1.

> fit.g <- summary(survfit(Surv(weeks,status),subset=group==g,

conf.type="n",data=aml),censor=T)

> u.g <- fit.g$time

> weight.g <- fit.g$n.event/fit.g$n.risk

> smooth.g <- density(u.g,kernel="epanechnikov",

weights=weight.g,n=50,from=0,to=50)

> plot(smooth.g$x,smooth.g$y,type="l",...)

Figure 2.6 shows the maintained group always has lower risk. Both hazards
increase linearly until about 26 weeks. At about 40 weeks the nonmaintained
group’s risk increases quadratically with a maximum at 40 weeks, whereas
the hazard for the maintained group is essentially constant after 26 weeks.
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Figure 2.6 Smoothed estimates, h̃kernel
g (t), g = 0, 1, of hazards. The Epanechnikov

kernel K(t) = 0.75(1− t2), |t| ≤ 1 was used.
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Figure 2.7 Ratio of smoothed hazards for AML data.

Figure 2.7 clearly shows that the hazard functions are not proportional as
their ratio is not constant over time. At 15 weeks we estimate the maintained
group has about 66% of the risk of those nonmaintained of relapsing; or, those
nonmaintained have 1.52 times the risk of those maintained of relapsing at 15
weeks. At 25 weeks the risk is slightly higher.

The plot in Figure 2.7 is only an illustration of how to visualize and interpret
HR’s. Of course, statistical accuracy (confidence bands) should be incorpo-
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rated as these comments may not be statistically significant. Pointwise 95%
bootstrap confidence limits for the log-HR are commonly reported.

Stratifying on a covariate:

• Stratifying on a particular covariate is one method that can account for
(adjust for) its possible confounding and/or interaction effects with the
treatment of interest on the response.

• Confounding and/or interaction effects of other known factors with the
treatment variable can mask the “true” effects of the treatment
of interest. Thus, stratification can provide us with stronger (or weaker)
evidence, or more importantly, reverse the sign of the effect. That is, it is
possible for the aggregated data to suggest treatment is favorable when in
fact, in every subgroup, it is highly unfavorable; and vice versa. This is
known as Simpson’s paradox (Simpson, 1951).

Let’s consider the fictitious data again and see

1 What happens when we stratify by sex?

2 How is the log-rank statistic computed?

Recall:

grouph <- c(1,1,1,1,1,2,2,2,2,2) # groups: 1 = old 2 = new

hypdata <- c(3,5,7,9,18,12,19,20,20,33) # the data

cen <- c(1,1,1,0,1,1,1,1,0,0) # censor status:

1 = uncensored; 0 = censored

How to:

Separate the data by sex. Then, within each sex stratum, construct a sequence
of tables as we did above. Then combine over the two sexes to form (MH)2.
According to the sex vector

sex <- c(

old︷ ︸︸ ︷
1, 1, 1, 2, 2,

new︷ ︸︸ ︷
2, 2, 2, 1, 1), where 1 = male 2 = female.

Within each stratum, n is the total number at risk, m1 the number who die
at point z, n1 the number at risk in treatment Old at time z, and a equals 1
if death in Old or 0 if death in New.
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MALE : Old 3, 5, 7
New 20+, 33+

trt z n m1 n1 a E0(A) m1(n−m1)
n−1

n1

n

(
1− n1

n

)
Old 3 5 1 3 1 .60 1 .24
Old 5 4 1 2 1 .50 1 .25
Old 7 3 1 1 1 .333333 1 .222222
New 20+ 2
New 33+ 1

Total 3 1.433333 .712222

Note: E0(A) = n1m1

n and V ar0(A) =
m1(n−m1)

n−1 × n1

n

(
1− n1

n

)
.

FEMALE : Old 9+, 18
New 12, 19, 20

trt z n m1 n1 a E0(A)
m1(n−m1)

n−1
n1

n

(
1− n1

n

)
Old 9+ 5

New 12 4 1 1 0 .25 1 .1875

Old 18 3 1 1 1 .333333 1 .222222

New 19 2 1 0 0 0 0

New 20 1 1 0 0 0 0

Total 1 .583333 .409722

Then pooling by summing over the two tables, we have a = 4, E0(A) =
1.433333+ .583333 = 2.016666, and V ar0(A) = .712222+ .409722 = 1.121944.
The log-rank statistic is

(MH)
2
=

(4− 2.016666)2

1.121944
= 3.506,

which matches the following S output from survdiff. Note the strata(sex)
term that has been included in the model statement within the survdiff

function.
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# sex = 1 for male, sex = 2 for female

# group = 1 for old, group = 2 for new treatment

> survdiff(Surv(hypdata,cen)~grouph+strata(sex))

N Observed Expected (O-E)^2/E (O-E)^2/V

grouph=1 5 4 2.02 1.951 3.51

grouph=2 5 3 4.98 0.789 3.51

Chisq= 3.5 on 1 degrees of freedom, p= 0.0611

Note that the p -value of a one-sided alternative is 0.0611/2 = .031. Although
there is still significant evidence at the .05 level that the new treatment is
better, it is not as strong as before we stratified. That is, after taking into
account the variation due to sex, the difference between treatments is not as
strong.

At www.mth.pdx.edu/~mara/ndk_August_2006.htm, the interested reader may
download Example of Simpson’s paradox.



CHAPTER 3

Parametric Methods

Objectives of this chapter:

After studying Chapter 3, the student should:

1 Be familiar with six distributional models.

2 Be able to describe the behavior of their hazard functions.

3 Know that the log-transform of three of these lifetime distributions trans-
forms into a familiar location and scale family; and know the relation-
ships between the parameters of the transformed model and those in the
original model.

4 Know how to construct a Q-Q plot for each of these log(time) distribu-
tions.

5 Know the definition of a likelihood function.

6 Understand the method of maximum likelihood estimation (MLE).

7 Know how to apply the delta method.

8 Understand the concept of likelihood ratio test (LRT).

9 Know the general form of the likelihood function for randomly censored
data.

10 Understand how to apply the above estimation and testing methods under
the exponential model to one sample of data containing censored values.
Hence, be familiar with the example of fitting the AML data to an expo-
nential model.

11 Be familiar with the S function survReg used to provide a parametric
description and analysis of censored data; in particular, how to fit data to
the Weibull, log-logistic, and log-normal models.

12 Know how to apply survReg to the one-sample and two-sample problems.
Be familiar with the additional S functions anova, predict, and the func-
tions qq.weibull, qq.loglogistic, qq.weibreg, qq.loglogisreg, and
qq.lognormreg, which produce Q-Q plots for one or several samples.

47
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3.1 Frequently used (continuous) models

The exponential distribution

p.d.f. f(t) survivor S(t) hazard h(t)

λ exp(−λt) exp(−λt) λ, λ > 0

mean E(T ) variance V ar(T ) pth -quantile tp

1
λ

1
λ2 −λ−1 log(1− p)

The outstanding simplicity of this model is its constant hazard rate. We dis-
play some p.d.f.’s and survivor functions for three different values of λ in
Figure 3.1. The relationship between the cumulative hazard and the survivor

Figure 3.1 Exponential density and survivor curves.

function (1.6) is

log
(
H(t)

)
= log

(
− log(S(t))

)
= log(λ) + log(t)

or, equivalently expressed with log(t) on the vertical axis,

log(t) = − log(λ) + log
(
− log(S(t))

)
. (3.1)

Hence, the plot of log(t) versus log
(
− log(S(t))

)
is a straight line with slope

1 and y-intercept − log(λ). At the end of this section we exploit this linear
relationship to construct a Q-Q plot for a graphical check of the goodness of
fit of the exponential model to the data. Since the hazard function, h(t) = λ,

is constant, plots of both empirical hazards, h̃(ti) and ĥ(t) (page 28), against
time provide a quick graphical check. For a good fit, the plot patterns should
resemble horizontal lines. Otherwise, look for another survival model. The
parametric approach to estimating quantities of interest is presented in Sec-
tion 3.4. There we first illustrate this with an uncensored sample. Then the
same approach is applied to a censored sample. The exponential is a special
case of both the Weibull and gamma models, each with their shape parameter
equal to 1.
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The Weibull distribution

p.d.f. f(t) survivor S(t) hazard h(t)

λα(λt)α−1× exp (−(λt)α) λα(λt)α−1

exp (−(λt)α)

mean E(T ) variance V ar(T ) pth -quantile tp

λ−1Γ(1 + 1
α ) λ−2Γ(1 + 2

α ) λ−1 (− log(1− p))
1
α

−λ−2(Γ(1 + 1
α ))

2 λ > 0 and α > 0

The Γ(k) denotes the gamma function and is defined as
∫∞
0

uk−1e−udu, k > 0.
Figure 3.2 displays p.d.f.’s and hazard functions, respectively.

Figure 3.2 Weibull density and hazard functions with λ = 1.

Note that the Weibull hazard function is monotone increasing when α > 1,
decreasing when α < 1, and constant for α = 1. The parameter α is called
the shape parameter as the shape of the p.d.f., and hence the other functions,
depends on the value of α. This is clearly seen in Figures 3.2. The λ is a scale
parameter in that the effect of different values of λ is just to change the scale
on the horizontal (t) axis, not the basic shape of the graph.

This model is very flexible and has been found to provide a good description
of many types of time-to-event data. We might expect an increasing Weibull
hazard to be useful for modelling survival times of leukemia patients not re-
sponding to treatment, where the event of interest is death. As survival time
increases for such a patient, and as the prognosis accordingly worsens, the
patient’s potential for dying of the disease also increases. We might expect
some decreasing Weibull hazard to well model the death times of patients re-
covering from surgery. The potential for dying after surgery usually decreases
as the time after surgery increases, at least for a while.
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The relationship between the cumulative hazard H(t) and the survivor S(t)
(1.6) is seen to be

log
(
H(t)

)
= log

(
− log(S(t))

)
= α(log(λ) + log(t)) (3.2)

or equivalently expressed as

log(t) = − log(λ) + σ log
(
− log(S(t))

)
, (3.3)

where σ = 1/α. The plot of log(t) versus log
(
− log(S(t))

)
is a straight line

with slope σ = 1/α and y-intercept − log(λ). Again, we can exploit this linear
relationship to construct a Q-Q plot.

An example of fitting data to the Weibull model using S, along with its Q-Q
plot, is presented in Section 3.4. This distribution is intrinsically related to the
extreme value distribution which is the next distribution to be discussed. The
natural log transform of a Weibull random variable produces an extreme value
random variable. This relationship is exploited quite frequently, particularly
in the statistical computing packages and in diagnostic plots.

The extreme (minimum) value distribution

The interest in this distribution is not for its direct use as a lifetime distri-
bution, but rather because of its relationship to the Weibull distribution. Let
µ, where −∞ < µ < ∞, and σ > 0 denote location and scale parameters,
respectively. The standard extreme value distribution has µ = 0 and σ = 1.

p.d.f. f(y) survivor S(y)

σ−1 exp
(
y−µ
σ − exp

(
y−µ
σ

))
exp

(
− exp

(
y−µ
σ

))
mean E(Y ) variance V ar(Y ) pth - quantile yp

µ− γσ π2

6 σ2 yp = µ
+σ log (− log(1− p))

Here γ denotes Euler’s constant, γ = 0.5772..., the location parameter µ is the
0.632th quantile, and y can also be negative so that −∞ < y < ∞. Further,
the following relationship can be easily shown:

Fact: If T is a Weibull random variable with parameters α and λ, then
Y = log(T ) follows an extreme value distribution with µ = − log(λ) and
σ = α−1. The r.v. Y can be represented as Y = µ + σZ, where Z is a
standard extreme value r.v., as the extreme value distribution is a location
and scale family of distributions.

As values of µ and σ different from 0 and 1 do not effect the shape of the p.d.f.,
but only location and scale, displaying only plots of the standard extreme value
p.d.f. and survivor function in Figure 3.3 suffices.
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Figure 3.3 Standard extreme value density and survivor functions.

The log-normal distribution

This distribution is most easily characterized by saying the lifetime T is log-
normally distributed if Y = log(T ) is normally distributed with mean and vari-
ance specified by µ and σ2, respectively. Hence, Y is of the form Y = µ+ σZ
where Z is a standard normal r.v. We have the following table for T with
α > 0 and λ > 0 and where Φ(·) denotes the standard normal d.f.:

p.d.f. f(t) survivor S(t) hazard h(t)

(2π)−
1
2αt−1 exp

(
−α2(log(λt))2

2

)
1− Φ

(
α log(λt)

)
f(t)
S(t)

mean E(T ) variance V ar(T ) Note:

exp(µ+ σ2

2 ) (exp(σ2)− 1)× µ = − log(λ)
exp(2µ+ σ2) and σ = α−1

The hazard function has value 0 at t = 0, increases to a maximum, and then
decreases, approaching zero as t becomes large. Since the hazard decreases for
large values of t, it seems implausible as a lifetime model in most situations.
But, it can still be suitable for representing lifetimes, particularly when large
values of t are not of interest. We might also expect this hazard to describe
tuberculosis patients well. Their potential for dying increases early in the
disease and decreases later. Lastly, the log-logistic distribution, to be presented
next, is known to be a good approximation to the log-normal and is often a
preferred survival time model. Some p.d.f’s and hazard functions are displayed
in Figure 3.4.

The log-logistic distribution

The lifetime T is log-logistically distributed if Y = log(T ) is logistically dis-
tributed with location parameter µ and scale parameter σ. Hence, Y is also
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Figure 3.4 Log-normal densities and hazards with µ = 0 and σ = .25, .5, 1.5, and 3.

of the form Y = µ+ σZ where Z is a standard logistic r.v. with density

exp(z)(
1 + exp(z)

)2 , −∞ < z < ∞.

This is a symmetric density with mean 0 and variance π2/3, and with slightly
heavier tails than the standard normal, the excess in kurtosis being 1.2. We
have the following table for T with α > 0 and λ > 0:

p.d.f. f(t) survivor S(t) hazard h(t)

λα(λt)α−1
(
1 + (λt)α

)−2
1

1+(λt)α
λα(λt)α−1

1+(λt)α

Note: pth-quantile tp

µ = − log(λ)
and σ = α−1 λ−1

(
p

1−p

) 1
α

This model has become popular, for like the Weibull, it has simple algebraic
expressions for the survivor and hazard functions. Hence, handling censored
data is easier than with the log-normal while providing a good approximation
to it except in the extreme tails. The hazard function is identical to the Weibull
hazard aside from the denominator factor 1 + (λt)α. For α < 1 (σ > 1) it is
monotone decreasing from ∞ and is monotone decreasing from λ if α = 1
(σ = 1). If α > 1 (σ < 1), the hazard resembles the log-normal hazard as it
increases from zero to a maximum at t = (α− 1)1/α/λ and decreases toward
zero thereafter. In Section 3.4 an example of fitting data to this distribution
using S along with its Q-Q plot is presented. Some p.d.f.’s and hazards are
displayed in Figure 3.5.

We exploit the simple expression for the survivor function to obtain a rela-
tionship which is used for checking the goodness of fit of the log-logistic model
to the data. The odds of survival beyond time t are

S(t)

1− S(t)
= (λt)−α. (3.4)
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Figure 3.5 Log-logistic densities and hazards with µ = 0 and σ = .25, .5, 1.5, and 3.

It easily follows that log(t) is a linear function of the log-odds of survival
beyond t. The precise linear relationship is

log(t) = µ+ σ
(
− log

(
S(t)

1−S(t)

))
, (3.5)

where µ = − log(λ) and σ = 1/α. The plot of the log(t) against− log{S(t)/(1−
S(t))} is a straight line with slope σ and y-intercept µ. At the end of this sec-
tion, the Q-Q plot is constructed using this linear relationship.

The gamma distribution

Like the Weibull, this distribution has a scale parameter λ > 0 and shape
parameter k > 0 and contains the exponential distribution as a special case;
i.e., when shape k = 1. As a result, this model is also more flexible than the
exponential. We have the following table for this distribution:

p.d.f. f(t) survivor S(t) hazard h(t)

λktk−1

Γ(k) exp(−λt) no simple form no simple form

mean E(T ) variance V ar(T )

k
λ

k
λ2

The hazard function is monotone increasing from 0 when k > 1, monotone
decreasing from ∞ if k < 1, and in either case approaches λ as t increases.

The model for Y = log(T ) can be written Y = µ+ Z, where Z has density

exp (kz − exp(z))

Γ(k)
. (3.6)

The r.v. Y is called a log-gamma r.v. with parameters k and µ = − log(λ).
The quantity Z has a negatively skewed distribution with skewness decreasing
with k increasing. When k = 1, this is the exponential model and, hence, Z
has the standard extreme value distribution. With the exception of k = 1, the



54 PARAMETRIC METHODS

log-gamma is not a member of the location and scale family of distributions.
It is, however, a member of the location family. Figure 3.6 shows some gamma
p.d.f.’s and hazards. We display some log-gamma p.d.f.’s in Figure 3.7. See
Klein & Moeschberger (1997, page 44) and Kalbfleisch & Prentice (1980, page
27) for a discussion of the generalized gamma and corresponding generalized
log-gamma distributions.

Figure 3.6 Gamma densities and hazards with λ = 1 and k = 0.5, 1, 2, and 3.
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Figure 3.7 Log-gamma density with k = 0.5, 1, 2, and λ = 1.

Summary

Except for the gamma distribution, all distributions of lifetime T we work
with have the property that the distribution of the log-transform log(T ) is a
member of the location and scale family of distributions. The common features
are:

• The time T distributions have two parameters −

scale = λ and shape = α .

• In log-time, Y = log(T ), the distributions have two parameters −

location = µ = − log(λ) and scale = σ =
1

α
.
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• Each can be expressed in the form

Y = log(T ) = µ+ σZ , (3.7)

where Z is the standard member; that is,

µ = 0 (λ = 1) and σ = 1 (α = 1) .

• They are log-linear models.

The three distributions considered in our examples are summarized as follows:

T ⇐⇒ Y = log(T )

Weibull ⇐⇒ extreme minimum value

log-normal ⇐⇒ normal

log-logistic ⇐⇒ logistic

If the true distribution of Y = log(T ) is one of the above, then the pth-quantile
yp is a linear function of zp, the pth-quantile of the standard member of the
specified distribution. The straight line has slope σ and y-intercept µ. Let
tp denote an arbitrary pth-quantile. In light of the foregoing discussion, the
linear relationships for yp = log(tp) reported in expressions (3.3), (3.5), (3.7)
take on new meaning. This is summarized in Table 3.1.

Table 3.1: Relationships to exploit to construct a graphical check for
model adequacy

tp quantile yp = log(tp) quantile form of standard quantile zp

Weibull extreme value log(− log(S(tp))) = log(H(tp))
= log(− log(1− p))

log-normal normal Φ−1(p), where Φ denotes the
standard normal d.f.

log-logistic logistic − log

(
S(tp)

1− S(tp)

)
= − log(odds)

= − log
(

1−p
p

)

Construction of the quantile-quantile (Q-Q) plot

Let Ŝ(t) denote the K-M estimator of survival probability beyond time t. Let
ti, i = 1, . . . , r ≤ n, denote the ordered uncensored observed failure times. For
each uncensored sample quantile yi = log(ti), the estimated failure probability

is p̂i = 1 − Ŝ(ti). The parametric standard quantile zi is obtained by using
the p̂i to evaluate the expression for the standard quantile given in Table 3.1.
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Thus, F0,1(zi) = P (Z ≤ zi) = p̂i, where F0,1 is the d.f. of the standard
parametric model (µ = 0, σ = 1) under consideration. As the K-M estimator
is distribution free and consistently estimates the “true” survival function, for
large sample sizes n, the zi should reflect the “true” standard quantiles, if F
is indeed the “true” lifetime d.f.. Hence, if the proposed model fits the data
adequately, the points (zi, yi) should lie close to a straight line with slope σ
and y-intercept µ. The plot of the points (zi,yi) is called a quantile-
quantile (Q-Q) plot. An appropriate line to compare the plot pattern to is
ŷp = µ̂+ σ̂zp (3.7), where µ̂ and σ̂ denote the maximum likelihood estimates
to be discussed in the next section. Plot patterns grossly different from this
straight line indicate the proposed model is inadequate. The more closely the
plot pattern follows this line, the more evidence there is in support of the
proposed model. The Q-Q plot is a major diagnostic tool for checking model
adequacy.

A cautionary note: Fitting the uncensored points (zi, yi) to a least squares
line alone can be very misleading in deeming model adequacy. Our first exam-
ple of this is discussed in Section 3.4, where we first construct Q-Q plots to
check and compare the adequacy of fitting the AML data to the exponential,
Weibull, and log-logistic distributions.

Equivalently, we can plot the points (zi, ei) where the ei is the ith ordered
residual

ei =
yi − µ̂

σ̂

and zi is the corresponding log-parametric standard quantile of either the
Weibull, log-normal, or log-logistic distribution. If the model under study is
appropriate, the points (zi, ei) should lie very close to the 45o-line through
the origin.

3.2 Maximum likelihood estimation (MLE)

Our assumptions here are that the T1, . . . , Tn are iid from a continuous distri-
bution with p.d.f. f(t|θ), where θ belongs to some parameter space Ω. Here,
θ could be either a real-valued or vector-valued parameter. The likelihood
function is the joint p.d.f. of the sample when regarded as a function of θ
for a given value (t1, . . . , tn). To emphasize this we denote it by L(θ). For
a random sample, this is the product of the p.d.f.’s. That is, the likelihood
function is given by

L(θ) =
n∏

i=1

f(ti|θ).
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The maximum likelihood estimator (MLE), denoted by θ̂, is the value of
θ in Ω that maximizes L(θ) or, equivalently, maximizes the log-likelihood

logL(θ) =
n∑

i=1

logf(ti|θ).

MLE’s possess the invariance property ; that is, the MLE of a function of θ, say
τ(θ), is τ(θ̂). For a gentle introduction to these foregoing notions, see DeGroot
(1986). Under the random censoring model, we see from expression (1.13) that
if we assume that the censoring time has no connection to the survival time,
then the log-likelihood for the maximization process can be taken to be

logL(θ) = log
n∏

i=1

(
f(yi|θ)

)δi
·
(
Sf (yi|θ)

)1−δi
=
∑
u

logf(yi|θ)+
∑
c

logSf (yi|θ),

(3.8)
where u and c mean sums over the uncensored and censored observations,
respectively. Let I(θ) denote the Fisher information matrix. Then its ele-
ments are

I(θ) =

((
−E(

∂2

∂θj∂θk
logL(θ))

))
,

where E denotes expectation. As we are working with random samples (iid)
we point out that I(θ) can be expressed as

I(θ) = nI1(θ),

where I1(θ) =
((

−E( ∂2

∂θj∂θk
logf(y1|θ))

))
is the Fisher information matrix of

any one of the observations.

The MLE θ̂ has the following large sample distribution:

θ̂
a∼ MVN(θ, I−1(θ)), (3.9)

where MVN denotes multivariate normal and
a∼ is read “is asymptotically

distributed.” The asymptotic covariance matrix I−1(θ) is a d × d matrix,
where d is the dimension of θ. The ith diagonal element of I−1(θ) is the

asymptotic variance of the ith component of θ̂. The off-diagonal elements are
the asymptotic covariances of the corresponding components of θ̂. If θ is a
scalar (real valued), then the asymptotic variance, denoted vara, of θ̂ is

vara(θ̂) =
1

I(θ)
,

where I(θ) = −E
(
∂2logL(θ)/∂θ2

)
. For censored data, this expectation is

a function of the censoring distribution G as well as the survival time dis-
tribution F . Hence, it is necessary to approximate I(θ) by the observed

information matrix i(θ) evaluated at the MLE θ̂, where

i(θ) =

((
− ∂2

∂θj∂θk
logL(θ)

))
. (3.10)
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For the univariate case,

i(θ) = − ∂2 logL(θ)

∂θ2
. (3.11)

Hence, vara(θ̂) is approximated by
(
i(θ̂)

)−1

.

The delta method is useful for obtaining limiting distributions of smooth
functions of an MLE. When variance of an estimator includes the parameter
of interest, the delta method can be used to remove the parameter in the vari-
ance. This is called the variance-stabilization. We describe it for the univariate
case.

Delta method:

Suppose a random variable Z has a mean µ and variance σ2 and suppose we
want to approximate the distribution of some function g(Z). Take a first order
Taylor expansion of g(Z) about µ and ignore the higher order terms to get

g(Z) ≈ g(µ) + (Z − µ)g′(µ).

Then the mean(g(Z)) ≈ g(µ) and the var(g(Z)) ≈ (g′(µ))
2
σ2. Furthermore,

if

Z
a∼ normal(µ, σ2),

then

g(Z)
a∼ normal(g(µ), (g′(µ))

2
σ2). (3.12)

Example: Let X1, . . . , Xn be iid from a Poisson distribution with mean λ.
Then the MLE of λ is λ̂ = X. We know that the mean and variance of Z = X

are λ and λ/n, respectively. Take g(Z) = X
1
2 . Then g(λ) = λ

1
2 and

X
1
2 a∼ normal with mean ≈ λ

1
2 and variance ≈ 1

4n
.

There are multivariate versions of the delta method. One is stated in Sec-
tion 3.6.

3.3 Confidence intervals and tests

For some estimators we can compute their small sample exact distributions.
However, for most, in particular when censoring is involved, we must rely
on the large sample properties of the MLE’s. For confidence intervals or for
testing H0 : θ = θ0, where θ is a scalar or a scalar component of a vector, we
can construct the asymptotic z-intervals with the standard errors (s.e.) taken
from the diagonal of the asymptotic covariance matrix which is the inverse of
the information matrix I(θ) evaluated at the MLE θ̂ if necessary. The s.e.’s
are, of course, the square roots of these diagonal values. In summary:
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An approximate (1 − α) × 100% confidence interval for the parameter θ is
given by

θ̂ ± zα
2
s.e.(θ̂), (3.13)

where zα
2
is the upper α

2 quantile of the standard normal distribution and, by

(3.11), s.e. is the square root of vara(θ̂) ≈ −
(
∂2logL(θ)/∂θ2

)−1
=
(
i(θ̂)

)−1

.

However, if we are performing joint estimation or testing a vector-valued θ,
we have three well known procedures: Assume θ0 has d-components, d ≥ 1.
Unless otherwise declared, θ̂ denotes the MLE.

• The Wald statistic:

(θ̂ − θ0)
′
I(θ0)(θ̂ − θ0)

a∼ χ2
(d) under H0.

• The Rao statistic:

∂

∂θ
logL(θ0)

′I−1(θ0)
∂

∂θ
logL(θ0)

a∼ χ2
(d) under H0.

Note that Rao’s method does not use the MLE. Hence, no iterative calcu-
lation is necessary.

• The Neyman-Pearson/Wilks likelihood ratio test (LRT):
Let the vector t represent the n observed values; that is, t′ = (t1, . . . , tn).
The LRT statistic is given by

r∗(t) = −2 log

(
L(θ0)

L(θ̂)

)
a∼ χ2

(d) under H0. (3.14)

To test H0 : θ = θ0 against HA : θ ̸= θ0, we reject for small values of
L(θ0)/L(θ̂) (as this ratio is less than or equal to 1). Equivalently, we reject
for large values of r∗(t).

For joint confidence regions we simply take the region of values that satisfy
the elliptical region formed with either the Wald or Rao statistic with I(θ) or

i(θ) evaluated at the MLE θ̂. For example, an approximate (1 − α) × 100%
joint confidence region for θ is given by

{θ;Wald ≤ χ2
α},

where χ2
α is the chi-square upper αth-quantile with d degrees of freedom. The

following picture explains:
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3.4 One-sample problem

3.4.1 Fitting data to the exponential model

Let u, c, and nu denote uncensored, censored, and number of uncensored
observations, respectively. The n observed values are now represented by the
vectors y and δ, where y′ = (y1, . . . , yn) and δ′ = (δ1, . . . , δn). Then

• Likelihood: See expressions (1.13), (3.8).

L(λ) =
∏
u

f(yi|λ) ·
∏
c

Sf (yi|λ)

=
∏
u

λ exp(−λyi)
∏
c

exp(−λyi)

= λnu exp
(
− λ

∑
u

yi

)
exp

(
− λ

∑
c

yi

)
= λnu exp

(
− λ

n∑
i=1

yi

)
• Log-likelihood:

logL(λ) = nu log(λ)− λ
n∑

i=1

yi

The MLE λ̂ solves
∂ logL(λ)

∂λ
=

nu

λ
−

n∑
i=1

yi = 0.

∂2 logL(λ)

∂λ2
= −nu

λ2
= −i(λ), the negative of the observed information.

• MLE:

λ̂ =
nu∑n
i=1 yi

and vara(λ̂) =
(
−E

(
−nu

λ2

))−1

=
λ2

E(nu)
,
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where E(nu) = n · P (T ≤ C). From expression (3.9),

λ̂− λ√
λ2/E(nu)

a∼ N(0, 1).

We replace E(nu) by nu since we don’t usually know the censoring dis-
tribution G(·). Notice the dependence of the asymptotic variance on the

unknown parameter λ. We substitute in λ̂ and obtain

vara(λ̂) ≈
λ̂2

nu
=

1

i(λ̂)
,

where i(λ) is just above. The MLE for the mean θ = 1/λ is simply θ̂ =

1/λ̂ =
∑n

i=1 yi/nu.

On the AML data, nu = 7,

λ̂ =
7

423
= 0.0165, and vara(λ̂) ≈

λ̂2

7
=

0.01652

7
.

• A 95% C.I. for λ (3.13) is given by

λ̂± z0.025 · se(λ̂) =: 0.0165± 1.96 · 0.0165√
7

=: [0.004277 , 0.0287].

• A 95% C.I. for θ, the mean survival, can be obtained by inverting the
previous interval for λ. This interval is: [34.8, 233.808] weeks. Both intervals

are very skewed. However, as θ̂ = 1/λ̂ = 60.42856 weeks, we have θ =
g(λ) = 1/λ and we can use the delta method to obtain the asymptotic

variance of θ̂. As g′(λ) = −λ−2, the asymptotic variance is

vara(θ̂) =
1

λ2E(nu)
≈ 1

λ̂2 · nu

=
θ̂2

nu
. (3.15)

Hence, a second 95% C.I. for θ, the mean survival, is given by

θ̂±z0.025se(θ̂) =: 60.42856±1.96· 1

0.0165 ·
√
7
=: [15.66246, 105.1947] weeks.

Notice this is still skewed, but much less so; and it is much narrower. Here
we use the asymptotic variance of θ̂ directly, and hence, eliminate one source
of variation. However, the asymptotic variance still depends on λ.

• The MLE of the pth-quantile:

t̂p = − 1

λ̂
log(1− p) = −

∑n
i=1 yi
nu

log(1− p).

Thus, the MLE of the median is

m̂ed = − 423

7
log(0.5) = 41.88 weeks.

Notice how much smaller the median is compared to the estimate θ̂ =
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60.43. The median reflects a more typical survival time. The mean is greatly
influenced by the one large value 161+. Note that

vara(t̂p) =
(
log(1− p)

)2
· vara

(
λ̂−1

)
≈
(
log(1− p)

)2
· 1

λ̂2 · nu

.

The vara

(
λ̂−1

)
is given in expression (3.15). Thus, a 95% C.I. for the

median is given by

t̂0.5 ± 1.96 · − log(0.5)

λ̂ · √nu

=: 41.88± 1.96 · − log(0.5)

0.0165 ·
√
7
=: [10.76, 73] weeks.

• With the delta method (3.12) we can construct intervals that are less
skewed and possibly narrower by finding transformations which eliminate
the dependence of the asymptotic variance on the unknown parameter of
interest. For example, the natural log-transform of λ̂ accomplishes this.
This is because for g(λ) = log(λ), g′(λ) = 1/λ and, thus, vara(log(λ̂)) =
λ−2{λ2/E(nu)} = 1/E(nu). Again we replace E(nu) by nu. Therefore, we
have

log(λ̂)
a∼ N

(
log(λ),

1

nu

)
. (3.16)

A 95% C.I. for log(λ) is given by

log(λ̂)± 1.96 · 1
√
nu

log

(
7

423

)
± 1.96 · 1√

7

[−4.84,−3.36].

Transform back by taking exp(endpoints). This second 95% C.I. for λ is

[.0079, .0347],

which is slightly wider than the previous interval for λ. Invert and re-
verse endpoints to obtain a third 95% C.I. for the mean θ. This yields
[28.81, 126.76] weeks, which is also slightly wider than the second interval
for θ.

Analogously, since vara(θ̂) ≈ θ̂2/nu (3.15), the delta method provides large

sample distributions for log(θ̂) and log(t̂p) with the same variance, which
is free of the parameter θ. They are

log(θ̂)
a∼ N

(
log(θ),

1

nu

)
(3.17)

log(t̂p)
a∼ N

(
log(tp),

1

nu

)
. (3.18)

Analogously, we first construct C.I.’s for the log(parameter), then take
exp(endpoints) to obtain C.I.’s for the parameter. Most statisticians prefer
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this approach. Using the AML data, we summarize 95% C.I.’s in Table 3.2.

Table 3.2: Preferred 95% confidence intervals for mean and median
(or any quantile) of an exponential survival model based on the
log-transform

parameter point estimate log(parameter) parameter

mean 60.43 weeks [3.361, 4.84] [28.81, 126.76] weeks

median 41.88 weeks [2.994, 4.4756] [19.965, 87.85] weeks

• The MLE of the survivor function S(t) = exp(−λt):

Ŝ(t) = exp(−λ̂t) = exp(−0.0165 t).

For any fixed t, Ŝ(t) is a function of λ̂. We can get its approximate dis-
tribution by using the delta method. Alternatively, we can take a log-log
transformation that usually improves the convergence to normality. This
is because the vara is free of the unknown parameter λ. This follows from
(3.16) and the relationship

log
(
− log(Ŝ(t))

)
= log(λ̂) + log(t) .

Hence,

vara

{
log
(
− log(Ŝ(t))

)}
= vara

(
log(λ̂)

)
≈ 1

nu
.

It follows from the delta method that for each fixed t,

log
(
− log(Ŝ(t))

)
a∼ N

(
log(− log(S(t))) = log(λt),

1

nu

)
.

It then follows, with some algebraic manipulation, a (1−α)×100% C.I.
for the true probability of survival beyond time t, S(t), is given by

exp

{
log
(
Ŝ(t)

)
exp

(
zα/2√
nu

)}
≤ S(t) ≤ exp

{
log
(
Ŝ(t)

)
exp

(−zα/2√
nu

)}
.

(3.19)
WHY!

• The likelihood ratio test (3.14):

r∗(y) = −2 logL(λ0) + 2 logL(λ̂)

= −2nu log(λ0) + 2λ0

n∑
i=1

yi + 2nu log
( nu∑n

i=1 yi

)
− 2nu

= −2 · 7 · log( 1

30
) +

2

30
· 423 + 2 · 7 · log

( 7

423

)
− 2 · 7

= 4.396.
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The p -value = P (r∗(y) ≥ 4.396) ≈ 0.036. Therefore, here we reject
H0 : θ = 1/λ = 30 and conclude that mean survival is > 30 weeks.

A computer application:

We use the S function survReg to fit parametric models (with the MLE ap-
proach) for censored data. The following S program is intended to duplicate
some of the previous hand calculations. It fits an exponential model to the
AML data, yields point and 95% C.I. estimates for both the mean and the
median, and provides a Q-Q plot for diagnostic purposes. Recall that the ex-
ponential model is just a Weibull with shape α = 1 or, in log(time), is an
extreme value model with scale σ = 1. The function survReg fits log(time)

and outputs the coefficient µ̂ = − log(λ̂), the MLE of µ, the location pa-

rameter of the extreme value distribution. Hence, the MLE(λ)=λ̂ = exp(−µ̂)

and the MLE(θ)= θ̂ = exp(µ̂). Unnecessary output has been deleted. The S
function predict is a companion function to survReg. It provides estimates
of quantiles along with their s.e.’s. One of the arguments of the predict

function is type. Set type="uquantile" to produce estimates based on the
log-transform as in Table 3.2. The default produces intervals based on the
variance for quantiles derived on page 62. The function qq.weibull produces
a Q-Q plot. The pound sign # denotes our inserted annotation. We store the
data for the maintained group in a data.frame object called aml1. The two
variables are weeks and status.

# Exponential fit

> attach(aml1)

> exp.fit <- survReg(Surv(weeks,status)~1,dist="weib",scale=1)

> exp.fit

Coefficients:

(Intercept)

4.101457

Scale fixed at 1 Loglik(model)= -35.7 n= 11

# The Intercept = 4.1014, which equals µ̂ = − log(λ̂) = log(θ̂). The next
five line commands produce a 95% C.I. for the mean θ.

> coeff <- exp.fit$coeff # muhat

> var <- exp.fit$var

> thetahat <- exp(coeff) # exp(muhat)

> thetahat

60.42828

> C.I.mean1 <- c(thetahat,exp(coeff-1.96*sqrt(var)),

exp(coeff+1.96*sqrt(var)))

> names(C.I.mean1) <- c("mean1","LCL","UCL")

> C.I.mean1
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mean1 LCL UCL

60.42828 28.80787 126.7562

# Estimated median along with a 95% C.I. (in weeks) using the predict

function.

> medhat <- predict(exp.fit,type="uquantile",p=0.5,se.fit=T)

> medhat1 <- medhat$fit[1]

> medhat1.se <- medhat$se.fit[1]

> exp(medhat1)

[1] 41.88569

> C.I.median1 <- c(exp(medhat1),exp(medhat1-1.96*medhat1.se),

exp(medhat1+1.96*medhat1.se))

> names(C.I.median1) <- c("median1","LCL","UCL")

> C.I.median1

median1 LCL UCL

41.88569 19.96809 87.86072

# Point and 95% C.I. estimates for S(t), the probability of survival beyond
time t, at the uncensored maintained group’s survival times.

> muhat <- exp.fit$coeff

> weeks.u <- weeks[status == 1]

> nu <- length(weeks.u)

> scalehat <- rep(exp(muhat),nu)

> Shat <- 1 - pweibull(weeks.u,1,scalehat)

# In S, Weibull’s scale argument is exp(muhat) = 1/lambdahat,

# which we call scalehat.

> LCL <- exp(log(Shat)*exp(1.96/sqrt(nu)))#See expression (3.19)

> UCL <- exp(log(Shat)*exp(-1.96/sqrt(nu)))

> C.I.Shat <- data.frame(weeks.u,Shat,LCL,UCL)

> round(C.I.Shat,5)

weeks.u Shat LCL UCL # 95% C.I.’s

1 9 0.86162 0.73168 0.93146

2 13 0.80644 0.63682 0.90253

4 18 0.74240 0.53535 0.86762

5 23 0.68344 0.45005 0.83406

7 31 0.59869 0.34092 0.78305

8 34 0.56970 0.30721 0.76473

10 48 0.45188 0.18896 0.68477

# The next line command produces the Q-Q plot in Figure 3.8 using the
qq.weibull function. The scale=1 argument forces an exponential to be fit.

> qq.weibull(Surv(weeks,status),scale=1)

[1] "qq.weibull:done"
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The following table summarizes the estimates of the mean and the median.

Exponential fit with MLE to AML1 data
Point Estimate 95% C.I.

median1 41.88569 [19.968, 87.86] weeks

mean1 60.42828 [28.81, 126.76] weeks

This table’s results match those in Table 3.2. In Figure 3.8 a Q-Q plot is
displayed. The following S program performs a likelihood ratio test (LRT) of

Q-Q plot for the AML (maintained) data
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Figure 3.8 Exponential Q-Q plot. The line has MLE intercept µ̂ and slope 1.

the null hypothesis H0 : θ = 1/λ = 30 weeks. To compute the value of the log
likelihood function L(θ) at θ = 30, we use the function weib.loglik.theta.
It has four arguments: time, status, shape, theta. A shape value (α) of 1
forces it to fit an exponential and theta is set to 1/λ = 30. The results match
those hand-calculated back on page 63.

> weib.loglik.theta(weeks,status,1,30)

[1] -37.90838

> rstar <- - 2*(weib.loglik.theta(weeks,status,1,30) -

exp.fit$loglik[1])

> rstar

[1] 4.396295

> pvalue <- 1 - pchisq(rstar,1)

> pvalue

[1] 0.0360171

3.4.2 Fitting data to the Weibull and log-logistic models

The following S program fits the AML data to the Weibull and log-logistic
models both using the MLE approach via the survReg function. The survReg
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function uses by default a log link function which transforms the problem
into estimating location µ = − log(λ) and scale σ = 1/α. In the output from
> summary(weib.fit),

µ̂ (= Intercept) <- weib.fit$coeff, and σ̂ (= Scale) <-weib.fit$scale.

This holds for any summary(fit) resulting from survReg evaluated at the
"Weibull", "loglogistic", and "lognormal" distributions. The S output
has been modified in that the extraneous output has been deleted.

Once the parameters are estimated via survReg, we can use S functions to
compute estimated survival probabilities and quantiles. These functions are
given in Table 3.3 for the reader’s convenience.

Table 3.3: S distribution functions

Weibull logistic (Y= log(T )) normal (Y= log(T ))

F (t) pweibull(q, α, λ−1) plogis(q, µ, σ) pnorm(q, µ, σ)

tp qweibull(p, α, λ−1 ) qlogis(p, µ, σ) qnorm(p, µ, σ)

# Weibull fit

> weib.fit <- survReg(Surv(weeks,status)~1,dist="weib")

> summary(weib.fit)

Value Std. Error z p

(Intercept) 4.0997 0.366 11.187 4.74e-029

Log(scale) -0.0314 0.277 -0.113 9.10e-001

Scale= 0.969

# Estimated median along with a 95% C.I. (in weeks).

> medhat <- predict(weib.fit,type="uquantile",p=0.5,se.fit=T)

> medhat1 <- medhat$fit[1]

> medhat1.se <- medhat$se.fit[1]

> exp(medhat1)

[1] 42.28842

> C.I.median1 <- c(exp(medhat1),exp(medhat1-1.96*medhat1.se),

exp(medhat1+1.96*medhat1.se))

> names(C.I.median1) <- c("median1","LCL","UCL")

> C.I.median1

median1 LCL UCL

42.28842 20.22064 88.43986

> qq.weibull(Surv(weeks,status)) # Produces a Q-Q plot

[1] "qq.weibull:done"
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# Log-logistic fit

> loglogis.fit<-survReg(Surv(weeks,status)~1,dist="loglogistic")

> summary(loglogis.fit)

Value Std. Error z p

(Intercept) 3.515 0.306 11.48 1.65e-030

Log(scale) -0.612 0.318 -1.93 5.39e-002

Scale= 0.542

# Estimated median along with a 95% C.I. (in weeks).

> medhat <- predict(loglogis.fit,type="uquantile",p=0.5,se.fit=T)

> medhat1 <- medhat$fit[1]

> medhat1.se <- medhat$se.fit[1]

> exp(medhat1)

[1] 33.60127

> C.I.median1 <- c(exp(medhat1),exp(medhat1-1.96*medhat1.se),

exp(medhat1+1.96*medhat1.se))

> names(C.I.median1) <- c("median1","LCL","UCL")

> C.I.median1

median1 LCL UCL

33.60127 18.44077 61.22549

> qq.loglogistic(Surv(weeks,status)) # Produces a Q-Q plot.

[1] "qq.loglogistic:done"

> detach()

Discussion

In order to compare some of the output readily, we provide a summary in the
following table:

MLE’s fit to AML1 data at the models:

model µ̂ median1 95% C.I. σ̂

exponential 4.1 41.88 [19.97, 87.86] weeks 1
Weibull 4.1 42.29 [20.22, 88.44] weeks .969
log-logistic 3.52 33.60 [18.44, 61.23] weeks .542

The log-logistic gives the narrowest C.I. among the three. Further, its es-
timated median of 33.60 weeks is the smallest and very close to the K-M
estimated median of 31 weeks on page 32. The Q-Q plots in Figure 3.10 are
useful for distributional assessment. It “appears” that a log-logistic model
fits adequately and is the best among the three distributions discussed. The
estimated log-logistic survival curve is overlayed on the K-M curve for the
AML1 data in Figure 3.9. We could also consider a log-normal model here.
The cautionary note, page 56, warns that we must compare the plot pattern
to the MLE line with slope σ̂ and y-intercept µ̂. For without this comparison,
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the least squares line alone fitted only to uncensored times would lead us to
judge the Weibull survival model adequate. But, as we see in Figure 3.10,
this is wrong. We do see that the least squares line in the Q-Q plot for the
log-logistic fit is much closer to the MLE line with slope σ̂ and y-intercept µ̂.
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Figure 3.9 K-M and log-logistic survival curves for AML data.

Figure 3.11 displays Q-Q plots of (zi, ei). We delay the description of the
function qq.reg.resid.r, which draws the plot, until page 125, where we
discuss checking the adequacy of a regression model. Some R code for the
Q-Q plot follows:

> fit.lognorm <- survreg(Surv(weeks,status)~1,dist="lognormal",

data=aml1)

> qq.reg.resid.r(aml1,aml1$weeks,aml1$status,fit.lognorm,"qnorm",

"standard normal quantile")

3.5 Two-sample problem

In this section we compare two survival curves from the same parametric
family. We focus on comparing the two scale (λ) parameters. In the log-
transformed problem, this compares the two location, µ = − log(λ), parame-
ters. We picture this in Figure 3.12. We continue to work with the AML data.
The nonparametric log-rank test (page 40) detected a significant difference
(p -value= 0.03265) between the two K-M survival curves for the two groups,
maintained and nonmaintained. We concluded maintenance chemotherapy
prolongs remission period. We now explore if any of the log-transform dis-
tributions, which belong to the location and scale family (3.7), fit this data
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Q-Q plot for the AML (maintained) data
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Figure 3.10 Q-Q plots for the exponential, the Weibull, and the log-logistic. Each
solid line is constructed with MLE’s µ̂ and σ̂. The dashed lines are least squares
lines.
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Figure 3.11 Q-Q plots of the ordered residuals ei = (yi − µ̂)/σ̂ where yi denotes the
log-data. Dashed line is the 45o-line through the origin.
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Extreme Value Densities

 

µ2 µ1β∗

Figure 3.12 Comparison of two locations.

adequately. The full model can be expressed as a log-linear model as follows:

Y = log(T )
= µ̃+ error
= θ + β∗group + error

=

{
θ + β∗ + error if group = 1 (maintained)
θ + error if group = 0 (nonmaintained).

The µ̃ is called the linear predictor. In this two groups model, it has two
values µ1 = θ + β∗ and µ2 = θ. Further, we know µ̃ = − log(λ̃), where λ̃
denotes the scale parameter values of the distribution of the target variable
T . Then λ̃ = exp(−θ − β∗group). The two values are λ1 = exp(−θ − β∗) and
λ2 = exp(−θ). The null hypothesis is:

H0 : λ1 = λ2 if and only if µ1 = µ2 if and only if β∗ = 0 .

Recall that the scale parameter in the log-transform model is the reciprocal
of the shape parameter in the original model; that is, σ = 1/α. We test H0

under each of the following cases:

Case 1:Assume equal shapes (α); that is, we assume equal scales σ1 = σ2 =
σ. Hence, error = σZ, where the random variable Z has either the standard
extreme value, standard logistic, or the standard normal distribution. Recall
by standard, we mean µ = 0 and σ = 1.

Case 2: Assume different shapes; that is, σ1 ̸= σ2.

Fitting data to the Weibull, log-logistic, and log-normal models

In the following S program we first fit the AML data to the Weibull model and
conduct formal tests. Then we fit the AML data to the log-logistic and log-
normal models. Quantiles in the log-linear model setting are discussed. Lastly,
we compare Q-Q plots. The S function anova conducts LRT’s for hierarchical
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models; that is, each reduced model under consideration is a subset of the full
model under consideration. Extraneous output has been deleted. The AML
data is stored in the data frame aml.

Model 1: Data come from same distribution. The Null Model is Y =
log(T ) = θ + σZ, where Z is a standard extreme value random variable.

> attach(aml)

> weib.fit0 <- survReg(Surv(weeks,status) ~ 1,dist="weib")

> summary(weib.fit0)

Value Std. Error z p

(Intercept) 3.6425 0.217 16.780 3.43e-063 Scale= 0.912

Loglik(model)= -83.2 Loglik(intercept only)= -83.2

Model 2: Case 1: With different locations and equal scales σ, we express
this model by

Y = log(T ) = θ + β∗group + σZ. (3.20)

> weib.fit1 <- survReg(Surv(weeks,status) ~ group,dist="weib")

> summary(weib.fit1)

Value Std. Error z p

(Intercept) 3.180 0.241 13.22 6.89e-040

group 0.929 0.383 2.43 1.51e-002

Scale= 0.791 Loglik(model)= -80.5 Loglik(intercept only)= -83.2

Chisq= 5.31 on 1 degrees of freedom, p= 0.021

> weib.fit1$linear.predictors # Extracts the estimated mutildes.

4.1091 4.1091 4.1091 4.1091 4.1091 4.1091 4.1091 4.1091

4.1091 4.1091 4.1091 3.1797 3.1797 3.1797 3.1797 3.1797

3.1797 3.1797 3.1797 3.1797 3.1797 3.1797 3.1797

# muhat1=4.109 and muhat2=3.18 for maintained and

# nonmaintained groups respectively.

Model 3: Case 2: Y = log(T ) = θ + β∗group + error, different locations,
different scales.

Fit each group separately. On each group run a survReg to fit the data. This
gives the MLE’s of the two locations µ1 and µ2, and the two scales σ1 and σ2.

> weib.fit20 <- survReg(Surv(weeks,status) ~ 1,

data=aml[aml$group==0,],dist="weib")

> weib.fit21 <- survReg(Surv(weeks,status) ~ 1,

data=aml[aml$group==1,],dist="weib")
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> summary(weib.fit20)

Value Std.Error z p

(Intercept) 3.222 0.198 16.25 2.31e-059 Scale=0.635

> summary(weib.fit21)

Value Std.Error z p

(Intercept) 4.1 0.366 11.19 4.74e-029 Scale=0.969

To test the reduced model against the full model we use the LRT. The anova
function is appropriate for hierarchical models.

> anova(weib.fit0,weib.fit1,test="Chisq")

Analysis of Deviance Table Response: Surv(weeks, status)

Terms Resid. Df -2*LL Test Df Deviance Pr(Chi)

1 1 21 166.3573

2 group 20 161.0433 1 5.314048 0.02115415

# Model 2 is a significant improvement over the null

# model (Model 1).

To construct the appropriate likelihood function for Model 3 to be used in the
LRT:

> loglik3 <- weib.fit20$loglik[2]+weib.fit21$loglik[2]

> loglik3

[1] -79.84817

> lrt23 <- -2*(weib.fit1$loglik[2]-loglik3)

> lrt23

[1] 1.346954

> 1 - pchisq(lrt23,1)

[1] 0.2458114 # Retain Model 2.

The following table summarizes the three models weib.fit0, 1, and 2:

Model Calculated Parameters The Picture

1 (0) θ, σ same location, same scale
2 (1) θ, β∗, σ ≡ µ1, µ2, σ different locations, same scale
3 (2) µ1, µ2, σ1, σ2 different locations, different scales

We now use the log-logistic and log-normal distribution to estimate Model 2.
The form of the log-linear model is the same. The distribution of error terms
is what changes.

Y = log(T ) = θ + β∗group + σZ,

where Z ∼ standard logistic or standard normal.

> loglogis.fit1 <- survReg(Surv(weeks,status) ~ group,

dist="loglogistic")
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> summary(loglogis.fit1)

Value Std. Error z p

(Intercept) 2.899 0.267 10.84 2.11e-027

group 0.604 0.393 1.54 1.24e-001

Scale= 0.513 Loglik(model)= -79.4 Loglik(intercept only)= -80.6

Chisq= 2.41 on 1 degrees of freedom, p= 0.12 # p-value of LRT.

# The LRT is test for overall model adequacy. It is not

# significant.

> lognorm.fit1 <- survReg(Surv(weeks,status) ~ group,

dist="lognormal")

> summary(lognorm.fit1)

Value Std. Error z p

(Intercept) 2.854 0.254 11.242 2.55e-029

group 0.724 0.380 1.905 5.68e-002

Scale= 0.865 Loglik(model)= -78.9 Loglik(intercept only)= -80.7

Chisq= 3.49 on 1 degrees of freedom, p= 0.062 # p-value of LRT.

# Here there is mild evidence of the model adequacy.

Quantiles

Let ŷp = log(t̂p) denote the estimated pth-quantile. For Model 2 (3.20) the
quantile lines are given by

ŷp = θ̂ + β̂∗group + σ̂zp , (3.21)

where zp is the pth-quantile from either the standard normal, standard logistic,
or standard extreme value tables. As p changes from 0 to 1, the standard
quantiles zp increase and ŷp is linearly related to zp. The slope of the line is σ̂.

There are two intercepts, θ̂ + β̂∗ and θ̂, one for each group. Hence, we obtain
two parallel quantile lines. Let us take zp to be a standard normal quantile.

Then if p = .5, z.5 = 0. Hence, ŷ.5 = θ̂ + β̂∗group represents the estimated
median, and the mean as well, for each group. We see that if T is log-normal,
then the estimated linear model ŷ.5 = log(t̂.5) = θ̂ + β̂∗group resembles the

least squares line where we regress y to the group; that is, ŷ = θ̂+ β̂∗group is
the estimated mean response for a given group. In Table 3.4 we provide the
estimated .10, .25, .50, .75, .90 quantiles for the three error distributions under
consideration. Plot any two points (zp, ŷp) for a given group and distribution.
Then draw a line through them. This is the MLE line drawn on the Q-Q plots
in Figure 3.13.

The following S code computes point and C.I. estimates for the medians and
draws Q-Q plots for the three different estimates of Model 2 (3.21). This recipe
works for any desired estimated quantile. Just set p=desired quantile in the
predict function.
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Table 3.4: Five quantiles for the AML data under Model 2 (3.21)

extreme value logistic normal

g p zp ŷp t̂p zp ŷp t̂p zp ŷp t̂p

.10 -2.25 1.40 4.05 -2.20 1.77 5.88 -1.28 1.75 5.73

.25 -1.25 2.19 8.98 -1.10 2.34 10.33 -.67 2.27 9.68
0 .50 -.37 2.89 18 0 2.9 18.16 0 2.85 17.36

.75 .33 3.44 31.14 1.10 3.46 31.9 .67 3.44 31.12

.90 .83 3.84 46.51 2.20 4.03 56.05 1.28 3.96 52.6

.10 -2.25 2.33 10.27 -2.20 2.38 10.76 -1.28 2.47 11.82

.25 -1.25 3.12 22.73 -1.10 2.94 18.91 -.67 2.99 20
1 .50 -.37 3.82 45.56 0 3.50 33.22 0 3.58 35.8

.75 .33 4.37 78.84 1.10 4.07 58.36 .67 4.16 64.16

.90 .83 4.77 117.77 2.2 4.63 102.53 1.28 4.69 108.5

g denotes group.

> medhat <- predict(weib.fit1,newdata=list(group=0:1),

type="uquantile",se.fit=T,p=0.5)

> medhat

$fit:

1 2

2.889819 3.81916

$se.fit:

0.2525755 0.3083033

> medhat0 <- medhat$fit[1]

> medhat0.se <- medhat$se.fit[1]

> medhat1 <- medhat$fit[2]

> medhat1.se <- medhat$se.fit[2]

> C.I.median0 <- c(exp(medhat0),exp(medhat0-1.96*medhat0.se),

exp(medhat0+1.96*medhat0.se))

> names(C.I.median0) <- c("median0","LCL","UCL")

> C.I.median1 <- c(exp(medhat1),exp(medhat1-1.96*medhat1.se),

exp(medhat1+1.96*medhat1.se))

> names(C.I.median1) <- c("median1","LCL","UCL")

# Weibull 95% C.I.’s follow.

> C.I.median0

median0 LCL UCL

17.99005 10.96568 29.51406

> C.I.median1

median1 LCL UCL

45.56593 24.90045 83.38218

# Similarly, log-logistic 95% C.I.’s follow.

> C.I.median0
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median0 LCL UCL

18.14708 10.74736 30.64165

> C.I.median1

median1 LCL UCL

33.21488 18.90175 58.36648

# Log-normal 95% C.I.’s follow.

> C.I.median0

median0 LCL UCL

17.36382 10.55622 28.56158

> C.I.median1

median1 LCL UCL

35.83274 20.50927 62.60512

# The Q-Q plots are next.

> t.s0 <- Surv(weeks[group==0],status[group==0])

> t.s1 <- Surv(weeks[group==1],status[group==1])

> qq.weibull(Surv(weeks,status))

> qq.weibreg(list(t.s0,t.s1),weib.fit1)

> qq.loglogisreg(list(t.s0,t.s1),loglogis.fit1)

> qq.lognormreg(list(t.s0,t.s1),lognorm.fit1)

> detach()

Results:

• The LRT per the anova function provides evidence that Model 2 (3.20),
weib.fit1, which assumes equal scales, is adequate.

• We summarize the distributional fits to Model 2 (3.20) in the following
table:

distribution max. log-likeli p -value for p -value for

log(L(θ̂, β̂∗)) model θ̂ β̂∗ group effect
adequacy

Weibull −80.5 0.021 3.180 0.929 0.0151
log-logistic −79.4 0.12 2.899 0.604 0.124
log-normal −78.9 0.062 2.854 0.724 0.0568

• For the Weibull fit we conclude that there is a significant “group” effect (p -
value= 0.0151). The maintained group tends to stay in remission longer,
with estimated extreme value location parameters µ̂1 = 4.109 and µ̂2 =
3.18.

• The median of the maintained group is 45.6 weeks whereas the median
of the nonmaintained group is only about 18 weeks. Corresponding 95%
confidence intervals are (24.9, 83.38) weeks, and (10.96, 29.51) weeks, re-
spectively.
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Figure 3.13 Q-Q plots for the Weibull, the log-logistic, and the log-normal fit to
Model 2: y = θ+ β∗group+ σZ. Each line constructed with the MLE’s θ̂, β̂∗, and σ̂.
In each plot, the lines have same slope σ̂ and different intercepts, either θ̂ or θ̂+ β̂∗.

• The log-normal has largest maximized likelihood, whereas the Weibull has
the smallest. But the LRT for overall model fit is significant only for the
Weibull; i.e., its p -value is the only one less than 0.05.

• The estimated linear predictor ̂̃µ = θ̂ + β̂∗group. As ̂̃µ = − log(
̂̃
λ),
̂̃
λ =

exp(−̂̃µ) = exp(−θ̂ − β̂∗group). α̂ = 1/σ̂. We summarize the estimated
parameters for each group and distributional model in the following table:

Weibull log-logistic log-normal

group
̂̃
λ α̂

̂̃
λ α̂

̂̃
λ α̂

0 0.042 1.264 0.055 1.95 0.058 1.16
1 0.0164 1.264 0.030 1.95 0.028 1.16

• The Q-Q plots in Figure 3.13 suggest that the log-logistic or log-normal
models fit the maintained group data better than the Weibull model. How-
ever, they do not improve the fit for the nonmaintained.

• The nonparametric approach based on K-M, presented in Chapter 2, may
give the better description of this data set.
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Prelude to parametric regression models

As a prelude to parametric regression models presented in the next chapter,
we continue to explore Model 2 (3.20) under the assumption that T ∼Weibull.
That is, we explore

Y = log(T )
= θ + β∗group + σZ
= µ̃+ σZ ,

where Z is a standard extreme minimum value random variable. Let the linear
predictor µ̃ = − log(λ̃) and σ = 1/α. It follows from page 49 that the hazard
function for the Weibull in this context is expressed as

h(t|group) = αλ̃αtα−1

= αλαtα−1 exp(βgroup)

= h0(t) exp(βgroup) , (3.22)

when we set λ = exp(−θ) and β = −β∗/σ. WHY! The h0(t) denotes the
baseline hazard; that is, when group = 0 or β = 0. Thus, h0(t) is the hazard
function for the Weibull with scale parameter λ, which is free of any covariate.

The hazard ratio (HR) of group 1 to group 0 is

HR =
h(t|1)
h(t|0)

=
exp(β)

exp(0)
= exp(β) .

If we believe the Weibull model is appropriate, the HR is constant over follow-
up time t. That is, the graph of HR is a horizontal line with height exp(β).
We say the Weibull enjoys the proportional hazards property to be formally
introduced in Chapter 4.3. On the AML data,

β̂ =
−β̂∗

σ̂
=

−0.929

0.791
= −1.1745 .

Therefore, the estimated HR is

ĤR =
ĥ(t|1)
ĥ(t|0)

= exp(−1.1745) ≈ 0.31 .

The maintained group has 31% of the risk of the control group’s risk of relapse.
Or, the control group has (1/0.31)=3.23 times the risk of the maintained group
of relapse at any given time t. The HR is a measure of effect that describes
the relationship between time to relapse and group.

If we consider the ratio of the estimated survival probabilities, say at t = 31

weeks, since
̂̃
λ = exp(−̂̃µ), we obtain

Ŝ(31|1)
Ŝ(31|0)

=
0.652

0.252
≈ 2.59 .
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The maintained group is 2.59 times more likely to stay in remission at least
31 weeks. The Weibull survivor function S(t) is given in a table on page 49.

3.6 A bivariate version of the delta method

(
x

y

)
a∼ MVN

((
µx

µy

)
;

(
σ2
x σxy

σxy σ2
y

))
and suppose we want the asymptotic distribution of g(x, y). Then the 1st order
Taylor approximation for scalar fields is

g(x, y) ≈ g(µx, µy) + (x− µx)
∂

∂x
g(µx, µy) + (y − µy)

∂

∂y
g(µx, µy).

Note that we expand about (x, y) = (µx, µy). The g(·, ·) is a bivariate function
that yields a scalar, i.e., a univariate. Then

g(x, y)
a∼ normal with

mean ≈ g(µx, µy)

asymptotic variance ≈
σ2
x(

∂
∂xg)

2 + σ2
y(

∂
∂y g)

2 + 2σxy(
∂
∂xg)(

∂
∂y g). (3.23)

WHY!

3.7 General version of the likelihood ratio test

Let X1, X2, . . . , Xn denote a random sample from a population with p.d.f.
f(x|θ), (θ may be a vector), where θ ∈ Ω, its parameter space. The likelihood
function is given by

L(θ) = L(θ|x) =
n∏

i=1

f(xi|θ), where x = (x1, x2, . . . , xn).

Let Ω0 denote the null space. Then Ω = Ω0 ∪ Ωc
0.

Definition 3.7.1 The likelihood ratio test statistic

for testing H0 : θ ∈ Ω0 (reduced model) against HA : θ ∈ Ωc
0 (full model) is

given by

r(x) =
supΩ0

L(θ)

supΩ L(θ)
.

Note that r(x) ≤ 1. Furthermore, this handles hypotheses with nuisance pa-
rameters. Suppose θ = (θ1, θ2, θ3). We can test for exampleH0 : (θ1 = 0, θ2, θ3)
against HA : (θ1 ̸= 0, θ2, θ3). Here θ2 and θ3 are nuisance parameters. Most
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often, finding the sup amounts to finding the MLE’s and then evaluating L(θ)
at the MLE. Thus, for the denominator, obtain the MLE over the whole pa-
rameter space Ω. We refer to this as the full model. For the numerator, we
maximize L(θ) over the reduced (restricted) space Ω0. Find the MLE in Ω0

and put into L(·). As r(x) ≤ 1, we reject H0 for small values. Or, equivalently,
we reject H0 for large values of

r∗(x) = −2 log r(x).

Theorem 3.7.1 Asymptotic distribution of the r∗(x) test statistic.

Under H0 : θ ∈ Ω0, the distribution of r∗(x) converges to a χ2
(df) as n → ∞.

The degrees of freedom (df) = (# of free parameters in Ω) − (# of free
parameters ∈ Ω0).

That is,
r∗(x)

a∼ χ2
(df).

Proof: See Bickel & Doksum (2001, Chapter 6.3, Theorem 6.3.2).

Thus, an approximate size−α test is: reject H0 iff r∗(x) = −2 log r(x) ≥ χ2
α.

To compute approximate p -value: if r∗(x) = r∗, then

p -value ≈ P (r∗(x) ≥ r∗),

the area under the Chi-square curve to the right of r∗; that is, the upper tail
area.



CHAPTER 4

Regression Models

Let T denote failure time and x = (x(1), . . . , x(m))′ represent a vector of avail-
able covariates. We are interested in modelling and determining the relation-
ship between T and x. Often this is referred to as prognostic factor analysis.
These x are also called regression variables, regressors, factors, or explana-
tory variables. The primary question is: Do any subsets of the m covariates
help to explain survival time? For example, does age at first treatment and/or
gender increase or decrease (relative) risk of survival? If so, how and by what
estimated quantity?

Example 1. Let

• x(1) denote the sex (x
(1)
i = 1 for males and x

(1)
i = 0 for females),

• x(2) = Age at diagnosis,

• x(3) = x(1) · x(2) (interaction),

• T = survival time.

We introduce four models: the exponential, the Weibull, the Cox proportional
hazards, and the accelerated failure time model, and a variable selection pro-
cedure.

Objectives of this chapter:

After studying Chapter 4, the student should:

1 Understand that the hazard function is modelled as a function of available
covariates x = (x(1), . . . , x(m))′.

2 Know that the preferred link function for η = x′β is k(η) = exp(η)
and why.

3 Recognize the exponential and Weibull regression models.

4 Know the definition of the Cox proportional hazards model.

5 Know the definition of an accelerated failure time model.

6 Know how to compute the AIC statistic.

7 Know how to implement the S functions survReg and predict to estimate
and analyze a parametric regression model and obtain estimated quantities
of interest.

81
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8 Know how to interpret the effects of a covariate on the risk and survivor
functions.

4.1 Exponential regression model

We first generalize the exponential distribution. Recall that for the exponen-
tial distribution the hazard function, h(t) = λ, is constant with respect to
time and that E(T ) = 1

λ . We model the hazard rate λ as a function of the
covariate vector x.

We assume the hazard function at time t for an individual has the form

h(t|x) = h0(t) · k(x′β) = λ · k(x′β) = λ · k(β1x
(1) + · · ·+ βmx(m)) ,

where β = [β1, β2, . . . , βm]′ is a vector of regression parameters (coefficients),
λ > 0 is a constant, and k is a specified link function. The function h0(t)
is called the baseline hazard. It’s the value of the hazard function when the
covariate vector x = 0 or β = 0. Note that this hazard function is constant
with respect to time t, but depends on x.

The most natural choice for k is k(x) = exp(x), which implies

h(t|x) = λ · exp(x′β)

= λ · exp
(
β1x

(1) + · · ·+ βmx(m)
)

= λ · exp
(
β1x

(1)
)
× exp

(
β2x

(2)
)
× · · · × exp

(
βmx(m)

)
.

This says that the covariates act multiplicatively on the hazard rate. Equiva-
lently, this specifies

log(h(t|x)) = log(λ) + η = log(λ) + (x′β) = log(λ) + β1x
(1) + · · ·+ βmx(m) .

That is, the covariates act additively on the log failure rate – a log-linear model
for the failure rate. The quantity η = x′β is called the linear predictor of the
log-hazard. We may consider a couple of other k functions that may appear
natural, k(η) = 1+η and k(η) = 1/(1+η). The first one has a hazard function
h(t|x) = λ× (1 + x′β) which is a linear function of x and the second has the
mean E(T |x) = 1/h(t|x) = (1 + x′β)/λ which is a linear function of x. Note
that both proposals could produce negative values for the hazard (which is
a violation) unless the set of β values is restricted to guarantee k(x′β) > 0
for all possible x. Therefore, k(η) = exp(η) is the most natural since it
will always be positive no matter what the β and x are.

The survivor function of T given x is

S(t|x) = exp
(
− h(t|x)t

)
= exp

(
− λ exp(x′β)t

)
.

Thus, the p.d.f. of T given x is

f(t|x) = h(t|x)S(t|x) = λ exp(x′β) exp
(
−λ exp(x′β)t

)
.
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Recall from Fact, Chapter 3.1, page 50, that if T is distributed exponentially,
Y = log(T ) is distributed as the extreme (minimum) value distribution with
scale parameter σ = 1. Here, given x, we have

µ̃ = − log(h(t|x)) = − log
(
λ exp(x′β)

)
= − log(λ)− x′β and σ = 1.

Therefore, given x,

Y = log(T ) = µ̃+ σZ = β∗
0 + x′β∗ + Z ,

where β∗
0 = − log(λ), β∗ = −β, and Z ∼ f(z) = exp(z−ez),−∞ < z < ∞, the

standard extreme (minimum) value distribution. The quantity µ̃ = β∗
0 + x′β∗

is called the linear predictor of the log-time.

In summary, h(t|x) = λ exp(x′β) is a log-linear model for the failure rate and
transforms into a linear model for Y = log(T ) in that the covariates act
additively on Y .

Example 1 continued: The exponential distribution is usually a poor model
for human survival times. We use it anyway for illustration. We obtain

hazard function: h(t|x) = λ exp(x′β)

log(hazard): log(h(t|x)) = log(λ) + β1x
(1) + β2x

(2) + β3x
(3)

survivor function: S(t|x) = exp(−λexp(x′β)t)

Male Female

hazard λ exp (β1 + (β2 + β3)age) λ exp(β2 age)
log(hazard) (log(λ) + β1) + (β2 + β3)age log(λ) + β2 age
survivor exp (−λ exp(β1 + (β2 + β3)age)t) exp (−λ exp(β2age)t)

Take λ = 1, β1 = −1, β2 = −0.2, β3 = 0.1. Then

Male Female

hazard exp(−1− .1· age) exp(−0.2 age)
log(hazard) −1− 0.1· age −0.2· age
survivor exp (− exp(−1− 0.1 · age)t) exp (− exp(−0.2 · age)t)

Plots for this example are displayed in Figure 4.1.
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Figure 4.1 Plots for Example 1.

4.2 Weibull regression model

We generalize the Weibull distribution to regression in a similar fashion. Recall
that its hazard function is h(t) = αλαtα−1.

To include the covariate vector x we now write the hazard for a given x as

h(t|x) = h0(t) · exp(x′β) (4.1)

= αλαtα−1 exp(x′β) = α
(
λ ·
(
exp(x′β)

) 1
α

)α
tα−1

= α(λ̃)αtα−1,

where λ̃ = λ ·
(
exp(x′β)

) 1
α .

Again notice that

log(h(t|x)) = log(α) + α log(λ̃) + (α− 1) log(t)

= log(α) + α log(λ) + x′β + (α− 1) log(t) .

From Fact, Chapter 3.1, page 50, if T ∼ Weibull, then given x, Y = log(T )
= µ̃+ σZ, where

µ̃ = − log(λ̃) = − log(λ · (exp(x′β))
1
α ) = − log(λ)− 1

α
x′β , (4.2)
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σ = 1
α , and Z ∼ standard extreme value distribution. Therefore,

Y = β∗
0 + x′β∗︸ ︷︷ ︸

µ̃

+σZ , (4.3)

where β∗
0 = − log(λ) and β∗ = −σβ. It then follows from the table on page 49

that the survivor function of T given x is

S(t|x) = exp
(
−(λ̃t)α

)
. (4.4)

It follows from the relationship between the cumulative hazard and survivor
functions given in expression (1.6) that, for a given x, H(t|x) = − log(S(t|x)).
An expression for the log-cumulative hazard function follows from expres-
sion (4.2) for log(λ̃).

log
(
H(t|x)

)
= α log(λ̃) + α log(t)

= α log(λ) + α log(t) + x′β (4.5)

= log
(
H0(t)

)
+ x′β ,

where H0(t) = − log
(
S0(t)

)
= (λt)α. The log of the cumulative hazard func-

tion is linear in log(t) and in the β coefficients. Thus, for a fixed x value,
the plot of H(t|x) against t on a log-log scale is a straight line with slope α
and intercept x′β + α log(λ). Expression (4.5) can also be derived by noting
expression (4.1) and definition (1.6) give

H(t|x) = H0(t) exp(x
′β) = (λt)α exp(x′β) . (4.6)

In summary, for both the exponential and Weibull regression model, the effects
of the covariates x act multiplicatively on the hazard function h(t|x) which is
clear from the form

h(t|x) = h0(t) · exp(x′β) = h0(t) · exp
(
β1x

(1) + · · ·+ βmx(m)
)

= h0(t) · exp
(
β1x

(1)
)
× exp

(
β2x

(2)
)
× · · · × exp

(
βmx(m)

)
.

This suggests the more general Cox proportional hazards model, pre-
sented in the next section. Further, both are log-linear models for T in that
these models transform into a linear model for Y = log(T ). That is, the co-
variates x act additively on log(T ) (multiplicatively on T ), which is clear from
the form

Y = log(T ) = µ̃+ σZ = β∗
0 + x′β∗ + σZ .

This suggests a more general class of log-linear models called accelerated
failure time models discussed in Section 4.4 of this chapter.
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The difference from an ordinary linear regression model for the log-
transformed target variable T, Y= log(T ), is the distribution of the errors
Z, which here is an extreme value distribution rather than a normal one.
Therefore, least-squares methods are not adequate. Furthermore, there will
be methods to deal with censored values, which is rarely discussed for or-
dinary linear regression.

4.3 Cox proportional hazards (PH) model

For the Cox (1972) PH model, the hazard function is

h(t|x) = h0(t) · exp(x′β), (4.7)

where h0(t) is an unspecified baseline hazard function free of the covariates
x. The covariates act multiplicatively on the hazard. Clearly, the exponential
and Weibull are special cases. At two different points x1, x2, the proportion

h(t|x1)

h(t|x2)
=

exp(x′
1β)

exp(x′
2β)

= exp
(
(x′

1 − x′
2)β
)
, (4.8)

called the hazards ratio (HR), is constant with respect to time t. This
defines the proportional hazards property.

Remark:

As with linear and logistic regression modelling, a statistical goal of a sur-
vival analysis is to obtain some measure of effect that will describe
the relationship between a predictor variable of interest and time to
failure, after adjusting for the other variables we have identified in
the study and included in the model. In linear regression modelling, the
measure of effect is usually the regression coefficient β. In logistic regression,
the measure of effect is an odds ratio, the log of which is β for a change of
1 unit in x. In survival analysis, the measure of effect is the hazards
ratio (HR). As is seen above, this ratio is also expressed in terms of an
exponential of the regression coefficient in the model.

For example, let β1 denote the coefficient of the group covariate with group
= 1 if received treatment and group = 0 if received placebo. Put treatment
group in the numerator of HR. A HR of 1 means that there is no effect. A
hazards ratio of 10, on the other hand, means that the treatment group has
ten times the hazard of the placebo group. Similarly, a HR of 1/10 implies that
the treatment group has one-tenth the hazard or risk of the placebo group.

Recall the relationship between hazard and survival is S(t) = exp
(
−H(t)

)
.

If the HR is less than one, then the ratio of corresponding survival proba-
bilities is larger than one. Hence, the treatment group has larger probability
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of survival at any given time t, after adjusting for the other covariates. WHY!

For any PH model, which includes the Weibull model as well as the Cox model,
the survivor function of T given x is

S(t|x) = exp

(
−
∫ t

0

h(u|x)du
)

= exp

(
− exp(x′β)

∫ t

0

h0(u)du

)
=

(
exp

(
−
∫ t

0

h0(u)du

))exp(x′β)

= (S0(t))
exp(x′β)

,

where S0(t) denotes the baseline survivor function.

The p.d.f. of T given x is

f(t|x) = h0(t) exp(x
′β) (S0(t))

exp(x′β)
.

There are two important generalizations:

(1) The baseline hazard h0(t) can be allowed to vary in specified subsets of the
data.

(2) The regression variables x can be allowed to depend on time; that is, x =
x(t).

Chapter 5 is devoted to an example of a Cox PH prognostic factor analysis.
A data set referred to as the CNS lymphoma data is extensively analyzed
using various S/R functions.

4.4 Accelerated failure time model

This model is a log-linear regression model for T in that we model Y = log(T )
as a linear function of the covariate x. Suppose

Y = x′β∗ + Z∗,

where Z∗ has a certain distribution. Then

T = exp(Y ) = exp(x′β∗) · exp(Z∗) = exp(x′β∗) · T ∗,

where T ∗ = exp(Z∗). Here the covariate x acts multiplicatively on the survival
time T . Suppose further that T ∗ has hazard function h∗

0(t
∗) which is indepen-

dent of β∗; that is, free of the covariate vector x. The hazard function of T for
a given x can be written in terms of the baseline function h∗

0(·) according to

h(t|x) = h∗
0(exp(−x′β∗)t) · exp(−x′β∗). (4.9)

We see here that the covariates x act multiplicatively on both t and the hazard
function. The log-logistic and log-normal regression models are examples of
accelerated failure time models as well as the exponential and Weibull regres-
sion models.
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It follows from expressions (1.6) and (4.9) that the survivor function of T
given x is

S(t|x) = exp

(
− exp(−x′β∗)

∫ t

0

h∗
0

(
exp(−x′β∗)u

)
du

)
. (4.10)

Change the integration variable to v = exp(−x′β∗)u. Then dv = exp(−x′β∗)du
and 0 < v < exp(−x′β∗)t. Then for the accelerated failure time model,

S(t|x) = exp

(
−
∫ exp(−x′β∗)t

0

h∗
0(v)dv

)
= S∗

0

(
exp(−x′β∗)t

)
= S∗

0 (t
∗),

(4.11)
where S∗

0 (t) denotes the baseline survivor function. Here we notice that the
role of the covariate x changes the scale of the horizontal (t) axis. For example,
if x′β∗ increases, then the last term in expression (4.11) increases. In this case
it has decelerated the time to failure. This is why the log-linear model defined
here is called the accelerated (decelerated) failure time model.

Remarks:

1 We have seen that the Weibull regression model, which includes the expo-
nential, is a special case of both the Cox PH model and the accelerated
failure time model. It is shown on pages 34 and 35 of Kalbfleisch and Pren-
tice (1980) that the only log-linear models that are also PH models are the
Weibull regression models.

2 Through the partial likelihood (Cox, 1975) we obtain estimates of the
coefficients β that require no restriction on the baseline hazard h0(t). The
S function coxph implements this. This partial likelihood is heuristically
derived in Chapter 6.

3 For the accelerated failure time models we specify the baseline hazard func-
tion h0(t) by specifying the distribution function of Z∗.

4 Hosmer and Lameshow (1999) well present the proportional odds and pro-
portional times properties of the log-logistic regression model. From expres-
sion (4.11) and page 52 we can express the log-logistic’s survivor function
as

S(t|x, β∗
0 , β

∗, α) =
1

1 + exp(α(y − β∗
0 − x′β∗))

, (4.12)

where y = log(t), β∗
0 = − log(λ), and α = 1/σ. WHY! The odds of survival

beyond time t is given by

S(t|x, β∗
0 , β

∗, α)

1− S(t|x, β∗
0 , β

∗, α)
= exp(−α(y − β∗

0 − x′β∗)). (4.13)

Note that −log(odds) is both a linear function of log(t) and the covariates
x(j)’s, j = 1, . . . ,m. The odds-ratio of survival beyond time t evaluated at
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x1 and x2 is given by

OR(t|x = x2, x = x1) = exp(α(x2 − x1)
′β∗). (4.14)

The odds-ratio is commonly used as a measure of the effects of covariates.
Note that the ratio is independent of time, which is referred to as the pro-
portional odds property. For example, if OR = 2, then the odds of survival
beyond time t among subjects with x2 is twice that of subjects with x1, and
this holds for all t. Alternatively, some researchers prefer to describe the
effects of covariates in terms of the survival time. The (p×100)th percentile
of the survival distribution is given by

tp(x, β
∗
0 , β

∗, α) =
(
p/(1− p)

)σ
exp(β∗

0 + x′β∗). (4.15)

WHY! Then, for example, the times-ratio at the median is

TR(t.5|x = x2, x = x1) = exp((x2 − x1)
′β∗). (4.16)

This holds for any p. The TR is constant with respect to time, which is
referred to as the proportional times property. Similarly, if TR = 2, then
the survival time among subjects with x2 is twice that of subjects with
x1, and this holds for all t. The upshot is that OR = TRα. That is, the
odds-ratio is the power of the time ratio. Hence, the rate of change of
OR is controlled by α, the shape parameter of the log-logistic distribution.
For α = 1, OR = TR. If α = 2 and TR = 2, then OR = 22 = 4. For
one unit increase in a single component, fixing the other components in x,
OR → +∞ or 0 as α → ∞ depending on the sign of the corresponding
component of β∗, and → 1 as α → 0. Finally, Cox and Oakes (1984, page
79) claim that the log-logistic model is the only accelerated failure time
model with the proportional odds property ; equivalently, the only model
with the proportional times property.
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4.5 Summary

Let Z denote either a standard extreme value, standard logistic, or standard
normal random variable. That is, each has location µ = 0 and scale σ = 1.

•
Y = log(T ) = µ̃+ σZ = β∗

0 + x′β∗ + σZ

accelerated failure time model
log-linear model

↗↙ ↑↓ ↘↖
T T T
Weibull log-logistic log-normal

↓ ↓
PH property proportional

odds property
↕

proportional
times property

The µ̃ is called the linear predictor and σ is the scale parameter. In the
target variable T distribution, λ̃ = exp(−µ̃) and the shape α = 1/σ. The S
function survReg estimates β∗

0 , β
∗, and σ. The predict function provides

estimates of µ̃ at specified values of the covariates. For example, returning
to the AML data, where we have one covariate “group” with two values
0 or 1, to estimate the linear predictor (lp) for the maintained group, use
> predict(fit,type="lp",newdata=list(group=1),se.fit=T).

• The Weibull regression model is the only log-linear model that has the
proportional hazards property. For both the Cox PH model and the Weibull
regression model, we model the hazard function

h(t|x) = h0(t) · exp(x′β),

where h0(t) is the baseline hazard function. For the Weibull model, the
baseline hazard h0(t) = αλαtα−1, the baseline cumulative hazard H0(t) =
(λt)α, and the log-cumulative hazard

log
(
H(t|x)

)
= α log(λ) + α log(t) + x′β .

For the Weibull model, the relationship between the coefficients in the log-
linear model and coefficients in modelling the hazard function is

β = −σ−1β∗ and λ = exp(−β∗
0) .

The S function survReg estimates β∗
0 , β

∗, and σ. The hazard ratio is

HR(t|x = x2, x = x1) =
h(t|x2)

h(t|x1)
=
(
exp

(
(x′

1 − x′
2)β

∗
)) 1

σ

.
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Fitting data to a Cox PH model is presented in detail in Chapter 5. The
Cox procedure estimates the β coefficients directly.

• The log-logistic regression model is the only log-linear model that has the
proportional odds property. The survivor function is

S(t|x) = S∗
0

(
exp(−x′β∗)t

)
=

1

1 +
(
exp(y − β∗

0 − x′β∗)
) 1

σ

,

where S∗
0 (t) is the baseline survivor function, y = log(t), β∗

0 = − log(λ),
and α = 1/σ.

The odds of survival beyond time t is given by

S(t|x)
1− S(t|x)

=
(
exp(y − β∗

0 − x′β∗)
)− 1

σ

.

The (p× 100)th percentile of the survival distribution is given by

tp(x) =
(
p/(1− p)

)σ
exp(β∗

0 + x′β∗).

The odds-ratio of survival beyond time t evaluated at x1 and x2 is given
by

OR(t|x = x2, x = x1) =
(
exp

(
(x2 − x1)

′β∗
)) 1

σ

=
(
TR
) 1

σ

,

where TR is the times-ratio. The reciprocal of the OR has the same func-
tional form as the HR in the Weibull model with respect to β∗ and σ.

• The upshot is: to obtain the estimated measures of effect, ĤR and ÔR, we
need only the estimates given by survReg.

4.6 AIC procedure for variable selection

Akaike’s information criterion (AIC):

Comparisons between a number of possible models, which need not necessarily
be nested nor have the same error distribution, can be made on the basis of
the statistic

AIC = −2× log(maximum likelihood) + k × p,

where p is the number of parameters in each model under consideration and k
a predetermined constant. This statistic is called Akaike’s (1974) informa-
tion criterion (AIC); the smaller the value of this statistic, the better the
model. This statistic trades off goodness of fit (measured by the maximized
log-likelihood) against model complexity (measured by p). Here we shall take
k as 2. For other choice of values for k, see the remarks at the end of this
section.
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We can rewrite the AIC to address parametric regression models considered
in the text. For the parametric models discussed, the AIC is given by

AIC = −2× log(maximum likelihood) + 2× (a+ b), (4.17)

where a is the number of parameters in the specific model and b the number
of one-dimensional covariates. For example, a = 1 for the exponential model,
a = 2 for the Weibull, log-logistic, and log-normal models.

Here we manually step through a sequence of models as there is only one one-
dimensional covariate. But in Chapter 5 we apply an automated model selec-
tion procedure via an S function stepAIC as there are many one-dimensional
covariates.

Motorette data example:

The data set given in Table 4.1 below was obtained by Nelson and Hahn (1972)
and discussed again in Kalbfleisch and Prentice (1980), on pages 4, 5, 58, and
59. Hours to failure of motorettes are given as a function of operating tem-
peratures 1500C, 1700C, 1900C, or 2200C. There is severe (Type I) censoring,
with only 17 out of 40 motorettes failing. Note that the stress (temperature) is
constant for any particular motorette over time. The primary purpose of the
experiment was to estimate certain percentiles of the failure time distribution
at a design temperature of 1300C. We see that this is an accelerated process.
The experiment is conducted at higher temperatures to speed up failure time.
Then they make predictions at a lower temperature that would have taken
them much longer to observe. The authors use the single regressor variable
x = 1000/(273.2+Temperature). They also omit all ten data points at tem-
perature level of 1500C. We also do this in order to compare our results with
Nelson and Hahn and Kalbfleisch and Prentice. We entered the data into a
data frame called motorette. It contains

time status temp x

hours 1 if uncensored 0C 1000/(273.2+0C)
0 if censored

We now fit the exponential, Weibull, log-logistic, and log-normal models. The
log likelihood and the AIC for each model are reported in Table 4.2. The S
code for computing the AIC follows next. For each of these models the form
is the same:

intercept only: Y = log(T ) = β∗
0 + σZ

both: Y = log(T ) = β∗
0 + β∗

1 + σZ,

where the distributions of Z are standard extreme (minimum) value, standard
logistic, and standard normal, respectively.
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Table 4.1: Hours to failure of Motorettes

Temperature Times

1500C All 10 motorettes without failure at 8064 hours
1700C 1764, 2772, 3444, 3542, 3780, 4860, 5196

3 motorettes without failure at 5448 hours
1900C 408, 408, 1344, 1344, 1440

5 motorettes without failure at 1680 hours
2200C 408, 408, 504, 504, 504

5 motorettes without failure at 528 hours

n = 40, nu = no. of uncensored times = 17

Table 4.2: Results of fitting parametric models to the Motorette data

Model log-likelihood AIC

exponential intercept only -155.875 311.750 + 2(1) = 313.750
both -151.803 303.606 + 2(1 + 1) = 307.606

Weibull intercept only -155.681 311.363 + 2(2) = 315.363
both -144.345 288.690 + 2(2 + 1) = 294.690

log-logistic intercept only -155.732 311.464 + 2(2) = 315.464
both -144.838 289.676 + 2(2 + 1) = 295.676

log-normal intercept only -155.018 310.036 + 2(2) = 314.036
both -145.867 291.735 + 2(2 + 1) = 297.735

The S code for computing the AIC for a number of specified distri-
butions

> attach(motorette) # attach the data frame motorette to avoid

# continually referring to it.

# Weibull fit

> weib.fit <- survReg(Surv(time,status)~x,dist="weibull")

> weib.fit$loglik # the first component for intercept only and

# the second for both

[1] -155.6817 -144.3449

> -2*weib.fit$loglik # -2 times maximum log-likelihood

[1] 311.3634 288.6898

# exponential fit

> exp.fit <- survReg(Surv(time,status)~x,dist="exp")

> -2*exp.fit$loglik

[1] 311.7501 303.6064
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# log-normal fit

> lognormal.fit <- survReg(Surv(time,status)~x,

dist="lognormal")

> -2*lognormal.fit$loglik

[1] 310.0359 291.7345

# log-logistic fit

> loglogistic.fit <- survReg(Surv(time,status)~x,

dist="loglogistic")

> -2*loglogistic.fit$loglik

[1] 311.4636 289.6762

> detach() # Use this to detach the data frame when no

# longer in use.

Nelson and Hahn applied a log-normal model, and Kalbfleisch and Prentice ap-
plied a Weibull model. Kalbfleisch and Prentice state that the Weibull model
is to some extent preferable to the log-normal on account of the larger max-
imized log likelihood. From Table 4.2, we find that the Weibull distribution
provides the best fit to this data, the log-logistic distribution is a close second,
and the log-normal distribution is the third.

When there are no subject matter grounds for model choice, the model chosen
for initial consideration from a set of alternatives might be the one for which
the value of AIC is a minimum. It will then be important to confirm that
the model does fit the data using the methods for model checking described
in Chapter 6. We revisit AIC in the context of the PH regression model in
Chapter 5.

Remarks:

1 In his paper (1974), Akaike motivates the need to develop a new model iden-
tification procedure by showing the standard hypothesis testing procedure
is not adequately defined as a procedure for statistical model identification.
He then introduces AIC as an appropriate procedure of statistical model
identification.

2 Choice of k in the AIC seems to be flexible. Collett (1994) states that the
choice k = 3 in the AIC is roughly equivalent to using a 5% significance level
in judging the difference between the values of−2×log(maximum likelihood)
for two nested models which differ by one to three parameters. He recom-
mends k = 3 for general use.

3 There are a variety of model selection indices similar in spirit to AIC.
These are, going by name, BIC, Mallow’s Cp, adjusted R2, R2

a = 1 −
(1− R2)(n− 1)/(n− p), where p is the number of parameters in the least
squares regression, and some others. These all adjust the goodness of fit of
the model by penalizing for complexity of the model in terms of the number
of parameters.



AIC PROCEDURE FOR VARIABLE SELECTION 95

4 Efron (1998) cautions that the validity of the selected model through cur-
rently available methods may be doubtful in certain situations. He illus-
trates an example where a bootstrap simulation study certainly discour-
ages confidence in the selected model. He and his student find that from
500 bootstrap sets of data there is only one match to the originally selected
model. Further, only one variable in the originally selected model appears
in more than half (295) of the bootstrap set based models.

5 Bottom line in model selection: Does it make sense!

Estimation and testing: fitting the Weibull model

The S function survReg fits the times T as log-failure times Y = log(T ) to
model (4.3)

Y = β∗
0 + x′β∗ + σZ,

where Z has the standard extreme value distribution. Further, when we re-
express Y as

Y = x′β∗ + Z∗ ,

where Z∗ = β∗
0 + σZ, we see this model is an accelerated failure time model.

Here Z∗ ∼ extreme value with location β∗
0 and scale σ. The linear predictor

given on page 85 is
µ̃ = − log(λ̃) = β∗

0 + x′β∗ (4.18)

with β∗
0 = − log(λ) and β∗ = −σβ, where the vector β denotes the coefficients

in the Weibull hazard on page 84 and, σ = 1/α, where α denotes the Weibull

shape parameter. Let β̂∗
0 , β̂

∗′
, and σ̂ denote the MLE’s of the parameters.

Recall that the theory tells us MLE’s are approximately normally distributed
when the sample size n is large. To test H0 : β∗

j = β∗0
j , j = 1, . . . ,m, use

β̂∗
j − β∗0

j

s.e.(β̂∗
j )

a∼ N(0, 1) under H0.

An approximate (1− α)× 100% confidence interval for β∗
j is given by

β̂∗
j ± zα

2
s.e.(β̂∗

j ),

where zα
2
is taken from the N(0, 1) table. Inferences concerning the intercept

β∗
0 follow analogously.

Notes:

1 It is common practice to construct (1 − α) × 100% confidence intervals
for the coefficients in the Weibull model by multiplying both endpoints by
−σ̂−1 and reversing their order. However, we suggest constructing confi-
dence intervals using the bivariate delta method stated in Chapter 3.6 to
obtain a more appropriate standard error for β̂j . The reason is that the
bivariate delta method takes into account the variability due to σ̂ as well
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as β̂∗
j . The common approach does not, and hence, could seriously under-

estimate the standard error. The explicit expression for the variance of β̂1

is as follows:

v̂ar(β̂1) =
1

σ̂2

(
var(β̂∗

1) + β̂∗2
1 var(log(σ̂))− 2β̂∗

1cov(β̂
∗
1 , log(σ̂))

)
. (4.19)

WHY! We use this expression to compute a 95% confidence interval for β1

at the end of this chapter.

2 It is common practice to compute a (1−α)×100% confidence interval for the
true parameter value of λ by multiplying LCL and UCL for the intercept β∗

0

by −1, then taking the exp(·) of both endpoints, and then, reversing their
order. This may end up with too wide a confidence interval as we show at
the end of this chapter. Again we recommend the delta method to obtain
the variance estimate of λ̂. By applying the delta method to λ̂ = exp(−β̂∗

0),

we obtain v̂ar(λ̂) = exp(−2β̂∗
0)var(β̂

∗
0). WHY!

At the point x = x0, the MLE of the (p×100)th percentile of the distribution
of Y = log(T ) is

Ŷp = β̂∗
0 + x′

0β̂
∗
+ σ̂zp = (1, x′

0, zp)

 β̂∗
0

β̂
∗

σ̂

 ,

where zp is the (p× 100)th percentile of the error distribution, which, in this

case, is standard extreme value. The estimated variance of Ŷp is

var(Ŷp) = (1, x′
0, zp)Σ̂

 1
x0

zp

 , (4.20)

where Σ̂ is the estimated variance-covariance matrix of β̂∗
0 , β̂

∗
1 , and σ̂. WHY!

Then an approximate (1− α)× 100% confidence interval for the (p× 100)th
percentile of the log-failure time distribution is given by

Ŷp ± zα
2
s.e.(Ŷp),

where zα
2
is taken from the N(0, 1) table. These are referred to as the uquan-

tile type in the S function predict. The MLE of tp is exp(Ŷp). To obtain
confidence limits for tp, take the exponential of the endpoints of the above
confidence interval.

The function predict, a companion function to survReg, conveniently reports
both the quantiles in time and the uquantiles in log(time) along with their
respective s.e.’s. We often find the confidence intervals based on uquantiles
are shorter than those based on quantiles. See, for example, the results at the
end of this section.
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Doing the analysis using S:

In S, we fit the model

Y = log(T ) = β∗
0 + β∗

1x+ σZ,

where Z ∼ standard extreme value distribution. The (p× 100)th percentile of
the standard extreme (minimum) value distribution, Table 3.1, is

zp = log
(
− log(1− p)

)
.

The function survReg outputs the estimated variance-covariance matrix V̂

for the MLE’s β̂∗
0 , β̂

∗
1 , and τ̂ = log σ̂. However, internally it computes Σ̂ to

estimate the var(Ŷp).

The following is an S program along with modified output. The function
survReg is used to fit a Weibull regression model. Then the 15th and 85th
percentiles as well as the median failure time are estimated with corresponding
standard errors. We also predict the failure time in hours at x0 = 2.480159,
which corresponds to the design temperature of 1300C. Four plots of the esti-
mated hazard and survivor functions are displayed in Figure 4.2. Three Q-Q
plots are displayed in Figure 4.3, where intercept is β̂∗

0 + β̂∗
1x and slope is σ̂.

Since there are three distinct values of x, we have three parallel lines. Lastly,
the results are summarized.

> attach(motorette)

> weib.fit <- survReg(Surv(time,status)~x,dist="weibull")

> summary(weib.fit)

Value Std. Error z p

(Intercept) -11.89 1.966 -6.05 1.45e-009

x 9.04 0.906 9.98 1.94e-023

Log(scale) -1.02 0.220 -4.63 3.72e-006

> weib.fit$var # The estimated covariance matrix of the

# coefficients and log(sigmahat).

(Intercept) x Log(scale)

(Intercept) 3.86321759 -1.77877653 0.09543695

x -1.77877653 0.82082391 -0.04119436

Log(scale) 0.09543695 -0.04119436 0.04842333

> predict(weib.fit,newdata=list(x),se.fit=T,type="uquantile",

p=c(0.15,0.5,0.85)) # newdata is required whenever

# uquantile is used as a type whereas quantile uses the

# regression variables as default. This returns the

# estimated quantiles in log(t) along with standard

# error as an option.
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# Estimated quantiles in log(hours) and standard errors in

# parentheses. The output is edited because of redundancy.

x=2.256318 7.845713 8.369733 8.733489

(0.1806513) (0.12339772) (0.1370423)

x=2.158895 6.965171 7.489190 7.852947

(0.1445048) (0.08763456) (0.1189669)

x=2.027575 5.778259 6.302279 6.666035

(0.1723232) (0.14887233) (0.1804767)

> predict(weib.fit,newdata=data.frame(x=2.480159),se.fit=T,

type="uquantile",p=c(0.15,0.5,0.85)) # Estimated

# quantiles in log(hours) at the new x value =

# 2.480159; i.e., the design temperature of 130

# degrees Celsius.

x=2.480159 9.868867 10.392887 10.756643

(0.3444804) (0.3026464) (0.2973887)

> sigmahat <- weib.fit$scale

> alphahat <- 1/sigmahat # estimate of shape

> coef <- weib.fit$coef

> lambdatildehat <- exp(- coef[1] - coef[2]*2.480159)

# estimate of scale

> pweibull(25000,alphahat,1/lambdatildehat) # Computes the

# estimated probability that a motorette failure time

# is less than or equal to 25,000 hours. pweibull is

# the Weibull distribution function in S.

[1] 0.2783054 # estimated probability

> Shatq <- 1 - 0.2783054 # survival probability at 25,000

# hours. About 72% of motorettes are still working

# after 25,000 hours at x=2.480159; i.e., the design

# temperature of 130 degrees Celsius.

> xl <- levels(factor(x)) # Creates levels out of the

# distinct x-values.

> ts.1 <- Surv(time[as.factor(x)==xl[1]],

status[as.factor(x)==xl[1]]) # The first

# group of data

> ts.2 <- Surv(time[as.factor(x)==xl[2]],

status[as.factor(x)==xl[2]]) # The second

> ts.3 <- Surv(time[as.factor(x)==xl[3]],
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status[as.factor(x)==xl[3]]) # The third

> par(mfrow=c(2,2)) # divides a screen into 2 by 2 pieces.

> Svobj <- list(ts.1,ts.2,ts.3) # Surv object

> qq.weibreg(Svobj,weib.fit) # The first argument takes

# a Surv object and the second a survReg object.

# Produces a Weibull Q-Q plot.

> qq.loglogisreg(Svobj,loglogistic.fit) # log-logistic

# Q-Q plot

> qq.lognormreg(Svobj,lognormal.fit) # log-normal Q-Q plot

> detach()

Figure 4.2 Weibull hazard and survival functions fit to motorette data.

Results:

• From summary(weib.fit), we learn that σ̂ = exp(−1.02) = .3605949, and̂̃µ = − log(
̂̃
λ) = β̂∗

0 + β̂∗
1x = −11.89 + 9.04x.
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Figure 4.3 Weibull, log-logistic, and log-normal Q-Q plots of the motorette data.
Lines constructed with MLE’s.

Thus, we obtain α̂ = 1
.3605949 = 2.773195 and

̂̃
λ = exp(11.89 − 9.04 ×

2.480159) = 0.0000267056 at x = 2.480159. Note also that both the inter-
cept and covariate x are highly significant with p -values 1.45 × 10−9 and
1.94× 10−23, respectively.

• It follows from Chapter 4.2 that the estimated hazard function is

ĥ(t|x) = 1

σ̂
· t 1

σ̂−1 · (exp(−̂̃µ)) 1
σ̂

and the estimated survivor function is

Ŝ(t|x) = exp
{
−
(
exp(−̂̃µ)t) 1

σ̂
}
.

• The point estimate of β1, β̂1, is −σ̂−1β̂∗
1 . A 95% C.I. for β1 based on the

delta method is given by [−37.84342,−12.29594]. Whereas the one based
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on the common approach is given by

[−σ̂−1(10.82),−σ̂−1(7.26)] = [−29.92,−20.09],

where σ̂ = .3605949 and the 95% C.I. for β∗
1 is [7.26, 10.81] = [9.04−1.96×

.906, 9.04 + 1.96× .906]. It is clear that the latter interval is much shorter
than the former as it ignores the variability of σ̂.

• A 95% C.I. for λ based on the delta method is given by [−416023.7, 707626.3].
We see this includes negative values, which is not appropriate because λ
is restricted to be positive. Therefore, we report the truncated interval
[0, 707626.3]. The one based on the common approach is given by

[exp(8.04), exp(15.74)] = [3102.61, 6851649.6],

where the 95% C.I. for β∗
0 is [-11.89 − 1.96 × 1.966, -11.89 + 1.96 ×

1.966] = [-15.74, -8.04]. Although the common approach ends up with an
unreasonably wide confidence interval compared to the one based on the
delta method, this approach always yields limits within the legal range of
λ.

• At x = 2.480159, the design temperature of 1300C, the estimated 15th,
50th, and 85th percentiles in log(hours) and hours, respectively based on
uquantile and quantile, along with their corresponding 90% C.I.’s in
hours are reported in the following table.

type percentile Estimate Std.Err 90% LCL 90% UCL

uquantile 15 9.868867 0.3444804 10962.07 34048.36
50 10.392887 0.3026464 19831.64 53677.02
85 10.756643 0.2973887 28780.08 76561.33

quantile 15 19319.44 6655.168 9937.174 37560.17
50 32626.72 9874.361 19668.762 54121.65
85 46940.83 13959.673 28636.931 76944.21

The 90% C.I.’s based on uquantile, exp(estimate ± 1.645 × std.err), are
shorter than those based on quantile at each x value. However, we also
suspect there is a minor bug in predict in that there appears to be a
discrepancy between the standard error estimate for the 15th percentile
resulting from uquantile and ours based on the delta method which fol-
lows. The other two standard error estimates are arbitrarily close to ours.
Our standard error estimates are .3174246, .2982668, and .3011561 for the
15th, 50th, and 85th percentiles, respectively. Applying the trivariate delta
method, we obtain the following expression:

v̂ar(ŷp) = var(β̂∗
0) + var(β̂∗

1)x
2
0 + z2pσ̂

2var(log σ̂) (4.21)

+ 2x0cov(β̂∗
0 , β̂

∗
1) + 2zpσ̂cov(β̂∗

0 , log σ̂) + 2x0zpσ̂cov(β̂∗
1 , log σ̂).

WHY!
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• At the design temperature 1300C, by 25,000 hours about 28% of the mo-
torettes have failed. That is, after 25,000 hours, about 72% are still working.

• As α̂ = 1
σ̂ = 1

.3605949 = 2.773195, then for fixed x the hazard function
increases as time increases. The upper two graphs in Figure 4.2 display es-
timated hazard and survivor functions. The covariate x is fixed at 2.480159
which corresponds to the design temperature 1300C.

• The estimated coefficient β̂1 = − 1
σ̂ β̂

∗
1 = − 1

.3605949 (9.04) = −25.06968 < 0.
Thus, for time fixed, as x increases, the hazard decreases and survival in-
creases. The lower two graphs in Figure 4.2 display these estimated func-
tions when time is fixed at 32,626 hours.

• For x1 < x2,
h(t|x2)

h(t|x1)
= exp((x2 − x1)(−25.06968)).

For example, for x = 2.1 and 2.2,

h(t|2.2)
h(t|2.1)

= exp(.1(−25.06968)) = .08151502.

Thus, for .1 unit increase in x, the hazard becomes about 8.2% of the
hazard before the increase. In terms of Celsius temperature, for 21.645
degree decrease from 202.99050C to 181.34550C, the hazard becomes about
8.2% of the hazard before the decrease.

• The Q-Q plots in Figure 4.3 show that the Weibull fit looks slightly better
than the log-logistic fit at the temperature 1700C, but overall they are
the same. On the other hand, the Weibull fit looks noticeably better than
the log-normal fit at the temperature 1700C and is about the same at the
other two temperatures. This result coincides with our finding from AIC in
Table 4.2; that is, among these three accelerated failure time models, the
Weibull best describes the motorette data.



CHAPTER 5

The Cox Proportional Hazards Model

In this chapter we discuss some features of a prognostic factor analysis based
on the Cox proportional hazards (PH) model. We present a detailed analysis
of the CNS lymphoma data.

Example: CNS lymphoma data

The data result from an observational clinical study conducted at Oregon
Health Sciences University (OHSU). The findings from this study are sum-
marized in Dahlborg et al. (1996). Fifty-eight non-AIDS patients with cen-
tral nervous system (CNS) lymphoma were treated at OHSU from January
1982 through March of 1992. Group 1 patients (n=19) received cranial radi-
ation prior to referral for blood-brain barrier disruption (BBBD) chemother-
apy treatment; Group 0 (n=39) received, as their initial treatment, the BBBD
chemotherapy treatment. Radiographic tumor response and survival were eval-
uated. Table 5.1 describes the variables obtained for each patient.

The primary endpoint of interest here is survival time (in years) from first
blood brain barrier disruption (BBBD) to death (B3TODEATH). Some ques-
tions of interest are:

1 Is there a difference in survival between the two groups (prior radiation, no
radiation prior to first BBBD)?

2 Do any subsets of available covariates help explain this survival time? For
example, does age at time of first treatment and/or gender increase or
decrease the hazard of death; hence, decrease or increase the probability of
survival; and hence, decrease or increase mean or median survival time?

3 Is there a dependence of the difference in survival between the groups on
any subset of the available covariates?

Objectives of this chapter:

After studying Chapter 5, the student should:

1 Know and understand the definition of a Cox PH model including the
assumptions.

2 Know how to use the S function coxph to fit data to a Cox PH model.

103
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3 Know how to use the S function stepAIC along with coxph to identify an
appropriate model.

4 Know how to use the stratified Cox PH model.

5 Know how to interpret the estimated β coefficients with respect to hazard
and other features of the distribution.

6 Understand how to interpret the estimated hazards ratio HR. That is, un-
derstand its usefulness as a measure of effect that describes the relationship
between the predictor variable(s) and time to failure. Further, the HR can
be used to examine the relative likelihood of survival.

We first plot the two Kaplan-Meier (K-M) survivor curves using S. Figure 5.1
displays a difference in survival between the two groups. The higher K-M curve
for the no prior radiation group suggests that this group has a higher chance
of long term survival. The following S output confirms this. The S function
survdiff yields a log-rank test statistic value of 9.5 which confirms this
difference with an approximate p -value of .002. Further note the estimated
mean and median given in the output from the S function survfit. Much of
the output has been deleted where not needed for discussion. The CNS data
is stored in a data frame named cns2.

> cns2.fit0 <- survfit(Surv(B3TODEATH,STATUS)~GROUP,data=cns2,

type="kaplan-meier")

> plot(cns2.fit0,lwd=3,col=1,type="l",lty=c(1,3),cex=2,

lab=c(10,10,7),xlab="Survival Time in Years from

First BBBD",ylab="Percent Surviving",yscale=100)

> text(6,1,"Primary CNS Lymphoma Patients",lwd=3)

> legend(3,0.8,type="l",lty=c(1,3,0),c("no radiation prior

to BBBD (n=39)","radiation prior to BBBD (n=19)",

"+ = patient is censored"),col=1)

> survdiff(Surv(B3TODEATH,STATUS)~GROUP,data=cns2)

N Observed Expected (O-E)^2/E (O-E)^2/V

GROUP=0 39 19 26.91 2.32 9.52

GROUP=1 19 17 9.09 6.87 9.52

Chisq= 9.5 on 1 degrees of freedom, p= 0.00203

> cns2.fit0

n events mean se(mean) median 0.95LCL 0.95UCL

GROUP=0 39 19 5.33 0.973 3.917 1.917 NA

GROUP=1 19 17 1.57 0.513 0.729 0.604 2.48

Since the two survival curves are significantly different, we assess the factors
that may play a role in survival and in this difference in survival duration.
Recall from expression (1.5) the hazard (risk) function h(t)∆t is approximately
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Figure 5.1 Kaplan-Meier survivor curves.

the conditional probability of failure in the (small) interval from t to t + ∆t
given survival until time t. Here t is the length of time a patient lives from
the point of his/her first BBBD. Assuming that the baseline hazard
function is the same for all patients in the study, a Cox PH model
seems appropriate. That is, we model the hazard rate as a function of the
covariates x. Recall from Chapter 4.3 that the hazard function has the form

h(t|x) = h0(t) · exp(x′β) = h0(t) · exp
(
β1x

(1) + β2x
(2) + · · ·+ βmx(m)

)
= h0(t) · exp

(
β1x

(1)
)
× exp

(
β2x

(2)
)
· · · × exp

(
βmx(m)

)
,

where h0(t) is an unspecified baseline hazard function free of the covariates
x. The covariates act multiplicatively on the hazard. At two different points
x1 and x2, the proportion

h(t|x1)

h(t|x2)
=

exp(x′
1β)

exp(x′
2β)

=
exp

(
β1x

(1)
1

)
× exp

(
β2x

(2)
1

)
× · · · × exp

(
βmx

(m)
1

)
exp

(
β1x

(1)
2

)
× exp

(
β2x

(2)
2

)
× · · · × exp

(
βmx

(m)
2

)
is constant with respect to time t. As we are interested in estimating the
coefficients β, the baseline hazard is really a nuisance parameter. Through
the partial likelihood (Cox, 1975) we obtain estimates of the coefficients
β without regard to the baseline hazard h0(t). Note that in the parametric
regression setting of Chapter 4, we specify the form of this function since we
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must specify a distribution for the target variable T . Remember the hazard
function completely specifies the distribution of T ; but the power of the PH
model is that it provides a fairly wide family of distributions by allowing the
baseline hazard h0(t) to be arbitrary. The S function coxph implements Cox’s
partial likelihood function. In Chapter 6.3 we offer a heuristic derivation of
Cox’s partial likelihood.

5.1 AIC procedure for variable selection

Akaike’s information criterion (AIC) for the Cox PH model:

We revisit AIC in the context of the Cox PH regression model. Comparisons
between a number of possible models can be made on the basis of the statistic

AIC = −2× log(maximum likelihood) + 2× b, (5.1)

where b is the number of β coefficients in each model under consideration.
The maximum likelihood is replaced by the maximum partial likelihood. The
smaller the AIC value the better the model is.

We apply an automated model selection procedure via an S function stepAIC

included in MASS, a collection of functions and data sets fromModern Applied
Statistics with S by Venables and Ripley (2002). Otherwise, it would be too
tedious because of many steps involved.

The stepAIC function requires an object representing a model of an appro-
priate class. This is used as the initial model in the stepwise search. Useful
optional arguments include scope and direction. The scope defines the range
of models examined in the stepwise search. The direction can be one of “both,”
“backward,” or “forward,” with a default of “both.” If the direction argument
is missing, the default for direction is “backward.” We illustrate how to use
stepAIC together with LRT to select a best model. We fit the CNS data to
a Cox PH model. In Chapter 1.2 we established the relationship that the
smaller the risk, the larger the probability of survival, and hence the greater
mean survival.

The estimates from fitting a Cox PH model are interpreted as fol-
lows:

• A positive coefficient increases the risk and thus decreases the expected
(average) survival time.

• A negative coefficient decreases the risk and thus increases the expected
survival time.

• The ratio of the estimated risk functions for the two groups can be used
to examine the likelihood of Group 0’s (no prior radiation) survival time
being longer than Group 1’s (with prior radiation).
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Table 5.1: The variables in the CNS lymphoma example

1. PT.NUMBER: patient number
2. GROUP: 0=no prior radiation with respect to 1st blood brain
barrier disruption (BBBD) procedure to deliver chemotherapy;
1=prior radiation
3. SEX: 0=male ; 1=female
4. AGE: at time of 1st BBBD, recorded in years
5. STATUS: 0=alive ; 1=dead
6. DXTOB3: time from diagnosis to 1st BBBD in years
7. DXTODeath: time from diagnosis to death in years
8. B3TODeath: time from 1st BBBD to death in years
9. KPS.PRE.: Karnofsky performance score before 1st BBBD,
numerical value 0 − 100
10. LESSING: Lesions: single=0 ; multiple=1
11. LESDEEP: Lesions: superficial=0 ; deep=1
12. LESSUP: Lesions: supra=0 ; infra=1 ; both=2
13. PROC: Procedure: subtotal resection=1 ; biopsy=2 ; other=3
14. RAD4000: Radiation > 4000: no=0 ; yes=1
15. CHEMOPRIOR: no=0 ; yes=1
16. RESPONSE: Tumor response to chemotherapy - complete=1;
partial=2; blanks represent missing data

The two covariates LESSUP and PROC are categorical. Each has three levels.
The S function factor creates indicator variables. Also, the variable AGE60
is defined as AGE60 = 1 if AGE ≤ 60 and = 0 otherwise. The S code
> cns2$AGE60 <- as.integer(cns2$AGE<=60) creates this variable and stores
it in the cns2 data frame. We implement the S functions stepAIC and coxph

to select appropriate variables according to the AIC criterion based on the
proportional hazards model.

Let us consider the two-way interaction model, which can be easily incor-
porated in the stepAIC. Three-way or four-way interaction models can be
considered but the interpretation of an interaction effect, if any, is not easy.
The initial model contains all 11 variables without interactions. The scope is
up to two-way interaction models. These are listed in the S code under Step
I that follows. The direction is “both.” The AIC for each step is reported
in Table 5.2. The first AIC value is based on the initial model of 11 vari-
ables without interactions. “+” means that term was added at that step and
“-” means that term was removed at that step. The final model retains the
following variables: KPS.PRE., GROUP, SEX, AGE60, LESSING, CHEMO-
PRIOR, SEX:AGE60, AGE60:LESSING, and GROUP:AGE60.

Step I: stepAIC to select the best model according to AIC statistic

> library(MASS) # Call in a collection of library functions

# provided by Venables and Ripley
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> attach(cns2)

> cns2.coxint<-coxph(Surv(B3TODEATH,STATUS)~KPS.PRE.+GROUP+SEX+

AGE60+LESSING+LESDEEP+factor(LESSUP)+factor(PROC)+CHEMOPRIOR)

# Initial model

> cns2.coxint1 <- stepAIC(cns2.coxint,~.^2)

# Up to two-way interaction

> cns2.coxint1$anova # Shows stepwise model path with the

# initial and final models

Table 5.2: Stepwise model path for
two-way interaction model on the CNS
lymphoma data

Step Df AIC

246.0864
+ SEX:AGE60 1 239.3337
- factor(PROC) 2 236.7472
- LESDEEP 1 234.7764

- factor(LESSUP) 2 233.1464
+ AGE60:LESSING 1 232.8460
+ GROUP:AGE60 1 232.6511

Step II: LRT to further reduce

The following output shows p -values corresponding to variables selected by
stepAIC. AGE60 has a large p -value, .560, while its interaction terms with
SEX and LESSING have small p -values, .0019 and .0590, respectively.

> cns2.coxint1 # Check which variable has a

# moderately large p-value

coef exp(coef) se(coef) z p

KPS.PRE. -0.0471 0.9540 0.014 -3.362 0.00077

GROUP 2.0139 7.4924 0.707 2.850 0.00440

SEX -3.3088 0.0366 0.886 -3.735 0.00019

AGE60 -0.4037 0.6679 0.686 -0.588 0.56000

LESSING 1.6470 5.1916 0.670 2.456 0.01400

CHEMOPRIOR 1.0101 2.7460 0.539 1.876 0.06100

SEX:AGE60 2.8667 17.5789 0.921 3.113 0.00190

AGE60:LESSING -1.5860 0.2048 0.838 -1.891 0.05900

GROUP:AGE60 -1.2575 0.2844 0.838 -1.500 0.13000

In statistical modelling, an important principle is that an interaction term
should only be included in a model when the corresponding main effects are
also present. We now see if we can eliminate the variable AGE60 and its
interaction terms with other variables. We use the LRT. Here the LRT is
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constructed on the partial likelihood function rather than the full likelihood
function. Nonetheless the large sample distribution theory holds. The LRT
test shows strong evidence against the reduced model and so we retain the
model selected by stepAIC.

> cns2.coxint2 <- coxph(Surv(B3TODEATH,STATUS)~KPS.PRE.+GROUP

+SEX+LESSING+CHEMOPRIOR) # Without AGE60 and its

# interaction terms

> -2*cns2.coxint2$loglik[2] + 2*cns2.coxint1$loglik[2]

[1] 13.42442

> 1 - pchisq(13.42442,4)

[1] 0.009377846 # Retain the model selected by stepAIC

Now we begin the process of one variable at a time reduction. This can be
based on either the p -value method or the LRT. Asymptotically they are
equivalent. Since the variable GROUP:AGE60 has a moderately large p -value,
.130, we delete it. The following LRT test shows no evidence against the
reduced model (p -value = .138) and so we adopt the reduced model.

> cns2.coxint3 <- coxph(Surv(B3TODEATH,STATUS)~KPS.PRE.+GROUP

+SEX+AGE60+LESSING+CHEMOPRIOR+SEX:AGE60+AGE60:LESSING)

# Without GROUP:AGE60

> -2*cns2.coxint3$loglik[2] + 2*cns2.coxint1$loglik[2]

[1] 2.194949

> 1 - pchisq(2.194949,1)

[1] 0.1384638 # Selects the reduced model

> cns2.coxint3 # Check which variable has a

# moderately large p-value

coef exp(coef) se(coef) z p

KPS.PRE. -0.0436 0.9573 0.0134 -3.25 0.0011

GROUP 1.1276 3.0884 0.4351 2.59 0.0096

SEX -2.7520 0.0638 0.7613 -3.61 0.0003

AGE60 -0.9209 0.3982 0.5991 -1.54 0.1200

LESSING 1.3609 3.8998 0.6333 2.15 0.0320

CHEMOPRIOR 0.8670 2.3797 0.5260 1.65 0.0990

SEX:AGE60 2.4562 11.6607 0.8788 2.79 0.0052

AGE60:LESSING -1.2310 0.2920 0.8059 -1.53 0.1300

From this point on we use the p -value method to eliminate one term at a
time. As AGE60:LESSING has a moderately large p -value, .130, we remove
it.

> cns2.coxint4 # Check which variable has a

# moderately large p-value
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coef exp(coef) se(coef) z p

KPS.PRE. -0.0371 0.9636 0.0124 -3.00 0.00270

GROUP 1.1524 3.1658 0.4331 2.66 0.00780

SEX -2.5965 0.0745 0.7648 -3.40 0.00069

AGE60 -1.3799 0.2516 0.5129 -2.69 0.00710

LESSING 0.5709 1.7699 0.4037 1.41 0.16000

CHEMOPRIOR 0.8555 2.3526 0.5179 1.65 0.09900

SEX:AGE60 2.3480 10.4643 0.8765 2.68 0.00740

We eliminate the term LESSING as it has a moderately large p -value, .160.

> cns2.coxint5 # Check which variable has a

# moderately large p-value

coef exp(coef) se(coef) z p

KPS.PRE. -0.0402 0.9606 0.0121 -3.31 0.00093

GROUP 0.9695 2.6366 0.4091 2.37 0.01800

SEX -2.4742 0.0842 0.7676 -3.22 0.00130

AGE60 -1.1109 0.3293 0.4729 -2.35 0.01900

CHEMOPRIOR 0.7953 2.2152 0.5105 1.56 0.12000

SEX:AGE60 2.1844 8.8856 0.8713 2.51 0.01200

We eliminate the variable CHEMOPRIOR as it has a moderately large p -
value, .120. Since all the p -values in the reduced model fit below are small
enough at the .05 level, we finally stop here and retain these five variables:
KPS.PRE., GROUP, SEX, AGE60, and SEX:AGE60.

> cns2.coxint6 # Check which variable has a

# moderately large p-value

coef exp(coef) se(coef) z p

KPS.PRE. -0.0307 0.970 0.0102 -2.99 0.0028

GROUP 1.1592 3.187 0.3794 3.06 0.0022

SEX -2.1113 0.121 0.7011 -3.01 0.0026

AGE60 -1.0538 0.349 0.4572 -2.30 0.0210

SEX:AGE60 2.1400 8.500 0.8540 2.51 0.0120

However, it is important to compare this model to the model chosen by
stepAIC in Step I as we have not compared them. The p -value based on
LRT is between .05 and .1 and so we select the reduced model with caution.

> -2*cns2.coxint6$loglik[2] + 2*cns2.coxint1$loglik[2]

[1] 8.843838

> 1 - pchisq(8.843838,4)

[1] 0.06512354 # Selects the reduced model

The following output is based on the model with KPS.PRE., GROUP, SEX,
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AGE60, and SEX:AGE60. It shows that the three tests – LRT, Wald, and
efficient score test – indicate there is an overall significant relationship be-
tween this set of covariates and survival time. That is, they are explaining a
significant portion of the variation.

> summary(cns2.coxint6)

Likelihood ratio test= 27.6 on 5 df, p=0.0000431

Wald test = 24.6 on 5 df, p=0.000164

Score (logrank) test = 28.5 on 5 df, p=0.0000296

This model is substantially different from that reported in Dahlborg et al.
(1996). We go through model diagnostics in Chapter 6 to confirm that the
model does fit the data.

Remarks:

1 The model selection procedure may well depend on the purpose of the
study. In some studies there may be a few variables of special interest. In
this case, we can still use Step I and Step II. In Step I we select the best
set of variables according to the smallest AIC statistic. If this set includes
all the variables of special interest, then in Step II we have only to see if
we can further reduce the model. Otherwise, add to the selected model the
unselected variables of special interest and go through Step II.

2 It is important to include interaction terms in model selection procedures
unless researchers have compelling reasons why they do not need them. As
the following illustrates, we could end up with a quite different model when
only main effects models are considered.

We reexamine the CNS Lymphoma data. The AIC for each model without
interaction terms is reported in Table 5.3. The first AIC is based on the
initial model including all the variables. The final model is selected by ap-
plying backward elimination procedure with the range from the full model
with all the variables to the smallest reduced model with intercept only.
It retains these four variables: KPS.PRE., GROUP, SEX, and CHEMO-
PRIOR.

Step I: stepAIC to select the best model according to AIC statistic

> cns2.cox <- coxph(Surv(B3TODEATH,STATUS)~KPS.PRE.+GROUP+SEX

+AGE60+LESSING+LESDEEP+factor(LESSUP)+factor(PROC)

+CHEMOPRIOR) # Initial model with all variables

> cns2.cox1 <- stepAIC(cns2.cox,~.) # Backward elimination

# procedure from full model to intercept only

> cns2.cox1$anova # Shows stepwise model paths with the

# initial and final models
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Table 5.3: Stepwise model path for
the main effects model

Step Df AIC

246.0864
- factor(PROC) 2 242.2766
- LESDEEP 1 240.2805
- AGE60 1 238.7327

- factor(LESSUP) 2 238.0755
- LESSING 1 236.5548

Step II: LRT to further reduce

The following output shows p -values corresponding to variables selected by
stepAIC. The p -values corresponding to GROUP and CHEMOPRIOR are
very close. This implies that their effects adjusted for the other variables
are about the same.

> cns2.cox1 # Check which variable has a large p-value

coef exp(coef) se(coef) z p

KPS.PRE. -0.0432 0.958 0.0117 -3.71 0.00021

GROUP 0.5564 1.744 0.3882 1.43 0.15000

SEX -1.0721 0.342 0.4551 -2.36 0.01800

CHEMOPRIOR 0.7259 2.067 0.4772 1.52 0.13000

We first eliminate GROUP. Since all the p -values in the reduced model
are small enough at .05 level, we finally stop here and retain these three
variables: KPS.PRE., SEX, and CHEMOPRIOR.

> cns2.cox2 # Check which variable has a

# moderately large p-value

coef exp(coef) se(coef) z p

KPS.PRE. -0.0491 0.952 0.011 -4.46 8.2e-006

SEX -1.2002 0.301 0.446 -2.69 7.1e-003

CHEMOPRIOR 1.0092 2.743 0.440 2.30 2.2e-002

Now let us see what happens if we eliminate CHEMOPRIOR first instead
of GROUP. Since all the p -values in the reduced model are either smaller
or about the same as .05 level, we stop here and retain these three variables:
KPS.PRE., GROUP, and SEX.

> cns2.cox3 # Check which variable has large p-value

coef exp(coef) se(coef) z p

KPS.PRE. -0.0347 0.966 0.010 -3.45 0.00056

GROUP 0.7785 2.178 0.354 2.20 0.02800

SEX -0.7968 0.451 0.410 -1.94 0.05200

> detach()
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In summary, depending on the order of elimination, we retain either SEX,
KPS.PRE., and CHEMOPRIOR, or KPS.PRE., GROUP, and SEX. These
two models are rather different in that one includes CHEMOPRIOR where
the other includes GROUP instead. More importantly, note that none of
these sets include the variable AGE60, which is a very important prognostic
factor in this study evidenced by its significant interaction effect with SEX
on the response (cns2.coxint6). In addition, the significance of the GROUP
effect based on the interaction model is more pronounced (p -value 0.0022
versus 0.028), which was the primary interest of the study. Therefore, we
choose the interaction model cns2.coxint6 on page 110 to discuss.

Discussion

• KPS.PRE., GROUP, SEX, AGE60, and SEX:AGE60 appear to have a sig-
nificant effect on survival duration. Here it is confirmed again that there is a
significant difference between the two groups’ (0=no prior radiation,1=prior
radiation) survival curves.

• The estimated coefficient for KPS.PRE. is −.0307 with p -value 0.0028.
Hence, fixing other covariates, patients with high KPS.PRE. scores have
a decreased hazard, and, hence, have longer expected survival time than
those with low KPS.PRE. scores.

• The estimated coefficient for GROUP is 1.1592 with p -value 0.0022. Hence,
with other covariates fixed, patients with radiation prior to first BBBD have
an increased hazard, and, hence, have shorter expected survival time than
those in Group 0.

• Fixing other covariates, the hazard ratio between Group 1 and Group 0 is

exp(1.1592)

exp(0)
= 3.187.

This means that, with other covariates fixed, patients with radiation prior
to first BBBD are 3.187 times more likely than those without to have shorter
survival.

• Fixing other covariates, if a patient in Group 1 has 10 units larger KPS.PRE.
score than a patient in Group 0, the ratio of hazard functions is

exp(1.1592) exp(−0.0307× (k + 10))

exp(0) exp(−.0307× k)
=

exp(1.1592) exp(−0.0307× 10)

exp(0)

= 3.187× 0.7357 = 2.345,

where k is an arbitrary number. This means that fixing other covariates,
a patient in Group 1 with 10 units larger KPS.PRE. score than a patient
in Group 0 is 2.34 times more likely to have shorter survival. In summary,
fixing other covariates, whether a patient gets radiation therapy prior to
first BBBD is more important than how large his/her KPS.PRE. score is.
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• There is significant interaction between AGE60 and SEX. The estimated
coefficient for SEX:AGE60 is 2.1400 with p -value 0.0120. Fixing other co-
variates, a male patient who is younger than 60 years old has 34.86% the
risk a male older than 60 years old has of succumbing to the disease, where

exp(−2.113× 0− 1.0538× 1 + 2.14× 0)

exp(−2.113× 0− 1.0538× 0 + 2.14× 0)
= exp(−1.0538) = .3486.

Whereas, fixing other covariates, a female patient who is younger than 60
years old has 2.963 times the risk a female older than 60 years old has of
succumbing to the disease, where

exp(−2.113× 1− 1.0538× 1 + 2.14× 1)

exp(−2.113× 1− 1.0538× 0 + 2.14× 0)
= exp(1.0862) = 2.963.

In Figure 5.2, we plot the interaction between SEX and AGE60 based on the
means computed using the S function survfit for the response and AGE60,
fixing female and male separately. It shows a clear pattern of interaction,
which supports the prior numeric results using Cox model cns2.coxint6.

M

F

Figure 5.2 Interaction between SEX and AGE60.

In Figure 5.3, we first fit the data to the model

> cox.fit <- coxph(Surv(B3TODEATH,STATUS)~ KPS.PRE.+GROUP+

strata(factor(SEX),factor(AGE60)))

which adjusts for the GROUP and KPS.PRE. effects. We then set GROUP
= 1, KPS.PRE. = 80 and obtain the summary of the adjusted quantiles
and means using survfit as follows:

> survfit(cox.fit,data.frame(GROUP=1,KPS.PRE.=80))

> summary(survfit(cox.fit,data.frame(GROUP=1,KPS.PRE.=80)))

Figure 5.3 displays both ordinal and disordinal interactions. The survival
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curve for females who are younger than 60 years never steps down below
0.50 (see > summary above). In order to produce the median plot, we set
the median survival time since 1st BBBD for this stratum at 1.375 years,
which is the .368-quantile.

If one sets the covariate KPS.PRE. equal to different values, one can study
its relationship to the interaction as well as its effect on the various esti-
mated quantiles of the survival distribution. However, this is tedious. The
“censored regression quantiles” approach introduced by Portnoy (2002) en-
ables one to study each of the estimated quantiles as a function of the
targeted covariates. This nonparametric methodology is presented in Chap-
ter 8 of our book.
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Figure 5.3 Interaction between SEX and AGE60 adjusted for KPS.PRE. and
GROUP via coxph and then evaluated at GROUP = 1 and KPS.PRE. = 80.
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5.2 Stratified Cox PH regression

We stratify on a categorical variable such as group, gender, and exposure still
fitting the other covariates. We do this to obtain nonparametric estimated sur-
vival curves for the different levels having adjusted for the other covariates.
We then plot the curves to view the estimate of the categorical effect, after
adjusting for the effects of the other covariates. If the curves cross or are non-
proportional, this implies the existence of the interaction effect unexplained
in the model. Then look for appropriate interaction term(s) to include in the
model, or stay with the stratified model. If the curves are proportional, this
indicates that the interaction effect is well explained by the model you have
identified and it supports the Cox PH model. Then use the Cox PH model
without the stratification. The disadvantage when we stratify, and the PH
assumption is satisfied, is that we cannot obtain an estimated coefficient of
the categorical variable effect.

We now apply this procedure to our final model for CNS data. In the following
S program we first stratify on the GROUP variable still fitting KPS.PRE.,
SEX, AGE60, and SEX:AGE60 as covariates. Next, we repeat this procedure
for SEX. Again, the disadvantage here is that we cannot obtain an estimated
coefficient of the group and sex effects, respectively.

> attach(cns2)

> cns2.coxint7 <- coxph(Surv(B3TODEATH,STATUS)~strata(GROUP)

+KPS.PRE.+SEX+AGE60+SEX:AGE60)

> cns2.coxint7

coef exp(coef) se(coef) z p

KPS.PRE. -0.0326 0.968 0.0108 -3.03 0.0025

SEX -2.2028 0.110 0.7195 -3.06 0.0022

AGE60 -1.1278 0.324 0.4778 -2.36 0.0180

SEX:AGE60 2.2576 9.560 0.8785 2.57 0.0100

Likelihood ratio test=20.3 on 4 df, p=0.000433 n= 58

> cns2.coxint8 <- coxph(Surv(B3TODEATH,STATUS)~strata(SEX)

+KPS.PRE.+GROUP+AGE60+SEX:AGE60)

> cns2.coxint8

coef exp(coef) se(coef) z p

KPS.PRE. -0.033 0.968 0.0104 -3.19 0.0014

GROUP 1.178 3.247 0.3829 3.08 0.0021

AGE60 -0.994 0.370 0.4552 -2.18 0.0290

SEX:AGE60 2.244 9.427 0.8791 2.55 0.0110

Likelihood ratio test=27 on 4 df, p=0.0000199 n= 58
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# The following gives plots of survival curves resulting from

# stratified Cox PH models to detect any pattern.

# Figure 5.4: upper part.

> par(mfrow=c(2,2))

> survfit.int7 <- survfit(cns2.coxint7)

> plot(survfit.int7,col=1,lty=3:4,lwd=2,cex=3,label=c(10,10,7),

xlab="Survival time in years from first BBBD",

ylab="Percent alive",yscale=100)

> legend(3.0,.92,c("group=0","group=1"),lty=3:4,lwd=2)

> survfit.int8 <- survfit(cns2.coxint8)

> plot(survfit.int8,col=1,lty=3:4,lwd=2,cex=3,label=c(10,10,7),

xlab="Survival time in years from first BBBD",

ylab="Percent alive",yscale=100)

> legend(3.8,.6,c("male","female"),lty=3:4,lwd=2)

For the Weibull regression model, recall (4.5) the log of the cumulative haz-
ard function is linear in log(t). In general, when we look at the Cox PH
model as well as the Weibull model, the plot of H(t) against t on a log-log
scale can be very informative. In the plot function, the optional function
“fun="cloglog"” takes the survfit object and plots H(t) against t on a
log-log scale.

The following S code plots cumulative hazard functions against t, on a log-log
scale, resulting from stratified Cox PH models to detect a nonproportional
hazards trend for the SEX and GROUP variables.

# Figure 5.4: lower part.

> plot(survfit.int7,fun="cloglog",col=1,lty=3:4,label=c(10,10,7),

lwd=2,xlab="time in years from first BBBD",

ylab="log-log cumulative hazard")

> legend(0.05,.8,c("group=0","group=1"),lwd=2,lty=3:4)

> plot(survfit.int8,fun="cloglog",col=1,lty=3:4,label=c(10,10,7),

lwd=2,xlab="time in years from first BBBD",

ylab="log-log cumulative hazard")

> legend(0.05,.8,c("male","female"),lwd=2,lty=3:4)

> detach()

Discussion

• Figure 5.4 shows clear differences between the two groups and between the
males and females, respectively. Further, for both GROUP and SEX, the
two curves are proportional. This supports the Cox PH model.

• Stratification doesn’t change the p -values of the variables in the model
cns2.coxint6. The estimated coefficients are very close as well. That is, the
model cns2.coxint6 explains all the interaction among the covariates.
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Figure 5.4 Stratified survivor and log-log cumulative hazards plots to check for PH
assumption.

Remarks:

The Cox PH model formula says that the hazard at time t is the product of two
quantities h0(t), an unspecified baseline hazard function, and exp(

∑m
j=1 βjx

(j)).
The key features of the PH assumption are that

1 h0(t) is a function of t, but does not involve the covariates x(j).

2 exp(
∑m

j=1 βjx
(j)) involves the covariates x(j), but does not involve t.

These two key features imply the HR must then be constant with respect to
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time t. We now provide an example of a situation where the PH assumption
is violated.

Example: Extracted from Kleinbaum (1996, pages 109 − 111).

A study in which cancer patients are randomized to either surgery or radiation
therapy without surgery is considered. We have a (0, 1) exposure variable E
denoting surgery status, with 0 if a patient receives surgery and 1 if not (i.e.,
receives radiation). Suppose further that this exposure variable is the only
variable of interest.

Is the Cox PH model appropriate? To answer this note that when a
patient undergoes serious surgery, as when removing a cancerous tumor, there
is usually a high risk for complications from surgery or perhaps even death
early in the recovery process, and once the patient gets past this early critical
period, the benefits of surgery, if any, can be observed.

Thus, in a study that compares surgery to no surgery, we might expect to
see hazard functions for each group that appear in Figure 5.5. Notice that
these two functions cross at about three days, and that prior to three days
the hazard for the surgery group is higher than the hazard for the no surgery
group. Whereas, after three days, we have the reverse. For example, looking
at the graph more closely, we can see that at two days, when t = 2, the HR of
no surgery (E = 1) to surgery (E = 0) patients yields a value less than one. In
contrast, at t = 5 days, the HR is greater than one. Thus, if the description of
the hazard function for each group is accurate, the hazard ratio is not constant
over time as HR is some number less than one before three days and greater
than one after three days. Hence, the PH assumption is violated as the HR
does vary with time. The general rule is that if the hazard functions

h(t|E)

E=1 (no surgery)

E=1

hazards cross
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Figure 5.5 Hazards crossing over time.

cross over time, the PH assumption is violated. If the Cox PH model
is inappropriate, there are several options available for the analysis:
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• analyze by stratifying on the exposure variable; that is, do not fit any re-
gression model, and, instead obtain the Kaplan-Meier curve for each group
separately. Or, if there are other covariates in the model, use a Cox model
stratified on E.

• start the analysis at three days, and use a Cox PH model on three-day
survivors;

• fit a Cox PH model for less than three days and a different Cox PH model
for greater than three days to get two different hazard ratio estimates, one
for each of these two time periods;

• fit a Cox PH model that includes a time-dependent variable which measures
the interaction of exposure with time. This model is called an extended
Cox model and is presented in Chapter 7 of our book.

• use the censored regression quantile approach, presented in Chapter 8
of our book, which allows crossover effects. This approach is nonparametric
and is free of the PH assumption for its validity.



CHAPTER 6

Model Checking: Data Diagnostics

Objectives of this chapter:

After studying Chapter 6, the student should:

1 Know and understand the definition of model deviance:

(a) likelihood of fitted model

(b) likelihood of saturated model

(c) deviance residual.

2 Be familiar with the term hierarchical models.

3 Know the definition of partial deviance, its relationship to the likelihood
ratio test statistic, and how we use it to reduce models and test for overall
model adequacy.

4 Know how to interpret the measure dfbeta.

5 Know that the S function survReg along with companion function resid

provides the deviance residuals, dfbeta, and dfbetas.

6 Be familiar with Cox’s partial likelihood function.

7 Be familiar with and how to use the following residuals to assess the various
proportional hazards model assumptions:

(a) Cox-Snell residuals

(b) Martingale residuals

(c) Deviance residuals

(d) Schoenfeld residuals

(e) Scaled Schoenfeld residuals

(f) dfbetas.

8 Be familiar with the S functions coxph and cox.zph and which residuals
these functions provide.
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6.1 Basic graphical methods

When searching for a parametric model that fits the data well, we use graphical
displays to check the model’s appropriateness; that is, the goodness of fit.
Miller (1981, page 164) points out that “the human eye can distinguish well
between a straight line and a curve.” We quote Miller’s basic principle as it
should guide the method of plotting.

Basic principle:

Select the scales of the coordinate axes so that if the model holds, a plot of the
data resembles a straight line, and if the model fails, a plot resembles a curve.

The construction of the Q-Q plot (page 55) for those log-transformed distri-
butions, which are members of the location and scale family of distributions,
follows this basic principle. The linear relationships summarized in Table 3.1,
page 55, guided this construction. Some authors, including Miller, prefer to
plot the uncensored points (yi, zi), i = 1, · · · , r ≤ n. This plot is commonly
called a probability plot. We prefer the convention of placing the log data
yi on the vertical axis and the standard quantiles zi on the horizontal axis;
hence, the Q-Q plot.

The S function survReg only fits models for log-time distributions belonging
to the location and scale family. For this reason we have ignored the gamma
model until now. A Q-Q plot is still an effective graphical device for non-
members of the location and scale family. For these cases, we plot the ordered
uncensored times ti against the corresponding quantiles qi from the distribu-
tion of interest. If the model is appropriate, the points should lie very close
to the 45o-line through the origin (0, 0). We compute and plot the quantiles
based on the K-M estimates against the quantiles based on the parametric as-
sumptions. That is, for each uncensored ti, compute p̂i = 1−Ŝ(ti), where Ŝ(ti)
denotes the K-M estimate of survival probability at time ti. Then, with this
set of probabilities, compute the corresponding quantiles qi from the assumed
distribution with MLE’s used for the parameter values. Finally, plot the pairs
(qi, ti). Note that p̂i = 1−Ŝ(ti) = 1−Ŝmodel(qi). To compute the MLE’s for the
unknown parameters in S, the two functions available are nlmin and nlminb.
As these functions find a local minimum, we use these functions to minimize
(−1)×the log-likelihood function. For our example, we draw the Q-Q plot for
the AML data fit to a gamma model. In this problem, we must use nlminb

since the gamma has bound-constrained parameters; that is, k > 0 and λ > 0,
corresponding to shape and scale, respectively. The function qq.gamma gives
the Q-Q plot for data fit to a gamma. See Figure 6.1.

> attach(aml)

# Q-Q plot for maintained group

> weeks.1 <- weeks[group==1]

> status.1 <- status[group==1]
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> weeks1 <- list(weeks.1)

> status1 <- list(status.1)

> qq.gamma(Surv(weeks.1,status.1),weeks1,status1)

# The 2nd and 3rd arguments must be list objects.

shape rate

1.268666 0.0223737 #MLE’s

# Q-Q plot for nonmaintained group

> weeks.0 <- weeks[group == 0]

> status.0 <- status[group == 0]

> weeks0 <- list(weeks.0)

> status0 <- list(status.0)

> qq.gamma(Surv(weeks.0,status.0),weeks0,status0)

shape rate

1.987217 0.08799075 # MLE’S

> detach()
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Figure 6.1 Q-Q plot for AML data fit to gamma model. MLE’s used for parameter
values. Points are fit to least squares line.

It’s important to draw the 45o-line. For without the comparison, the least
squares line fitted only to uncensored times would have led us to believe the
gamma model fit the maintained group well. But this is quite the contrary.
The fit is very poor in the upper tail. The estimated gamma quantiles qi are
markedly larger than their corresponding sample quantiles ti. One reason for
this over-fit is the MLE’s are greatly influenced by the presence of the one
extreme value 161+. It is clear from the previous Weibull, log-logistic, and
log-normal Q-Q plots (Figure 3.13, page 77), the log-logistic is a much better
choice to model the AML maintained group. Notice the gamma Q-Q plot
for this group has a similar pattern to the Weibull Q-Q plot. In contrast, the
gamma seems to fit the nonmaintained group quite well. There are no extreme
values in this group.

For the two-sample problem, let x = 1 and x = 0 represent the two groups.
To check the validity of the Cox PH model, recall from Chapter 4.3 that
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h(t|1) = exp(β)h(t|0), where exp(β) is constant with respect to time. This
implies S(t|1) = (S(t|0))exp(β) or logS(t|1) = exp(β) logS(t|0). These graphs
are displayed in Figure 6.2. The plots of the empirical quantities constructed
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Figure 6.2 Graph of cumulative hazards ratio.

with the K-M estimate for each group should reflect the foregoing relationships
if the PH assumption is satisfied.

Equivalently, we can plot the kernel estimates of hazard (2.11) for each group
on the same plot. To validate the PH assumption a plot of the ratio of
smoothed hazards should be roughly constant over the follow-up time. See
Figure 2.7, page 43. It is clear the AML data violate the PH assumption.

To check for a shift by translation, calculate the K-M estimate of survival for
each group separately and plot. The curves should be vertically parallel. For
example, as the log-gamma is a location family, this plot is useful. An example
is displayed in Figure 6.3.
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Figure 6.3 A graph to check for a shift by translation.
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6.2 Weibull regression model

In this section we continue to work with the Motorette data first presented
and analyzed in Chapter 4.6, page 92. There AIC selects the Weibull model as
the best model and the Q-Q plot supports this. We now consider model diag-
nostics. We delay the S code until all relevant new definitions are presented.

Recall from expressions (4.1) and (4.4) the Weibull regression model has haz-
ard and survivor functions

h(t|x) = h0(t) · exp(x′β) = α · (λ̃)α · tα−1, where λ̃ = λ ·
(
exp(x′β)

) 1
α ,

and
S(t|x) = exp

(
−(λ̃t)α

)
.

The log of the cumulative hazard (4.5) is

log
(
H(t|x)

)
= log

(
− log

(
S(t|x)

))
= α log(λ) + x′β + α log(t).

Expression (4.3) tells us

Y = log(T ) = x′β∗ + β∗
0 + σ · Z,

where Z ∼ standard extreme value distribution.

Graphical checks of overall model adequacy

We see that log(tp) is not only linear in zp, but also in each x(j), j = 1, . . . ,m.
Further, the above linear model says (Y − β∗

0 − x′β∗)/σ = Z. Define the ith
residual ei to be

ei =
yi − ŷi

σ̂
,

where ŷi = β̂∗
0 + x′β̂

∗
is the ith estimated linear predictor. Under the Weibull

model, the set of uncensored residuals should behave roughly like a set of iid
standard extreme value variates. Let e1, e2, . . . , er, r ≤ n, represent the or-
dered uncensored residuals. We draw a Q-Q plot (page 63) of the points (zi, ei),
i = 1, . . . , r ≤ n. In the recipe given on page 63, replace the sample quantile yi
with ei and proceed to obtain the corresponding parametric quantile zi. If the
model under study (here it is the Weibull) is appropriate, the points (zi, ei)
should lie very close to the 45o-line through the origin. Figure ?? displays the

Q-Q plot. Lastly, draw m scatter plots of the points (x
(j)
i , yi), i = 1, . . . , r ≤ n

and j = 1, . . . ,m. Each plot should display a straight line pattern. If not,

perhaps transforming those x
(j)
i ’s could improve the fit. See Figure 6.5.

The function qq.reg.resid.s (qq.reg.resid.r for R) draws a Q-Q plot of
the ei residuals. It has six arguments. They are:

data = data.frame

time = survival time variable name in data.frame
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status = name of status variable in data.frame

fit = a survReg object

quantile = "qweibull" or "qnorm" or "qlogis"

xlab = "type your label" E.g., "standard extreme value quantiles"

S code for Q-Q plot of (zi, ei) after fitting the Motorette data to a Weibull
regression model:

> fit.weib <- survReg(Surv(time,status) ~ x,dist="weibull",

data=motorette)

> qq.reg.resid.s(motorette,motorette$time,motorette$status,fit.weib,

"qweibull","standard extreme value quantiles")

# Produces Figure 6.4

The Q-Q plot is also very useful for detecting overall adequacy of the final
reduced regression model; that is, goodness-of-fit. As the single covariate x
in the Motorette data has three distinct levels, we draw two Q-Q plots. In
Figure 6.8, each group is fit to its own Weibull. The lines have different slopes
and intercepts. In Figure 6.9, we fit a regression model with covariate x.
The lines have same slope, but different intercepts. These plots can reveal
additional information masked in Figures 6.4 and 6.5.

The survReg procedure in S gives the MLE’s

β̂∗
0 , β̂

∗
, σ̂, and ̂̃µ = β̂∗

0 + x′β̂
∗
. (6.1)

For the Weibull parameters we have

λ̂ = exp(−β̂∗
0), β̂ = −α̂ β̂

∗
, α̂ = 1/σ̂, and

̂̃
λ = exp(−̂̃µ). (6.2)

Note that survReg provides the fitted times T̂i. So,

Ŷi = log(T̂i) = ̂̃µi . (6.3)

Also recall (page 50) the p.d.f. of Yi = log(Ti) and the corresponding survivor
function evaluated at these estimates are

f(yi|̂̃µi, σ̂) =
1

σ̂
exp

(
yi − ̂̃µi

σ̂
− exp

(yi − ̂̃µi

σ̂

))
(6.4)

S(yi|̂̃µi, σ̂) = exp

(
− exp

(yi − ̂̃µi

σ̂

))
. (6.5)

Deviance, deviance residual, and graphical checks for outliers

We now consider a measure useful in detecting outliers. Define the model
deviance as

D = −2× (log-likelihood of the fitted model− log-likelihood of

the saturated model)
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= −2×

(
n∑

i=1

(
log(L̂i)− log(L̂si)

))
, (6.6)

where L̂i denotes the ith individual’s likelihood evaluated at the MLE’s, and
L̂si denotes the ith factor in the saturated likelihood evaluated at the MLE
of θi. A saturated model in the regression setting without censoring is one
with n parameters that fit the n observations perfectly. But in the presence of
censored data, one needs to be careful. In view of (1.13), the factors of the like-
lihood corresponding to censored observations entail maximizing the survival
probability. Let θ1, . . . , θn denote the n parameters. This entails that for un-
censored observations we obtain the MLE’s with no constraints; whereas for
censored observations, maximizing a survival probability imposes a constraint
on the θi’s fit to these censored yi’s. According to Klein & Moeschberger (1997,
page 359), in computing the deviance the nuisance parameters are held fixed
between the fitted and the saturated model. In the Weibull regression model,
the only nuisance parameter is the σ and is held fixed at the MLE value ob-
tained in the fitted model. The measure D can be used as a goodness of fit
criterion. The larger the model deviance, the poorer the fit and vice versa. For
an approximate size-α test, compare the calculated D value to the χ2

α critical
value with n−m− 1 degrees of freedom.

Under the random (right) censoring model and under the assumption that
censoring time has no connection with the survival time, recall the likelihood
function of the sample (1.13) is

L = L(β∗
0 ;β

∗;σ) = L(µ;σ) =

n∏
i=1

Li(µ̃i;σ),

where

Li(µ̃i;σ) =
(
f(yi|µ̃i, σ)

)δi(
S(yi|µ̃i, σ)

)1−δi
and

δi =

{
1 if yi is uncensored
0 if yi is censored.

In preparation to define the deviance residual, we first define two types of
residuals which are the parametric analogues to those defined and discussed
in some detail in Section 6.3.

Cox-Snell residual

The ith Cox-Snell residual is defined as

rC i = Ĥ0(ti)× exp(x′
iβ̂), (6.7)

where Ĥ0(ti) and β̂ are the MLE’s of the baseline cumulative hazard function
and coefficient vector, respectively. As these residuals are always nonnegative,
their plot is difficult to interpret. These are not residuals in the sense of linear
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models because they are not the difference between the observed and fitted
values. Their interpretation is discussed in Section 6.3.

Martingale residual

The ith martingale residual is defined as

M̂i = δi − rC i. (6.8)

The M̂i take values in (−∞, 1] and are always negative for censored obser-
vations. In large samples, the martingale residuals are uncorrelated and have
expected value equal to zero. But they are not symmetrically distributed about
zero.

Deviance residual

The ith deviance residual, denoted by Di, is the square root of the ith term
of the deviance, augmented by the sign of the M̂i:

Di = sign(M̂i)×
√

−2×
(
log
(
L̂i(̂̃µi, σ̂)

)
− log(L̂si)

)
. (6.9)

These residuals are expected to be symmetrically distributed about zero.
Hence, their plot is easier to interpret. But we caution these do not neces-
sarily sum to zero. The model deviance then is

D =
n∑

i=1

Di
2 = the sum of the squared deviance residuals.

When there is light to moderate censoring, the Di should look like an iid
normal sample. Therefore, the deviance residuals are useful in detecting out-
liers. To obtain the Di, use > resid(fit,type="deviance") where fit is
a survReg object. A plot of the Di against the fitted log-times is given in
Figure 6.6.

There are three plots constructed with Di that are very useful in helping
to detect outliers. One is the normal probability plot. Here we plot the kth
orderedDi against its normal score Z((k−.375)/(n+.25)) where Z(A) denotes
the Ath quantile of the standard normal distribution. Outliers will be points
that fall substantially away from a straight line. The second graph plots the

Di against the estimated risk scores
∑m

j=1 β̂
∗
j x

(j)
i . This plot should look like a

scatter of random noise about zero. Outliers will have large absolute deviations
and will sit apart from the point cloud. The third graph plots Di against its
observation (index) number. Again, we look for points that are set apart with
large absolute value. See Figure 6.10.

For the interested reader, the following is the expression for the ith deviance
residual (6.9) under the extreme value model, which corresponds to
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fitting the Weibull regression model.

Di = sign(M̂i)×
√

−2×
{
M̂i + δi log(δi − M̂i)

}
, (6.10)

where M̂i is defined in expression (6.8) and

rC i =
(
λ̂ti
)α̂ × exp

(
x′
iβ̂
)
= exp

(yi − ̂̃µi

σ̂

)
, (6.11)

which follows from expression (4.6). The derivation of this expression is given
in our book. This now matches the definition of deviance residual to be pre-
sented in Section 6.3.3.

Partial deviance

We now consider hierarchical (nested) models. Let R denote the reduced model
and F denote the full model which consists of additional covariates added to
the reduced model. Partial deviance is a measure useful for model building.
We define partial deviance as

PD = Deviance (additional covariates | covariates in the reduced model)

= D(R)−D(F ) = −2 log
(
L̂(R)

)
+ 2 log

(
L̂(F )

)
(6.12)

= −2 log

(
L̂(R)

L̂(F )

)
.

We see that the partial deviance is equivalent to the LRT statistic. Hence, the
LRT checks to see if there is significant partial deviance. We reject when PD
is “large.” If the partial deviance is large, this indicates that the additional co-
variates improve the fit. If the partial deviance is small, it indicates they don’t
improve the fit and the smaller model (R) is just as adequate. Hence, drop the
additional covariates and continue with the reduced model. Partial deviance is
analogous to the extra sum of squares, SSR(additional covariates|covariates in
R)=SSE(R)−SSE(F ), for ordinary linear regression models. In fact, when the
log(Ti)’s are normal and no censoring is present, partial deviance simplifies to

n log

(
MSE(R)

MSE(F )

)
+ (PF − PR),

where PF and PR are the number of parameters in the full and reduced models,
respectively. The argument of the log function can be easily expressed as a
function of the classic F test statistic to test a reduced model against the full
model. The PD simplifies to an increasing function of the classic F statistic,
which has in its numerator the extra sum of squares SSE(R)−SSE(F ). WHY!

dfbeta

dfbeta is a useful measure to assess the influence of each point on the es-
timated coefficients β̂j ’s. This measure is analogous to that used in regular
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linear regression. Large values suggest we inspect corresponding data points.
The measure dfbetas is dfbeta divided by the s.e.(β̂j). We obtain these quan-
tities via the companion function resid where fit is a survReg object.
> resid(fit, type="dfbeta").
See Figure 6.7 for a plot of the dfbeta for each observation’s influence on the
coefficient of the x variable. See Section 6.3.6 for a more detailed discussion
of the dfbeta measure.

Motorette example: Is the Weibull regression model appropriate?

Figure 6.4:

> attach(motorette)

# See page 126.

Figure 6.5:

> plot.logt.x(time,status,x) # Plot of log(t) against x.

# Now the Weibull regression fit:

> motor.fit <- survReg(Surv(time,status) ~ x,dist="weibull")

> dresid <- resid(motor.fit,type="deviance")

> riskscore <- log(fitted(motor.fit)) - coef(motor.fit)[1]

Figure 6.6:

> plot(log(fitted(motor.fit)),dresid)

> mtext("Deviance Residuals vs log Fitted Values (muhat)",

3,-1.5)

> abline(h=0)

Figure 6.10:

> index <- seq(1:30)

> par(mfrow=c(2,2))

> plot(riskscore,dresid,ylab="deviance residuals")

> abline(h=0)

> qqnorm.default(dresid,datax=F,plot=T,

ylab="deviance residuals")

> qqline(dresid)

> plot(index,dresid,ylab="deviance residual")

> abline(h=0)

Figure 6.7:

# We plot dfbeta to assess influence of each point on the

# estimated coefficient.

> dfbeta <- resid(motor.fit,type="dfbeta")

> plot(index,dfbeta[,1],type="h",ylab="Scaled change in

coefficient",xlab="Observation")
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Figure 6.8:

> xln <- levels(factor(x))

> ts.1 <- Surv(time[as.factor(x)==xln[1]],

status[as.factor(x)==xln[1]])

> ts.2 <- Surv(time[as.factor(x)==xln[2]],

status[as.factor(x)==xln[2]])

> ts.3 <- Surv(time[as.factor(x)==xln[3]],

status[as.factor(x)==xln[3]])

> qq.weibull(list(ts.1,ts.2,ts.3))

Figure 6.9:

> xln <- levels(factor(x))

> ts.1 <- Surv(time[as.factor(x)==xln[1]],

status[as.factor(x)==xln[1]])

> ts.2 <- Surv(time[as.factor(x)==xln[2]],

status[as.factor(x)==xln[2]])

> ts.3 <- Surv(time[as.factor(x)==xln[3]],

status[as.factor(x)==xln[3]])

> qq.weibreg(list(ts.1,ts.2,ts.3),motor.fit)

We compute the log-likelihood of saturated model, partial deviance, and then
compare to the output from the anova function.

> summary(motor.fit)

Value Std. Error z p

(Intercept) -11.89 1.966 -6.05 1.45e-009

x 9.04 0.906 9.98 1.94e-023

Log(scale) -1.02 0.220 -4.63 3.72e-006

Scale= 0.361

Loglik(model)= -144.3 Loglik(intercept only)= -155.7

Chisq= 22.67 on 1 degrees of freedom, p= 1.9e-006

# Chisq=22.67 is the LRT value for testing the

# significance of the x variable.

> loglikR <- motor.fit$loglik[1]

> loglikR # Model has only intercept.

[1] -155.6817

> loglikF <- motor.fit$loglik[2]

> loglikF # Model includes the covariate x.

[1] -144.3449

> ModelDev <- sum(resid(motor.fit,type="deviance")^2)

> ModelDev
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[1] 46.5183 # Full model deviance

> loglikSat <- loglikF + ModelDeviance/2

> loglikSat

[1] -121.0858

> nullDev <- - 2*(loglikR - loglikSat)

> nullDev # Reduced Model (only intercept)

[1] 69.19193

> PartialDev <- nullDev - ModelDev

> PartialDev

[1] 22.67363 # which equals the LRT value.

# The following ANOVA output provides Deviance

# which is really the partial deviance. This is

# easily seen.

> anova(motor.fit)

Analysis of Deviance Table Response: Surv(time,status)

Terms added sequentially (first to last)

Df Deviance Resid. Df -2*LL Pr(Chi)

NULL 2 311.3634

x -1 22.67363 3 288.6898 1.919847e-006

> detach()
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Figure 6.4 Q-Q plot for the ei residuals.
Dashed line is the 45o-line.
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Figure 6.10 Motorette data: deviance residuals against risk scores, normal scores,
and index.

Results:

• In Figure 6.8, each group is fit separately. The graphs suggest the Weibull
model gives an adequate description of each group.

• Figure 6.9 supports the Weibull regression model describes well the role
temperature plays in the acceleration of failure of the motorettes.

• Figure 6.5 displays a straight line. Figure 6.7 shows no influential points.
Both Figure 6.6 and Figure 6.10 (deviance residuals vs. risk scores) display
a random scatter about zero except for a possible outlier whose deviance
residual value is -2.634, which, incidentally, represents the two extreme
cases detected by the deviance residual vs. index plot. These two cases
correspond to the possible outlier revealed in the Q-Q plot displayed in
Figure 6.4.

• The plot of deviance residuals against their normal scores in Figure 6.10
suggests one potential outlier. But this is somewhat misleading. The three
upper right points correspond to cases with the same deviance residual
value of 1.626052, but with different normal scores. This occurs because the
S function qqnorm assigns these residuals their distinct ranks k = 28, 29,
and 30. Hence, their normal scores (Z((k− .375)/(n+ .25))) are 1.361, 1.61,
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and 2.04, respectively. However, if we follow the convention of assigning the
average rank to tied observations, then each of these three tied deviance
residuals now has the normal score value of 1.61. In this case, the three
points are now the single point in the middle and there are no apparent
outliers in this plot.

• The LRT per the anova function, with a p -value of 1.9 × 10−6, provides
strong evidence the Weibull model with the predictor variable x is adequate.
Equivalently, the p -value of 1.94× 10−23 for the estimated coefficient of x
provides this strong evidence.

6.3 Cox proportional hazards model

Recall from Chapter 4.3 that this model has hazard function

h(t|x) = h0(t) · exp(x′β) = h0(t) · exp(β1x
(1) + · · ·+ βmx(m))

= h0(t) · exp(β1x
(1))× exp(β2x

(2))× · · · × exp(βmx(m)),

where at two different points x1, x2, the proportion

h(t|x1)

h(t|x2)
=

exp(x′
1β)

exp(x′
2β)

= exp
(
(x′

1 − x′
2)β
)
,

called the hazards ratio (HR), is constant with respect to time t.

As the baseline hazard function is not specified in the Cox model, the likeli-
hood function cannot be fully specified. To see this, recall that

f(·) = h(·)× S(·).

The hazard function h(·) depends on the baseline hazard h0(·). Hence, so does
the p.d.f. Cox (1975) defines a likelihood based on conditional probabilities
which are free of the baseline hazard. His estimate is obtained from maximiz-
ing this likelihood. In this way he avoids having to specify h0(·) at all. We
derive this likelihood heuristically. Let t∗ denote a time at which a death has
occurred. Let R(t∗) be the risk set at time t∗; that is, the indices of individuals
who are alive and not censored just before t∗. First,

P{one death in [t∗, t∗ +△t∗) | R(t∗)}
=

∑
l∈R(t∗)

P{Tl ∈ [t∗, t∗ +△t∗) | Tl ≥ t∗}

≈
∑

l∈R(t∗)

h(t∗|xl)△t∗

=
∑

l∈R(t∗)

h0(t
∗) · exp(x′

lβ)△t∗.
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Thus, if we let P{one death at t∗ | R(t∗)} denote the∑
l∈R(t∗)

P (Tl = t∗|Tl ≥ t∗) ,

then we have

P{one death at t∗ | R(t∗)} =
∑

l∈R(t∗)

h0(t
∗) · exp(x′

lβ).

Now, let t(1), . . . , t(r) denote the r ≤ n distinct ordered (uncensored) death
times, so that t(j) is the jth ordered death time. Let x(j) denote the vector
of covariates associated with the individual who dies at t(j). Then, for each j,
we have

Lj(β) = P{individual with x(j) dies at t(j) | one death in R(t(j)) at t(j)}

=
P{individual with x(j) dies at t(j) | individual in R(t(j))}

P{one death at t(j) | R(t(j))}

=
h0(t(j)) · exp(x′

(j)β)∑
l∈R(t(j))

h0(t(j)) · exp(x′
lβ)

=
exp(x′

(j)β)∑
l∈R(t(j))

exp(x′
lβ)

.

The product of these over the r uncensored death times yields what Cox refers
to as the partial likelihood. The partial likelihood function, denoted by
Lc(β), is thus defined to be

Lc(β) =
r∏

j=1

Lj(β) =
r∏

j=1

exp(x′
(j)β)∑

l∈R(t(j))
exp(x′

lβ)
. (6.13)

Recall that in the random censoring model we observe the times y1, . . . , yn
along with the associated δ1, . . . , δn where δi = 1 if the yi is uncensored (i.e.,
the actual death time was observed) and δi = 0 if yi is censored. We can now
give an equivalent expression for the partial likelihood function in terms of all
n observed times:

Lc(β) =

n∏
i=1

(
exp(x′

iβ)∑
l∈R(yi)

exp(x′
lβ)

)δi

. (6.14)

Remarks:

1 Cox’s estimates maximize the log-partial likelihood.

2 To analyze the effect of covariates, there is no need to estimate the nuisance
parameter h0(t), the baseline hazard function.

3 Cox argues that most of the relevant information about the coefficients β
for regression with censored data is contained in this partial likelihood.
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4 This partial likelihood is not a true likelihood in that it does not integrate
out to 1 over {0, 1}n ×ℜ+

n.

5 Censored individuals do not contribute to the numerator of each factor.
But they do enter into the summation over the risk sets at death times
that occur before a censored time.

6 Furthermore, this partial likelihood depends only on the ranking of the
death times, since this determines the risk set at each death time. Con-
sequently, inference about the effect of the explanatory variables on the
hazard function depends only on the rank order of the death times! Here
we see why this is often referred to as nonparametric. It only depends on
the rank order! Look at the partial likelihood. There is no visible t(j) in the
estimate for β. It is a function of the x(j)’s which are determined by the
rank order of the death times. So, the estimates are a function of the rank
order of the death times.

We now present data diagnostic methods. We delay the examples and all S
code until all relevant definitions and methods are presented.

6.3.1 Cox-Snell residuals for assessing the overall fit of a PH model

Recall from (1.6) the relationship

H(t) = − log (S(t)) = − log (1− F (t)) ,

where F denotes the true d.f. of the survival time T and H denotes the
true cumulative hazard rate. Also recall that regardless of the form of F ,
the random variable F (T ) is distributed uniformly on the unit interval (0,1).
Hence, the random variableH(T ) is distributed exponentially with hazard rate
λ = 1. WHY! Let xi denote the i-th individual’s covariate vector. Then for
a given xi, H(t|xi) denotes the true cumulative hazard rate for an individual
with covariate vector xi. It then follows

H(Ti|xi) ∼ exp(λ = 1).

Hence, if the Cox PH model is correct, then for a given xi, it follows

H(Ti|xi) = H0(Ti)× exp

 m∑
j=1

βjx
(j)
i

 ∼ exp(λ = 1). (6.15)

The Cox-Snell residuals (Cox and Snell, 1968) are defined as

rC i = Ĥ0(Yi)× exp

 m∑
j=1

β̂jx
(j)
i

 , i = 1, . . . , n, (6.16)

where Yi = min(Ti, Ci). The β̂j ’s are themaximum partial likelihood estimates,
the estimates obtained from maximizing Cox’s partial likelihood (6.14). The

Ĥ0(t) is an empirical estimate of the cumulative hazard at time t. Typically
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this is either the Breslow or Nelson-Aalen estimate (page 29). S offers both
with Nelson-Aalen as the default. For the definition of Breslow estimator, see
Klein & Moeschberger (1997, page 237). If the final PH model is correct and

the β̂j ’s are close to the true values of the βj ’s, the rC i’s should resemble
a censored sample from a unit exponential distribution. Let HE(t) denote
the cumulative hazard rate of the unit exponential. Then HE(t) = t. Let

ĤrC (t) denote a consistent estimator of the cumulative hazard rate of the

rC i’s. Then ĤrC (t) should be close to HE(t) = t. Thus, for each uncensored

rC i, ĤrC (rC i) ≈ rC i. To check whether the rC i’s resemble a censored sample

from a unit exponential, the plot of ĤrC (rC i) against rC i should be a 45o-
line through the origin. See Figure 6.11.

Remarks:

1 The Cox-Snell residuals are most useful for examining the overall fit of a
model. A shortcoming is they do not indicate the type of departure from the
model detected when the estimated cumulative hazard plot is not linear.

2 Ideally, the plot of ĤrC (rC i) against rC i should include a confidence band
so that significance can be addressed. Unfortunately, the rC i are not exactly
a censored sample from a distribution. So this plot is generally used only
as a rough diagnostic. A formal test of adequacy of the Cox PH model is
given in Section 6.3.5.

3 The closeness of the distribution of the rC i’s to the unit exponential de-
pends heavily on the assumption that, when β and H0 are replaced by
their estimates, the probability integral transform F (T ) still yields uni-
form (0,1) distributed variates. This approximation is somewhat suspect
for small samples. Furthermore, departures from the unit exponential dis-
tribution may be partly due to the uncertainty in estimating the parameters
β and H0. This uncertainty is largest in the right-hand tail of the distribu-
tion and for small samples.

6.3.2 Martingale residuals for identifying the best functional form of a
covariate

The martingale residual is a slight modification of the Cox-Snell residual.
When the data are subject to right censoring and all covariates are time-
independent (fixed at the start of the study), then the martingale residuals,

denoted by M̂i, are defined to be

M̂i = δi − Ĥ0(Yi)× exp

 m∑
j=1

β̂jx
(j)
i

 = δi − rC i, i = 1, . . . , n, (6.17)

where rC i is the Cox-Snell residual.

These residuals are used to examine the best functional form for a given
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covariate using the assumed Cox PH model for the remaining covariates. Let
the covariate vector x be partitioned into a x∗ for which we know the functional
form, and a single continuous covariate x(1) for which we are unsure of what
functional form to use. We assume x(1) is independent of x∗. Let g(·) denote
the best function of x(1) to explain its effect on survival. The Cox PH model
is then,

H(t|x∗, x
(1)) = H0(t)× exp

(
x′
∗β∗

)
× exp

(
g(x(1))

)
, (6.18)

where β∗ is an m− 1 dimensional coefficient vector. To find g(·), we fit a Cox
PH model to the data based on x∗ and compute the martingale residuals,

M̂i, i = 1, . . . , n. These residuals are plotted against the values x
(1)
i , i =

1, . . . , n. A smoothed fit of the scatter plot is typically used. The smooth-
fitted curve gives some indication of the function g(·). If the plot is linear,
then no transformation of x(1) is needed. If there appears to be a threshold,
then a discretized version of the covariate is indicated. The S function coxph

provides martingale residuals as default and the S function scatter.smooth

displays a smoothed fit of the scatter plot of the martingale residuals versus
the covariate x(1). See Figure 6.12.

Remarks:

1 Cox-Snell residuals can be easily obtained from martingale residuals.

2 It is common practice in many medical studies to discretize continuous
covariates. The martingale residuals are useful for determining possible cut
points for such variables. In Chapter 6.3.8 of our book we present a cut point
analysis with bootstrap validation conducted for the variable KPS.PRE. in
the CNS data.

3 The martingale residual for a subject is the difference between the observed
and the expected number of deaths for the individual. This is so because
we assume that no subjects can have more than one death and the second
factor in expression (6.17) is the estimated cumulative hazard of death for
the individual over the interval (0, yi).

4 The martingale residuals sum to zero; that is,
∑n

i=1 M̂i = 0. For “large”

n, the M̂i’s are an uncorrelated sample from a population with mean zero.
However, they are not symmetric around zero because the martingale resid-
uals take values between −∞ and 1.

5 For the more general definition of the martingale residuals which includes
time-dependent covariates, see Klein & Moeschberger (1997, pages 333 and
334). On page 337 under Theoretical Notes these authors further explain
why a smoothed plot of the martingale residuals versus a covariate should
reveal the correct functional form for including x(1) in a Cox PH model.
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6.3.3 Deviance residuals to detect possible outliers

These residuals were defined and discussed in great detail in the previous sec-
tion on diagnostic methods for parametric models. Except for a slight modi-
fication in the definition of deviance, all plots and interpretations carry over.
What’s different here is that we no longer have a likelihood. We are working
with a partial likelihood. However, we may still define deviance analogously,
using the partial likelihood. All tests and their large sample distributions still
apply. The deviance residual is used to obtain a residual that is more sym-
metrically shaped than a martingale residual as the martingale residual can
be highly skewed. The deviance residual (Therneau, Grambsch, and Fleming,
1990) is defined by

Di = sign(M̂i)×
√
−2×

(
M̂i + δi log(δi − M̂i)

)
, (6.19)

where M̂i is the martingale residual defined in Subsection 6.3.2. The log func-
tion inflates martingale residuals close to one, while the square root contracts
the large negative martingale residuals. In all plots, potential outliers corre-
spond to large absolute valued deviance residuals. See Figure 6.13.

Remarks:

1 Therneau, Grambsch, and Fleming (1990) note “When censoring is mini-
mal, less than 25% or so, these residuals are symmetric around zero. For
censoring greater than 40%, a large bolus of points with residuals near
zero distorts the normal approximation but the transform is still helpful
in symmetrizing the set of residuals.” Obviously, deviance residuals do not
necessarily sum to zero.

2 Type resid(fit,type="deviance"), where fit is the coxph object, to
obtain these residuals.

6.3.4 Schoenfeld residuals to examine fit and detect outlying covariate values

The kth Schoenfeld residual (Schoenfeld, 1982) defined for the kth subject on
the jth explanatory variable x(j) is given by

rsjk = δk{x(j)
k − a

(j)
k }, (6.20)

where δk is the kth subject’s censoring indicator, x
(j)
k is the value of the jth

explanatory variable on the kth individual in the study,

a
(j)
k =

∑
m∈R(yk)

exp(x′
mβ̂)x

(j)
m∑

m∈R(yk)
exp(x′

mβ̂)
,
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and R(yk) is the risk set at time yk. The MLE β̂ is obtained from maximizing
the Cox’s partial likelihood function Lc(β) (6.14). Note that nonzero residuals
only arise from uncensored observations.

We see this residual is just the difference between x
(j)
k and a weighted average

of the values of explanatory variables over individuals at risk at time yk. The
weight used for the mth individual in the risk set at yk is

exp(x′
mβ̂)∑

m∈R(yk)
exp(x′

mβ̂)
,

which is the contribution from this individual to the maximized partial likeli-
hood (6.14). Further, since the MLE of β, β̂, is such that

∂ log
(
Lc(β)

)
∂βj

∣∣∣∣β̂ = 0,

the Schoenfeld residuals for each predictor x(j) must sum to zero. These resid-
uals also have the property that in large samples the expected value of rsjk
is zero and they are uncorrelated with each other. Furthermore, suppose yk
is a small failure time relative to the others. Then its risk set is huge. Hence,
in general not only do subjects in the risk set have a wide range of covariate
values, but also the weight assigned to each covariate value associated with
the risk set is small. Therefore, individuals with large covariate values who
die at early failure times would have large positive Schoenfeld residuals. This
can be most easily seen if we rewrite rsjk (6.20) as

x
(j)
k

(
1−

exp(x′
kβ̂)∑

m∈R(yk)
exp(x′

mβ̂)

)
−

∑
l∈R(yk); l ̸=k

(
x
(j)
l

exp(x′
lβ̂)∑

m∈R(yk)
exp(x′

mβ̂)

)
.

(6.21)
It is clear from expression (6.21) that the first term is large and the second term
is small relative to the first term. Similarly, the individuals with small covariate
values who die at early failure times would have large negative Schoenfeld
residuals. WHY! Therefore, a few relatively large absolute valued residuals at
early failure times may not cause specific concern. Thus, these residuals are
helpful in detecting outlying covariate values for early failure times. However,
if the PH assumption is satisfied, large Schoenfeld residuals are not expected
to appear at late failure times. WHY! Therefore, we should check the residuals
at late failure times. See Figure 6.14.

Remarks:

1 Schoenfeld calls these residuals the partial residuals as these residuals are
obtained from maximizing the partial likelihood function. Collett (1994,
page 155), among others, calls these residuals the score residuals as the
first derivative of the log-partial likelihood can be considered as the efficient
score.
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2 Use coxph.detail to obtain the detailed coxph object. This includes ranked
observed times along with a corresponding censoring status vector and co-
variate information.

3 Type resid(fit,type="schoenfeld"), where fit is the coxph object,
to obtain these residuals. coxph does not output the value of Schoenfeld
residual for subjects whose observed survival time is censored as these are
zeros.

4 If the assumption of proportional hazards holds, a plot of these residuals
against ordered death times should look like a tied down random walk.
Otherwise, the plot will show too large residuals at some times.

6.3.5 Grambsch and Therneau’s test for PH assumption

As an alternative to proportional hazards, Grambsch and Therneau (1994)
consider time-varying coefficients β(t) = β+ θg(t), where g(t) is a predictable
process (a postulated smooth function). Given g(t), they develop a score
test for H0 : θ = 0 based on a generalized least squares estimator of θ.
Defining scaled Schoenfeld residuals by the product of the inverse of the es-
timated variance-covariance matrix of the kth Schoenfeld residual and the
kth Schoenfeld residual, they show the kth scaled Schoenfeld residual has
approximately mean θg(tk) and the kth Schoenfeld residual has an easily
computable variance-covariance matrix. Motivated by these results, they also
develop a graphical method. They show by Monte Carlo simulation studies
that a smoothed scatter plot of β̂(tk), the kth scaled Schoenfeld residual plus

β̂ (the maximum partial likelihood estimate of β), versus tk reveals the func-
tional form of β(t). Under H0, we expect to see a constant function over time.
Both of these can be easily done with the S functions cox.zph and plot. See
Figure 6.15.

Remarks:

1 The function g(t) has to be specified. The default in the S function cox.zph

is K-M(t). The options are g(t) = t and g(t) = log(t) as well as a function
of one’s own choice.

2 plot(out), where out is the cox.zph object, gives a plot for each covariate.

Each plot is of a component of β̂(t) versus t together with a spline smooth
and ±2 s.e. pointwise confidence bands for the spline smooth.

3 A couple of useful plots for detecting violations of the PH assumption are
recommended:

(a) A plot of log-cumulative hazard rates against time is useful when x is a
group variable. For example, if there are two treatment groups, plot both
curves on the same graph and compare them. If the curves are parallel
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over time, it supports the PH assumption. If they cross, this is a blatant
violation.

(b) A plot of differences in log-cumulative hazard rates against time is also
useful. This plot displays the differences between the two curves in the
previous graph. If the PH assumption is met, this plot is roughly constant
over time. Otherwise, the violation will be glaring. This plot follows
Miller’s basic principle discussed here on page 122.

6.3.6 dfbetas to assess influence of each observation

Here we want to check the influence of each observation on the estimate β̂ of

the β. Let β̂
(k)

denote the estimated vector of coefficients computed on the

sample with the kth observation deleted. Then we check which components of
the vector β̂ − β̂

(k)
have unduly large absolute values. Do this for each of the

n observations. One might find this measure similar to dfbetas in the linear
regression. This involves fitting n+1 Cox regression models. Obviously, this is
computationally expensive unless the sample size is small. Fortunately, there
exists an approximation based on the Cox PH model fit obtained from the
whole data that can be used to circumvent this computational expense. The
kth dfbeta is defined as

dfbetak = I(β̂)−1(r∗s1k , . . . , r
∗
smk

)′, (6.22)

where I(β̂)−1 is the inverse of the observed Fisher information matrix, and
for j = 1, . . . ,m,

r∗sjk = δk{x(j)
k − a

(j)
k } − exp(x′

kβ̂)
∑
ti≤yk

{x(j)
k − a

(j)
i }∑

l∈R(ti)
exp(x′

lβ̂)
.

Note that the first component is the kth Schoenfeld residual and the second
component measures the combined effect over all the risk sets that include
the kth subject. This expression, proposed by Cain and Lange (1984), well

approximates the difference β̂−β̂
(k)

for k = 1, . . . , n. The authors note that the

above two components in general have opposite signs. The second component
increases in absolute magnitude with tk, as it is the sum of an increasing
number of terms. Thus, for early death times, the first component dominates,
while for later death times, the second is usually of greater magnitude. This
means that for patients who die late, the fact that the patient lived a long time,
and thus was included in many risk sets, has more effect upon β̂ than does the
fact that the patient died rather than was censored. Plots of these quantities

against the case number (index) or against their respective covariate x
(j)
k are

used to gauge the influence of the kth observation on the jth coefficient. See
Figure 6.16.
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Remarks:

1 The S function resid(fit,type="dfbetas") computes dfbeta divided by

the s.e.’s for the components of β̂, where fit is the coxph object.

2 Collett (1994) calls these standardized delta-beta’s.

3 There are a number of alternate expressions to expression (6.22). For ex-
ample, see pages 359 through 365 in Klein & Moeschberger (1997).

4 This measure is analogous to the measures of influence for ordinary linear
regression developed by Belsley et al. (1980) and Cook andWeisberg (1982).

6.3.7 CNS lymphoma example: checking the adequacy of the PH model

We apply some model checking techniques on the final reduced model
cns2.coxint6, page 110.

# Cox-Snell residuals for overall fit of a model are not

# provided directly by coxph object. You can derive them

# from the martingale residuals which are the default

# residuals.

Figure 6.11:

> attach(cns2)

> rc <- abs(STATUS - cns2.coxint6$residuals) # Cox-Snell

# residuals!

> km.rc <- survfit(Surv(rc,STATUS) ~ 1)

> summary.km.rc <- summary(km.rc)

> rcu <- summary.km.rc$time # Cox-Snell residuals of

# uncensored points.

> surv.rc <- summary.km.rc$surv

> plot(rcu,-log(surv.rc),type="p",pch=".",

xlab="Cox-Snell residual rc",ylab="Cumulative hazard on rc")

> abline(a=0,b=1); abline(v=0); abline(h=0)

# The martingale residual plot to check functional form of

# covariate follows.

Figure 6.12:

> fit <- coxph(Surv(B3TODEATH,STATUS) ~ GROUP+SEX+AGE60+

SEX:AGE60)

> scatter.smooth(cns2$KPS.PRE.,resid(fit),type="p",pch=".",

xlab="KPS.PRE.",ylab="Martingale residual")
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# The deviance residual plots to detect outliers follow:

Figure 6.13:

> dresid <- resid(cns2.coxint6,type="deviance") # deviance

# residual

> plot(dresid,type="p",pch=".")

> abline(h=0)

> plot(B3TODEATH,dresid,type="p",pch=".")

> abline(h=0)

> plot(GROUP,dresid,type="p",pch=".")

> abline(h=0)

> plot(SEX,dresid,type="p",pch=".")

> abline(h=0)

> plot(AGE60,dresid,type="p",pch=".")

> abline(h=0)

> plot(KPS.PRE.,dresid,type="p",pch=".")

> abline(h=0)

# Schoenfeld residuals to examine fit and detect outlying

# covariate values

Figure 6.14:

> detail <- coxph.detail(cns2.coxint6) # detailed coxph object

> time <- detail$y[,2] # ordered times including censored ones

> status <- detail$y[,3] # censoring status

> sch <- resid(cns2.coxint6,type="schoenfeld") # Schoenfeld

# residuals

> plot(time[status==1],sch[,1],xlab="Ordered survival time",

ylab="Schoenfeld residual for KPS.PRE.") # time[status==1]

# is the ordered uncensored times and sch[,1] is the

# Schoenfeld resid’s for KPS.PRE.

# The scaled Schoenfeld residuals and the Grambsch and

# Therneau’s test for time-varying coefficients to assess

# PH assumption follow:

Figure 6.15:

> PH.test <- cox.zph(cns2.coxint6)

> PH.test

rho chisq p

KPS.PRE. 0.0301 0.025 0.874

GROUP 0.1662 1.080 0.299

SEX 0.0608 0.103 0.748

AGE60 -0.0548 0.114 0.736
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SEX:AGE60 0.0872 0.260 0.610

GLOBAL NA 2.942 0.709

> par(mfrow=c(3,2)); plot(PH.test)

# The dfbetas is approximately the change in the

# coefficients scaled by their standard error. This

# assists in detecting influential observations on

# the estimated beta coefficients.

Figure 6.16:

> par(mfrow=c(3,2))

> bresid <- resid(cns2.coxint6,type="dfbetas")

> index <- seq(1:58)

> plot(index,bresid[,1],type="h",ylab="scaled change in coef",

xlab="observation")

> plot(index,bresid[,2],type="h",ylab="scaled change in coef",

xlab="observation")

> plot(index,bresid[,3],type="h",ylab="scaled change in coef",

xlab="observation")

> plot(index,bresid[,4],type="h",ylab="scaled change in coef",

xlab="observation")

> plot(index,bresid[,5],type="h",ylab="scaled change in coef",

xlab="observation")

# For the sake of comparison, we consider the scaled

# Schoenfeld residuals and the test for time-varying

# coefficients for the main effects model cns2.cox3.

Figure 6.17:

> PHmain.test <- cox.zph(cns2.cox3)

> PHmain.test

rho chisq p

KPS.PRE. 0.0479 0.0671 0.796

GROUP 0.1694 1.1484 0.284

SEX 0.2390 1.9500 0.163

GLOBAL NA 3.1882 0.364

> par(mfrow=c(2,2)); plot(PHmain.test)

> detach()

Results:

• We see from the Cox-Snell residual plot, Figure 6.11, that the final model
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Figure 6.11 Cox-Snell residuals to assess overall model fit.
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Figure 6.12 Martingale residuals to look for best functional form of the continuous
covariate KPS.PRE.

gives a reasonable fit to the data. Overall the residuals fall on a straight
line with an intercept zero and a slope one. Further, there are no large
departures from the straight line and no large variation at the right-hand
tail.

• In the plot of the Martingale residuals, Figure 6.12, there appears to be a
bump for KPS.PRE. between 80 and 90. However, the lines before and after
the bump nearly coincide. Therefore, a linear form seems appropriate for
KPS.PRE. There are occasions where a discretized, perhaps dichotomized,
version of a continuous variable is more appropriate and informative. See
Chapter 6.3.8 of our book for an extensive cut point analysis conducted in
the next subsection.

• The deviance residual plot, Figure 6.13, shows a slight tendency for larger
survival times to have negative residuals. This suggests that the model
overestimates the chance of dying at large times. However, there is only
one possible outlier at the earliest time and this may not cause concern
about the adequacy of the model. All the other plots in the same figure
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Figure 6.13 Deviance residuals to check for outliers.

show that the residuals are symmetric around zero and there is at most
one possible outlier.

• In Figure 6.14, the subjects with the largest absolute valued Schoenfeld
residuals for
KPS.PRE. are 40, 8, 35, and 11. These subjects have very early failure times
.125, .604, .979, and 1.375 years and are the patients who have either the
largest or the smallest KPS.PRE. values. Thus, these residuals do not cause
specific concern. The plots for the other covariates are not shown here. But
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Figure 6.14 Schoenfeld residuals for KPS.PRE. against ordered survival times.
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Figure 6.15 Diagnostic plots of the constancy of the coefficients in cns2.coxint6.
Each plot is of a component of β̂(t) against ordered time. A spline smoother is
shown, together with ±2 standard deviation bands.

all of them show no large residuals. Therefore, the PH assumption seems
to be appropriate.

• The results from the test for constancy of the coefficients based on scaled
Schoenfeld residuals indicate the PH assumption is satisfied by all five co-
variates in the model with all p -values being at least 0.299. Figure 6.15
also supports that the PH assumption is satisfied for all the covariates in
the model.

• The plot of the dfbetas, Figure 6.16, shows that most of the changes in the
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Figure 6.16 The dfbetas to detect influential observations on the five estimated coef-
ficients corresponding to the predictors.

regression coefficients are less than .3 s.e.’s of the coefficients and all others
are less than .4 s.e.’s. Therefore, we conclude that there are no influential
subjects.

• For the sake of comparison, we consider the main effects model cns2.cox3,
page 112, as well. Although the results from the test for constancy of the
coefficients indicate that the PH assumption is satisfied by all three co-
variates in the model with all p -values being at least 0.16, Figure 6.17
gives some mild evidence that the PH assumption may be violated for the
GROUP and SEX variables. This results from the fact that in this model
there are no interaction effect terms when there is a significant interaction
effect between SEX and AGE60 as evidenced by the model cns2.coxint6.
This again tells us how important it is to consider interaction effects in
modelling.
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Figure 6.17 Diagnostic plots of the constancy of the coefficients in cns2.cox3. Each
plot is of a component of β̂(t) against ordered time. A spline smoother is shown,
together with ±2 standard deviation bands.
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