
Part A. EpiData Entry

Part A: Quality-assured data capture with EpiData Manager and EpiData
EntryClient

Exercise 1 A data documentation sheet for a simple questionnaire

Exercise 2 Create a basic data entry form

Exercise 3 Create a value-label pair from external data

Exercise 4 Create a composite identifier

Exercise 5 Data entry and validation

Exercise 6 Upgrading an EpiData 3.1 REC/CHK file pair to an EPX file

Exercise 7 Relational database

Acknowledgments:
We thank Ajay M V Kumar who had made valuable suggestions to improve the structure and
flow of argumentation of the preceding version (using EpiData Entry 3.1) of Part A which we
partially incorporated into this revised version.

course_a_ex01_task
Page 2 of 6

The first step in the process is to prepare a plan for data entry. This plan is called the data
documentation sheet. This should not be confused with data collection form or case report
form which is the proforma used for collecting the data from study participants or extracted
out of the program records. The data documentation sheet is a codebook containing the
details of all the variables (like field names, field labels, field type, field length, possible field
values, and field value labels) to be entered.

Note: Please do not worry if you do not yet understand all the technical terms at this point in
time. Be assured that you will appreciate these as you go along.
But let us proceed step by step and say that we have the following questionnaire:

This might present a typical simple questionnaire as used by an interviewer. Often such
questionnaires are first completed on a paper Case Report Form. The above is actually an
excerpt from the original Tuberculosis Laboratory Register proposed by The Union (note that
the current version has been slightly changed):

We will use this register as the basis for this course. For the time being, you plan to write a
short and concise electronic data capture form, retaining only variables that are easy to capture
and are likely to be useful for the analysis. Please note this as a first principle in being efficient
– capture only those variables which you will use for analysis!
Each of the questions can be conceived of as a variable and the answer to the question as the
value that the variable takes for a particular individual. Variables are also referred to as ‘Fields’
in EpiData – both refer to the same and will be used interchangeably. We will give each variable
a unique name. A completed entered data form for one study subject is called a ‘Record’. A
set of such records is called a ‘data file’. The data file thus contains several records and each
record contains information about one individual with respect to several variables. We are going

Exercise 1: A data documentation sheet for a simple questionnaire

Laboratory serial number: ___
Date specimen received (dd/mm/yyyy): ___/___/_____
Sex: ___
Age in years: ____
Reason for examination: ___
Result of specimen 1: ___
Result of specimen 2: ___
Result of specimen 3: ___

course_a_ex01_task
Page 3 of 6

to describe each variable with respect to several attributes in the data documentation sheet. Let
us now understand some terminology we are going to use.

• Field name: This is the name of the variable and in EpiData, there are certain rules to
be followed in arriving at this name. We will come to these rules in a short while.

• Field Label: This is the descriptive name for the variable and contains a more detailed
description than the variable name / field name can convey.

• Field Type: This describes the type of the variable – text, numeric or date being the
major types.

• Field length: This describes the number of characters that a value can take.

• Field values: This describes the possible values that a variable can take.

• Value labels: These are descriptive names for the values. For categorical variables
which are numerically coded, it is always useful to label them so that it is easier to read
and understand what each of the codes mean.

“Labels” are also called “metadata” or “data about data”. They play a key role in data files.
We may have entered a value “9” for a given field, but this number remains meaningless
without specifying for what this value stands. It is important to get acquainted with these terms
and understand them clearly since we will be using them frequently. We will be using several
examples later in this chapter to clarify these terms.

Field name: There are some software-specific rules in naming a variable.

First, a Field name has to be single word that has not more than ten characters. This means
that you cannot use a space in the name as a space makes it more than a word. Also, you cannot
use any special characters like comma, semicolon, full-stop or underscore, and the first
character should not be a number. Thus, do not start the variable name with a number. It cannot
be ‘1v’, but it can be ‘v1’.

Second, use a name which is intuitive to understand what it means instead of generic field
names like v1, v2 and so on.

Third, it may be a good practice to keep the field names in lower case. While EpiData is not
case-sensitive, some other software is. Important among such are e.g. R and Stata® which are
what we call “case-sensitive”. In the latter two, a field name of ‘sex’ (lower case), ‘SEX’
(Upper case), and ‘Sex’ (mixed case) are understood as different variables. If you later plan
to export your EpiData files for analysis to such a software package, it may make life
unnecessarily complicated if you have been inconsistent without a defined rule. Hence, the
recommendation to keep it uniformly, “lower case”.

The following words ‘date’, ‘month’, and ‘year’ are functions in EpiData and are reserved
names. Hence they cannot be used as variable names.

Field label: This is the full description of the variable and can be more than a word.

Field Type: There are different types of entry fields for the variables (we will follow the
EpiData notation and call them “Fields”):

Note that some other analysis software may accept only a field length of eight
characters. If you later plan to export your EpiData files for analysis to such a
software package and you had used the full field length of ten, then your field names
get truncated.

course_a_ex01_task
Page 4 of 6

• Text fields: These fields take letters or numbers or a combination of these as possible
values, like PETER, KOCH1882, giraffe, 45677 etc. You can type anything on the
keyboard into this field. If you enter a number into such a field, it is accepted but you
will not be able to make any calculation with it. These fields are also sometimes
designated as character or alphanumeric fields, or most simply “string” (denoted by S)
fields as they take any string of characters.

• Numeric fields: These are numbers. The numbers might be integers (denoted by I) like
885, 33, 1235 or real numbers like 3.4, 6.88, and 66.5 (also called floats and
denoted by ‘F’). You can make calculations with numeric fields.

• Date fields: (denoted by ‘D’): In different countries, different ways of writing dates are
used and this can be confusing for people from another culture. Some write 5 March
2005, others March 5 2005, and again others 2005 March 5. EpiData lets you choose
the type of date you wish to take. We made our choice for European dates in the
Preferences as we will be using European dates in this course, i.e. dates of the format 5
March 2005 or symbolized with DD/MM/YYYY.

• One other type of variables is called “logic” or “Boolean” variables. This is sometimes
used in food-borne outbreak investigations. There, answers to questions on food items
eaten is limited to “yes” and “no” and “missing”. There is no need for using this field
type and we discourage its use as it might pose problems in analysis. The alternative is
a numeric field with a label block.

While you are asked to limit the length of the field name, you have much more flexibility with
the length of the value a field can take, but we will try to use it as efficiently as possible, that is
we will limit the value length to the minimum needed.

Data Documentation Sheet
It is good practice to write what we call a data documentation sheet before you make your
actual data entry form in EpiData Manager. As mentioned earlier, EpiData refers to this as
Codebook.

In the past, fields like sex were commonly made text field with values “F” or “M” denoting
Females and Males. It is efficient as it uses only a length of 1 to remain unambiguous (well,
as long as the language is English or French, at least!). Things would get less efficient, if we
would have to code treatment outcome with the possible values “cured”, “completed”, “died”,
“failed”, “lost from follow-up”, “transferred out”, and “outcome not recorded”. Numeric
coding is much simpler as there are up to ten possible values with a field length of just 1:
1 Cured
2 Treatment completed
3 Died of any cause
4 Failed bacteriologically
5 Lost from follow-up
6 Transferred out
9 Outcome not recorded
Later, in the analysis, you will also realize that it is very convenient to apply numeric selection
criteria when you want to select a subset of data and undertake analysis only on the subset. Of
course, a prerequisite is that the link between the numeric value and the text label is
unambiguously clear. The role of labels is of enormous importance, also called meta-data or

course_a_ex01_task
Page 5 of 6

“data about data” as mentioned above. We are going to make full use of numeric coding of
field values and using explicit text as value labels.

Let us now go through a few examples of the variables (from the tuberculosis laboratory register
example) and describe the various attributes of the variables in the data documentation sheet.
As you go through, you will note that preparation of data documentation sheet requires thinking
and knowledge of study data.

course_a_ex01_task.docx
Page 6 of 6

This is how we would write such a data documentation sheet:
Field
name

Question [Field label] Field
type

Field
length

Field values Value labels Notes [Comment]

serno Laboratory serial number * I 4 1-9000,

9001, 9002,

 Serial number starting with 1 each year

Enter 9001, 9002,… if serial number is
not unique or missing, and write a data
entry note

regdate Registration date D 10 01/01/2000-31/12/2005 Range of legal registration dates

sex Examinee’s sex I 1 1

2

9

Female sex

Male sex

Sex not recorded

Task:
o Complete the data documentation sheet for all fields in the questionnaire. Note that you should always define a value if no answer was

provided to a question.
o Think of the most efficient ways to code reason for examination and results of microscopic examination

* Note: Often, it will be preferable to make the identifier a text field. If it is a number, as in this case here with the laboratory serial
number, precautions must be taken to distinguish e.g. “0001” from “1”, requiring that the numeric value is entered into one field.
We can make use of the possibility in EpiData Manager to add leading zeros where appropriate.

course_a_ex01_solution
Page 1 of 4

Task:
o Complete the data documentation sheet for all fields in the questionnaire. Note that you

should always define a value if no answer was provided to a question.
o Think of the most efficient ways to code reason for examination and results of

microscopic examination.

Solution:
There are many different solutions, but for the sake of uniformity, we will be using the
following (but later revise some components of it) as shown on the next page.

Solution to Exercise 1: A data documentation sheet for a simple
questionnaire

Key Point(s):
• It is good practice to write a data documentation sheet before you make your

actual data entry form with EpiData Manager.
• You should always define a value if no answer was provided to a question.
• “Date” is a reserved name in EpiData and cannot be used as a field name.

course_a_ex01_solution
Page 2 of 4

Field
name

Question [Field label] Field
type

Field
length

Field values Value labels Notes [Comment]

serno Laboratory serial
number

I 4 1-9000
9001, 9002,

 [Serial number starting with 1 each
year]
Enter 9001, 9002,… if serial number
is not unique or missing, and write a
data entry note

regdate Registration date D 10 01/01/2000-31/12/2005
sex Examinee’s sex I 1 1

2
9

Female sex
Male sex
Sex not recorded

age Examinee’s age in years I 3 0-125,
999

 [Range of legal age years]
Enter 999 if age not recorded

reason Examination reason I 1 0
1
2
3
4
5
6
7
8
9

Diagnosis
Follow-up at 1 month
Follow-up at 2 months
Follow-up at 3 months
Follow-up at 4 months
Follow-up at 5 months
Follow-up at 6 months
Follow-up at 7 months or later
Follow-up, month not stated
Reason not recorded

res1 Result of specimen 1 I 1 0
1
2
3
4
5
6
9

Negative
1+ positive
2+ positive
3+ positive
Positive, not quantified
Scanty, not quantified
Scanty, quantified
Result not recorded

[If the entered value is other than 6,
then bypass next field and bypass it]

res1sc Result of specimen 1
scanty

I 1 1
2
3
4
5
6
7
8
9

1 AFB per 100 OIF
2 AFB per 100 OIF
3 AFB per 100 OIF
4 AFB per 100 OIF
5 AFB per 100 OIF
6 AFB per 100 OIF
7 AFB per 100 OIF
8 AFB per 100 OIF
9 AFB per 100 OIF

res2 Result of specimen 2 I 1 0
1

Negative
1+ positive

[If the entered value is other than 6,
then bypass next field and bypass it]

course_a_ex01_solution
Page 3 of 4

2
3
4
5
6
9

2+ positive
3+ positive
Positive, not quantified
Scanty, not quantified
Scanty, quantified
Result not recorded

res2sc Result of specimen 2
scanty

I 1 1
2
3
4
5
6
7
8
9

1 AFB per 100 OIF
2 AFB per 100 OIF
3 AFB per 100 OIF
4 AFB per 100 OIF
5 AFB per 100 OIF
6 AFB per 100 OIF
7 AFB per 100 OIF
8 AFB per 100 OIF
9 AFB per 100 OIF

res3 Result of specimen 3 I 1 0
1
2
3
4
5
6
9

Negative
1+ positive
2+ positive
3+ positive
Positive, not quantified
Scanty, not quantified
Scanty, quantified
Result not recorded

[If the entered value is other than 6,
then bypass next field and bypass it]

res3sc Result of specimen 3
scanty

I 1 1
2
3
4
5
6
7
8
9

1 AFB per 100 OIF
2 AFB per 100 OIF
3 AFB per 100 OIF
4 AFB per 100 OIF
5 AFB per 100 OIF
6 AFB per 100 OIF
7 AFB per 100 OIF
8 AFB per 100 OIF
9 AFB per 100 OIF

course_a_ex01_solution
Page 4 of 4

Note the following here. For an unknown laboratory date (REGDATE), we must enter a legally
existing (valid) date and we chose a legal but practically impossible date in the past, i.e.
01/01/1800. EpiData will not accept a date 99/99/9999 nor for that matter
29/02/2001. It is a personal preference of us to usually use 9 or 99.9 or the like to define
unknown values, be this for text or numeric variables. We also introduced a “legal range” for
some variables like REGDATE and AGE. We did this a bit arbitrarily, but still tried to keep it
within what might be expected.

We made two fields for each result. There are 17 possibilities for a result, and therefore a length
of 2 is the minimum required, but even with that, the values might not be intuitive, but they
should be. An alternative version uses a float of length three to get for instance:
0.0 Negative
1.0 1+ Positive
2.0 2+ positive
…
0.1 Scanty, 1 AFB per 100 OIF
0.2 Scanty, 2 AFB per 100 AFB

Scanty results are relatively rare among positives (perhaps some 10% among diagnostic and
some 20% among follow-up examinations in quality-assured high-burden country laboratories),
and positives themselves are relatively rare among all (perhaps 10% to 20% among patients
coming for diagnostic evaluation). Thus, scanty positive results might be only 1% of all results.
We therefore chose to use integer variables and bypass the field scanty, unless the first field
defines the result as quantified scanty.

You are now ready to start with the design of the questionnaire with EpiData Manager, based
on the data documentation sheet prepared in Exercise 1.

When we open EpiData Manager, we have the interface with three rows, displaying the version
in the top row, menu items in the middle row and some specific menu items in the bottom row:

As we start from scratch, we begin with Select Project | New Project (or shortcut CTRL+N):

We note the opening of the set up:

The information on the right side informs about the differences of using a single data entry form
(as we will do now) or creating a relational dataset (as we will do in the last exercise of Part A).
Hovering over the small icons:

shows what they accomplish.

Exercise 2: Create a basic data entry form

At the end of this exercise you should be able to:
a. Create and edit a data entry form with EpiData Manager.
b. Include study information and password protection.
c. Use headings and sections.
d. Create basic label blocks, understand “Must enter”, jumps, ranges, using

label blocks for missing / out of range numeric data.
e. Align properly horizontally and vertically both for aesthetics and

functionality.

course_a_ex02_task
Page 1 of 11

Clicking on Untitled Project and pressing function key F2 allows us changing the name to, say,
“EpiData course”, and clicking on the Dataform 1 and pressing function key F2 allows us to
change the name of the form to “Microscopy lab”, so that we will get:

Right-clicking on the Project name gives us options:

As we play around, at some point in time, EpiData Manager will prompt us to save the project:

And we will do so promptly, saving the project as a_ex02.epx (the extension is supplied and
the suggested folder is our chosen data folder C:\EPIDATA_COURSE).

To resume from the above project options, let’s check Properties (shortcut ALT+P). You note
that we get a window with something we had already defined earlier during set-up in
Preferences:

If we click on any of the other two, e.g. Display of Fields, we get a small warning (also
mentioned during set-up):

We accept and get what we had already accepted as default in Preferences:

There are thus different possibilities to set our preferences and to change them here at any time
without first going back to the initial settings. Thus we OK and check out Set Password with a
right-click:

course_a_ex02_task
Page 2 of 11

There are different levels of password setting, this is for the entire project, but a password can
also be set for sections within a project. For the time being, we do not wish to set a password
for the project and we clear with the Enter key and get:

Do you note the difference between when we click on the project name or the data form name
respectively? Clicking on the project name “EpiData course” you get:

At the very right (circled red) you see that this is the first of the several vertically aligned tabs,
further including Coverage, Description, Ownership, Funding, and Version Details. In the
current tab we could add an Abstract, clicking on the second tab, Coverage, we can add
information on Geographical location, Language, Data time coverage, Population, and Unit of
observation. The third tab, Description, allows entering Keywords, Purpose, Citations, and
Design. The forth tab, Ownership, allows entering Organisation/Institute, Agency,
Authors/Contributors, and Rights. A fifth tab, Funding, is a free text field, and the final tab,
Version, permits entering information about the study and the study form. Short, this menu
option allows thorough documentation of the study. It is highly recommended that this is
actually used to its fullest for a real study. For the purpose of this course, we will leave it
unfilled.

Contrasting right-clicking the Project name and the Dataform name we get:

Project name: EpiData course Dataform: Microscopy lab

We have already checked out some of these options, while others will be used in what is coming
once we start to actually make the data entry form, while further ones like Browse Data will
only become available once we have data, while for now, as expected, an empty window opens:

course_a_ex02_task
Page 3 of 11

The two sub-menus above can also be accessed any time from the Project Details and Dataform
menus respectively:

The third menu point above, Document, gives a sub-menu and the sub-menu item Report
Structure has itself a sub-menu:

some of which we will be using at a later point of the course.

If the EpiData EntryClient software module is located in the same folder as the EpiData
Manager as is the case in our set-up (and it is recommended not to keep them separately), we
have direct access to it from the second-to-last menu item Enter Data:

The last menu item, Export, gives multiple options to export the structure or the data to various
formats:

We will be making use of this menu item at a later point in time.

Designing the data entry form
Before starting with the actual design of our data entry form, let’s clarify the terminology and
where what is going to be placed. There are four elements that go with a field:

course_a_ex02_task
Page 4 of 11

Field
name

Field label Field
value

Comment / Value label

We call the variable the Field name (see Exercise 1). As shown in Exercise 1, the Field name
may or may not be displayed. In setting up Preferences, we opted for not displaying it. To
have more explicit information than what can be conveyed by the length 10, single-word Field
name, we supplement the Field name with a more explanatory Field label. The third element
on the line is the Field definition which receives the actual Field value during data entry. The
Field value is the actual datum (singular of “data”) for that variable for that observation. For
continuous variables, we might add an explanatory Comment to be displayed in a Note during
data entry, here for instance what to do if the primary source has no information on this variable
for this observation. For categorical variables, the comment is not necessary: a label block will
comprehensively provide information on what is entered. As we use numeric coding, it would,
however, be a nice touch if after picking a value from a pick list (label block), the Value label
would appear to the right of the field, as a kind of visual confirmation that what had been
intended was actually picked.

If we click in the Dataform tab “Microscopy lab”, we look now at the data form canvas:

Above the grid we see various icons, most importantly right now those that symbolize different
variable types which we can identify by hovering with the cursor over each one:

From the excerpt here of these icons, from left to right, these are:

New Integer Field
New Float Field
New String Field
New DMY Field
New Time Field
Other Field Types…
New Heading
New Section

We start with the second-to-last on the left, the New Heading, click on it and get the menu:

course_a_ex02_task
Page 5 of 11

We overwrite the Text with:

Tuberculosis Microscopy Laboratory

Those with some notion of HTML (the language of the internet) may recognize that text size is
expressed relatively, where Heading 1 is the relatively largest and Heading 5 the relatively
smallest. Let’s choose (arbitrarily) Heading 2 and click Apply to get our heading:

You can drag this text box around to your preferred position. By right-clicking it, you can Edit
it at any time to change the wording or the size if you wish to do so.

In some larger data entry forms, we then may next choose to make sections to which we could
give different attributes, but for the time being, we will simply start with our fields.

Consulting the Data Documentation Sheet, we see the first field to be serno, the
Laboratory serial number, an integer field of length 4. Clicking on the icon for the
integer field, then clicking into a suitable place on the canvas, we get the Field Properties menu:

This is our main working tool for the design of the data entry form. We will therefore complete
each page where applicable and study carefully the options on each tab.

The field Name is given the default name V1 and we change this to serno as defined in the
Data documentation sheet. The Question is for the Field label which we defined as
Laboratory serial number, and its Length is 4. It has no Valuelabel (it is not a
categorical variable) and we have no Range to assign, thus completed we get:

course_a_ex02_task
Page 6 of 11

At the bottom of the Basic tab we tick to add leading zero’s:

We switch to the tab Extended showing (at the top):

The Entry Mode is of critical importance and there are three possibilities. The Default is “you
do as you wish”, i.e. the data entry person is allowed to enter or not to enter a value into the
field. The second option Must Enter signifies that a value has to be entered else the data entry
person cannot continue to work (or if bypassing the field by using the mouse, will be stopped
latest when trying to save the record). This is our preferred method because “forgetting to enter”
is not the same as “there is no information” and by forcing Must Enter a value must be entered.
Therefore, whenever a value for a variable is missing, we must tell the data entry person what
has to be entered in such a situation. We will thus make every field a Must Enter field with
two exceptions. The first exception is for calculated fields, something we will use in a later
exercise when we create a composite identifier. The second exception is for fields that can be
bypassed with Jumps as we will see shortly. For the Laboratory serial number we
thus tick Must Enter. There is a possibility for Automatic values, such as Repeat last value. If
we tick the latter, the next new record will inherit the value from the current one for this field.
This is convenient for instance if a long sequential series of records always has the same date
before it changes. Whenever we change the inherited value by overwriting it in a new record,
the new value will be passed on as a repeat value to the next record. Obviously, this is not what
we need for the Laboratory serial number. After having ticked Must Enter, we thus
move to the tab Jumps:

Jumps are used to define whether based on a value in the current field the next field is to be
bypassed or not. If the field asks for smoking status and the response is non-smoker then the
next field that would quantify the number of cigarettes per day is bypassed while it is not if the
response in the current field is smoker. We will use this with the results fields.

The Calculate tab allows creating the value for a new variable from the values of one or more
existing variables. For instance one could calculate the value of a date field from three date
components. We generally discourage the use of calculations during data entry, they belong to
the analysis, with one important exception though. Sometimes, a unique identifier for a record
can only be defined by constructing from more than one variable. We will show this in a later
exercise.

course_a_ex02_task
Page 7 of 11

What we write into the Notes tab will briefly pop up if the cursor is in the field. For the
Laboratory serial number we actually foresee such a situation, and this is to instruct
to enter “artificial” serial numbers 9001, 9002, etc. if we happen to stumble upon a non-
unique serial number. We thus enter a Note as for instance:

As an interlude here, we need to clarify key issues about the identifier. No variable is of more
importance in a record than the unique identifier. We can even state that a record is useless
without a unique identifier. For instance, if we have no value for age in a record, we can
always check whether it is truly missing from the original case report form if we can identify
that case report form by the unique identifier. Without it, we cannot possibly learn the truth. It
is impossible to validate our data with double-entry if we do not have unique identifiers. For
persons not familiar with the tuberculosis microscopy laboratory register, this is what you need
to know: each examinee who presents to the laboratory for a microscopic examination is given
a serial number which starts with 1 each calendar year. An examinee might thus provide a
series of up to 3 specimens and the examinee (not the examination) is the unit of observation
and “numbered” as such. The Laboratory serial number is unique for an examinee
presenting him- or herself newly for a serial set of examinations usually over a one- to three-
day period during the course of 1 year in 1 laboratory. We have not yet instructed EpiData
Manager to treat the Laboratory serial number as a unique identifier. This is not
done here in the Field Properties, it has to be done for the file (you may remember the options
by right-clicking the data form name Microscopy lab):

It is of critical importance to Define Key, thus when done, we close the Field Properties dialog
menu and go to the data form Microscopy lab, click on Define Key and select it:

What this will do is that whenever you enter a Laboratory serial number in a new
record, EpiData will check the entire data set whether or not this identifier has already been
used. If not, you can continue your work. If it had been used in another record, the EpiData
EntryClient will tell you in which record and offer to go to it to change it if it had been entered
erroneously or to enter an alternate in the current one (as suggested here in Notes). In any case,
you cannot continue working unless the identifier is assuredly unique for the file.

Our next field is the Registration date with the field name regdate. We thus pick
the icon for New DMY Field and start to complete the Basic tab of Field Properties. We did
define a legal range. Enter it and make the field Must Enter.

course_a_ex02_task
Page 8 of 11

The third field is sex which we defined as integer for length 1 and we need to create here a
new Valuelabel:

The sub-menu for the Valuelabel:

It is quickly completed – note that we give a sensible, easily identifiable Valuelabel Name.
Though we are quite free how we do that, taking the default is not very informative, thus:

We could tick the value for Not recorded as Missing, it might or might not come handy
later in the analysis, but we leave it unticked for the time being. After accepting, the Valuelabel
Name will get inserted automatically as Labelvalue into the foreseen box in the Basic tab:

else we can pick it from the drop-down list (red circled here). In the Extended tab we make the
field Must Enter and tick the two boxes applicable for the Valuelabel Setting:

The first (Show valuelabel …) is ticked by default, but the Always show picklist … must be set.
What the two accomplish is that the value goes into the field box and the Valuelabel is written
to the right of the field box (for visual verification), but before this is done, the Picklist with the
Value-Valuelabel pairs is popping up ready for selection as soon as the cursor gets into the field.
In EpiData Manager, it gets indicated in green that we have a given label block:

course_a_ex02_task
Page 9 of 11

In the EntryClient, ticking both boxes will give the pop-up (left) and the writing of the value
label (right) after the selection of the value:

The fourth variable is age, the Examinee’s age in years, with a field length of 3, and
for which we allow a range from 0 to 125, and a legal value of 999 for missing age:

The out-of-range legal value is put into a Valuelabel, thus pick New and add as follows:

Then set to Must Enter in the Extended tab, but set / keep all boxes in Valuelabel Setting
unticked: the value-label pair is just to “legalize” the value 999, not to have a rudimentary pop-
up window. Instead, we instruct the data entry person in the Notes tab what to do if the value
for age is missing:

The fifth variable is reason, the Reason for examination, an integer of length 1. The
principle is the same as for sex and nothing is new here above what was learned before.

The sixth variable is res1, the Result of specimen 1, an integer of length 1. Again,
the principle is the same as for the other categorical variables with label blocks, but we do have
something new. We will insert a Jumps command for every value, except if it is 6, Scanty
quantified. Because we need to tell EpiData where to go, if the field has or has not the
value 6, we propose that everything else but the Jumps command for fields res1, res1sc,
and res2 is completed first, and then we return to res1 to formulate the Jumps command (not

course_a_ex02_task
Page 10 of 11

critical here as will be seen). We don’t have to, but let’s arrange the fields for res1 and res1c
(and the other “pairs”) horizontally:

Note also that we do not need to write a label block for each result and for each scanty result, it
suffices to write a generic label block for results as all three results have the same Valuelabel
blocks and we may name it label_result and name the Valuelabel block for scanty results
something like label_scanty. After we have it for the first, we can pick it from the drop-
down list for the Valuelabel:

Once we are done with these, we return to the field res1 and open the Jumps tab to enter what
we require. Because the field to skip is the next field (res1sc here), we do not actually need
to state to which field to go. We just add all values except 6 and the instruction (Skip Next Field)
under the Go To Field. Click the + sign to the right to add a new line and enter the next value:

Tasks:
o Finalize the data entry form for the remaining results variables. Note that the fields for

scanty results cannot be Must Enter. Note further the options in the Drop down menu
for what is the default “Skip Next Field” to pick the best option for the last result.

o Align the field correctly using the Alignment icon. Note that correct vertical alignment
is critical if two variables are on the same horizontal pane (EpiData Manager gives nice
blue and red guiding lines). If two variables on the same horizontal pane are vertically
mismatched, the sequence of data entry will go wrong!

o Tell EpiData Manager to create the Codebook and save the output file as a text file
“a_ex02_codebook.txt”.

course_a_ex02_task
Page 11 of 11

Tasks:
o Finalize the data entry form for the remaining results variables. Note that the fields for

scanty results cannot be Must Enter. Note further the options in the Drop down menu
for what is the default “Skip Next Field” to pick the best option for the last result.

o Align the field correctly using the Alignment icon. Note that correct vertical alignment
is critical if two variables are on the same horizontal pane (EpiData Manager gives nice
blue and red guiding lines). If two variables on the same horizontal pane are vertically
mismatched, the sequence of data entry will go wrong!

o Tell EpiData Manager to create the Codebook and save the output file as a text file
“a_ex02_codebook.txt”.

Solution:
The data entry form may look as follows:

Once a data entry form has been prepared, it is best to test it right away in the EntryClient with
some fake data (without saving) to identify quickly problems.

You can leave the data entry form open in EpiData Manager and access the EpiData EntryClient
via the menu and after prompting the Manager will close.

Opening in the EntryClient:

Solution to Exercise 2: Create a basic data entry form

Key Point(s):
• The identifier is the most important variable in a record

• EpiData is not case-sensitive, but some other software is. It is therefore advisable
to use a simple rule such as consistently using lower-case for field names.

course_a_ex02_solution
Page 1 of 6

we see that all fields which should be Must Enter actually are (orange-brownish color) and that
the fields which can be bypassed (for quantified scanty results) are not.

Entering fake data, we get:

It all looks as it should, neat and nicely. Do not save the record and exit without saving.

We saved the CodeBook as text file and can look at it in a text editor. It must reflect what we
defined in the Data documentation sheet but is now much more detailed and a superb document
that can be shared with others who later collaborate in the analysis:
============================
Report: CodeBook
Created: 28-04-2015 18:33:16
============================

File 1: C:\EpiData_course\a_ex02.epx

File 1: C:\EpiData_course\a_ex02.epx

Title EpiData course
Created 28-04-2015 09:50:32
Last Edited 28-04-2015 18:06:40
Version 1
Cycle 13

Backup on shutdown: yes
Encrypted data: no

Dataforms:

course_a_ex02_solution
Page 2 of 6

Caption Created Structure Edited Data Edited Sections Fields Records Deleted

Microscopy lab 28-04-2015 09:50:32 28-04-2015 18:06:40 28-04-2015 09:50:32 1 11 0 0

Caption Fields in key

Microscopy lab (serno:Laboratory serial number)

========================
Dataform: Microscopy lab
========================

List Overview
--
Name Type Length Missing Value(s) Value Label Question / Caption
--
H1 Heading Tuberculosis Microscopy Laboratory
serno Integer 4 Laboratory serial number
regdate Date (DMY) 10 Registration date
sex Integer 1 label_sex Examinee's sex
age Integer 3 label_age Examinee's age in years
reason Integer 1 label_reason Reason for examination
res1 Integer 1 label_result Result of specimen 1
res1sc Integer 1 label_scanty Result of specimen 1 scanty
res2 Integer 1 label_result Result of specimen 2
res2sc Integer 1 label_scanty Result of specimen 2 scanty
res3 Integer 1 label_result Result of specimen 3
res3c Integer 1 label_scanty Result of specimen 3 scanty
--

.-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-.

Field: serno: Laboratory serial number

Type Integer
Length 4
Show Value Label true

.-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-.

Field: regdate: Registration date

Type Date (DMY)
Length 10
Entry Mode Must Enter
Range 01-01-2000-31-12-2005
Show Value Label true

.-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-.

Field: sex: Examinee's sex

Type Integer
Length 1
Entry Mode Must Enter
Show Value Label true
Show Picklist true

Value label: label_sex [I]: (Integer)
--
Value Label Missing (M), set: label_sex
--
1 Female
2 Male
9 Not recorded
--

.-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-.

Field: age: Examinee's age in years

Type Integer
Length 3
Entry Mode Must Enter
Range 0-125

Value label: label_age [I]: (Integer)
--

course_a_ex02_solution
Page 3 of 6

Value Label Missing (M), set: label_age
--
999 Age not recorded
--

.-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-.

Field: reason: Reason for examination

Type Integer
Length 1
Entry Mode Must Enter
Show Value Label true
Show Picklist true

Value label: label_reason [I]: (Integer)

Value Label Missing (M), set: label_reason

0 Diagnosis
1 Follow-up at 1 month
2 Follow-up at 2 months
3 Follow-up at 3 months
4 Follow-up at 4 months
5 Follow-up at 5 months
6 Follow-up at 6 months
7 Follow-up at 7 months or later
8 Follow-up, month not stated
9 Reason not recorded

.-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-.

Field: res1: Result of specimen 1

Type Integer
Length 1
Entry Mode Must Enter
Jumps 0 > Skip Next Field
 1 > Skip Next Field
 2 > Skip Next Field
 3 > Skip Next Field
 4 > Skip Next Field
 5 > Skip Next Field
 9 > Skip Next Field
Show Value Label true
Show Picklist true

Value label: label_result [I]: (Integer)

Value Label Missing (M), set: label_result

0 Negative
1 1+ positive
2 2+ positive
3 3+ positive
4 Positive, not quantified
5 Scanty, not quantified
6 Scanty, quantified
9 Result not recorded

.-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-.

Field: res1sc: Result of specimen 1 scanty

Type Integer
Length 1
Show Value Label true
Show Picklist true

Value label: label_scanty [I]: (Integer)
--
Value Label Missing (M), set: label_scanty
--
1 1 AFB per 100 OIF
2 2 AFB per 100 OIF
3 3 AFB per 100 OIF
4 4 AFB per 100 OIF
5 5 AFB per 100 OIF
6 6 AFB per 100 OIF
7 7 AFB per 100 OIF
8 8 AFB per 100 OIF
9 9 AFB per 100 OIF
--

course_a_ex02_solution
Page 4 of 6

.-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-.

Field: res2: Result of specimen 2

Type Integer
Length 1
Entry Mode Must Enter
Jumps 0 > Skip Next Field
 1 > Skip Next Field
 2 > Skip Next Field
 3 > Skip Next Field
 4 > Skip Next Field
 5 > Skip Next Field
 9 > Skip Next Field
Show Value Label true
Show Picklist true

Value label: label_result [I]: (Integer)

Value Label Missing (M), set: label_result

0 Negative
1 1+ positive
2 2+ positive
3 3+ positive
4 Positive, not quantified
5 Scanty, not quantified
6 Scanty, quantified
9 Result not recorded

.-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-.

Field: res2sc: Result of specimen 2 scanty

Type Integer
Length 1
Show Value Label true
Show Picklist true

Value label: label_scanty [I]: (Integer)
--
Value Label Missing (M), set: label_scanty
--
1 1 AFB per 100 OIF
2 2 AFB per 100 OIF
3 3 AFB per 100 OIF
4 4 AFB per 100 OIF
5 5 AFB per 100 OIF
6 6 AFB per 100 OIF
7 7 AFB per 100 OIF
8 8 AFB per 100 OIF
9 9 AFB per 100 OIF
--

.-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-.

Field: res3: Result of specimen 3

Type Integer
Length 1
Entry Mode Must Enter
Jumps 0 > Save Record
 1 > Save Record
 2 > Save Record
 3 > Save Record
 4 > Save Record
 5 > Save Record
 9 > Save Record
Show Value Label true
Show Picklist true

Value label: label_result [I]: (Integer)

Value Label Missing (M), set: label_result

0 Negative
1 1+ positive
2 2+ positive
3 3+ positive
4 Positive, not quantified
5 Scanty, not quantified
6 Scanty, quantified
9 Result not recorded

course_a_ex02_solution
Page 5 of 6

.-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-.

Field: res3c: Result of specimen 3 scanty

Type Integer
Length 1
Show Value Label true
Show Picklist true

Value label: label_scanty [I]: (Integer)
--
Value Label Missing (M), set: label_scanty
--
1 1 AFB per 100 OIF
2 2 AFB per 100 OIF
3 3 AFB per 100 OIF
4 4 AFB per 100 OIF
5 5 AFB per 100 OIF
6 6 AFB per 100 OIF
7 7 AFB per 100 OIF
8 8 AFB per 100 OIF
9 9 AFB per 100 OIF
--

.-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-.

course_a_ex02_solution
Page 6 of 6

In the previous Exercise we worked with small label blocks of not more than ten category levels.
These are quickly created directly in the data form. Often we encounter the need for larger
standard label blocks. This might be a list of administrative units in a country and it may have
hundreds of levels. Such lists might be publicly available on the internet from the government
and they can come in different formats such as text files or spreadsheets. In order to standardize
as much as possible for our data collection, we should take recourse to official lists whenever
possible, rather than inventing our own parallel system. If we can get such a list into a formatted
file for EpiData, it might also be used in more than a single project.
In this Exercise, we provide a spreadsheet which contains two variables, the name of a given
tuberculosis laboratory paired with its code, not dissimilar to a list of communities paired with
their zip codes.

Formatting the external file
The first thing to know is the file type, and into which format it should be brought. We have a
spreadsheet a_ex03_namecode.xls with two columns:

You remember how the label block for the field sex was set up:

On the left is the Value that is written into the field and on the left the Label that provides the
meta-data. The setup is thus the Value presenting a code on the left and the Label on the right.
With short lists there is no issue because our eye captures quickly both Value and Label, but
how about a very long list? How do we search a list of communities and their zip codes? People
tend to know the name of a community, but not their zip codes. We are also used to search
alphabetically by name not by zip code, yet we wish the code to be the value to be written into
the field, not the name. EpiData makes it easy for us: we can search substrings, and it will find
them in either column! If we start typing birch… in EpiData EntryClient, the software will

Exercise 3: Create a value-label pair from external data

At the end of this exercise you should be able to:
a. Create an EpiData two-variable dataset from a text file
b. Use an external two-variable dataset to create a label block internally or

externally

course_a_ex03_task
Page 1 of 6

go to the first appearance of these letters be they in the left or the right column. Therefore, what
we might do preferably, is to put the code of the laboratory into the left column and the name
of the laboratory into the right and sort alphabetically by the name of the laboratory (not its
code). This way the laboratory code is the value that is written into the field and the laboratory
name is its label. Therefore invert to get:

EpiData cannot read a spreadsheet file with an *.xls extension, but it reads text files with a
*.txt extension or the common text standard of comma-delimited *.csv files. Conversely,
most software, including proprietary Excel® or the non-proprietary LibreOffice Calc
spreadsheets can save a file as a *.csv file. Use thus Save as (in Excel®) in search for the
appropriate file type:

A word on delimiters: we do need a delimiter. A delimiter is an element that separates two
variables. In normal text, a space is the delimiter separating two words. For our purpose,
neither spaces nor tabs are good separators because they could be part of a variable. Indeed,
the name for one laboratory is Collin Saunders. If we had a space as separator, these two
components would erroneously be interpreted as two variables. A comma as in *.csv is better,
but it is not necessarily fail-safe, best would be semi-colon delimited: it is easy to see and it is
rarely used. In any case, in our 95 records (please visualize them in your text editor):
ML_J,Awuna
MS_D,Beitbridge
MC_A,Bindura
MN_G,Binga
ML_M,Birchenough
ML_I,Bonda
MS_G,Brunapeg
MW_J,Chegutu
MV_I,Chikombedzi
MC_H,Chimhanda

course_a_ex03_task
Page 2 of 6

there are no commas apart from the desired ones to separate the two variables. We almost have
now the format we require to make an EpiData *.epx file out of the *.csv file. Imporatant
Note: EpiData Manager interprets the first line as header but because the file does not have
headers, the first line will erroneously be cut off. Therefore, we add a header to the *.csv file
as follows:
labcode,labname
ML_J,Awuna
MS_D,Beitbridge
MC_A,Bindura
MN_G,Binga

Creating an EpiData *.epx file from a *.csv file

Open EpiData Manager and File | Import file …, and select the correct file type:

Pick the a_ex03_namecode.csv file. This will open the dialog window:

Note here the helpful options should you expect duplicates in Field Name – Field Value Labels.
We can leave the defaults as they are and click OK. This gives us an Untitled Project with an
(untitled) data form:

At the bottom of the screen we see that we have correctly 95 records:

Whether or not prompted to save, we save the file as a_ex03_namecode.epx. Right-
clicking the data form (or with CTRL+D):

course_a_ex03_task
Page 3 of 6

we browse to view the data set:

Closing and clicking on the first, and then on the second field respectively we can rename the
two field names to labcode and labname to have a bit more meaningful information:

To make a label block set of the file go to Tools | Value Labels from Data:

and pick the file itself, ensuring that Include is ticked and both Value Field and Label Field are
correctly selected:

We get confirmation that the Value Label Set was created:

Save and close.

Updating the EpiData data form

The first thing to do is to open the file a_ex02.epx from Exercise 2 and Export the structure
only to an EPX file we name a_ex03.epx:

course_a_ex03_task
Page 4 of 6

We then open the thus newly created a_ex03.epx. If we right-click on the project name
EpiData Course we get a menu line Value labels (ALT+V):

This gives us the Valuelabel Editor:

which allows the use of an external file as a label block. Using this approach (you will also
look for an alternative to incorporate it), we can keep the label block externally. As long as it
is in the same folder, the Manager / EntryClient will access it. Click and select the file:

We are shown the name of the file, what the Set Name for the label block is (_labcode), that it
is a string field with 95 Value labels:

course_a_ex03_task
Page 5 of 6

We have now an external label block available and its content is visualized by clicking on it:

On the data entry form, we add a new string variable lab of length 4 with the field label
Laboratory and add the now available Valuelabel:

Define the Extended as usual, save and test in EpiData EntryClient. Note particularly in
EntryClient that for searching you start typing the name of a Field label and the cursor jumps to
it.

Tasks:
o Remove the external label block.

o Use the a_ex03_namecode.epx file and use it internally as a label block.

o Discuss advantages and disadvantages of External versus Internal label blocks.

course_a_ex03_task
Page 6 of 6

Tasks:
o Remove the external label block.

o Use the a_ex03_namecode.epx file and use it internally as a label block.

o Discuss advantages and disadvantages of External versus Internal label blocks.

Solution:
This is the modified data entry form with a fake record:

We access the Valuelabel Editor with ALT+V, click on it and press the Delete key:

and it’s gone after accepting. To use the file internally, we close the Valuelabel Editor and use
instead Tools | Value labels from data, select the file, and insure that all is ticked and selected
correctly:

Solution to Exercise 3: Create a value-label pair from external data

Key Point(s):
• If possible, use an official list of, for instance, administrative units, and create a file

format that can be imported into EpiData (such as *.csv)
• Create an EpiData *.epx file and make a label block of it
• You can use that label block internally or externally in your data collection form

course_a_ex03_solution
Page 1 of 2

Importantly, the deletion of the external also removed the link to the Valuelabel for the field:

and this must then be set again. Conveniently, this internal label block can also be removed by
accessing the Valuelabel Editor with ALT+V and proceeding analogously.

Advantages and disadvantages
The advantage of an internal label block is to have everything in a single file. Unless the label
block is very large (how to define that?) it will thus mostly be advantages to do precisely that.
If a label block is very large (say the ICD 10 codes), then it might be advantages to actually
keep it externally as larger file names will slow down processing time. Furthermore, the current
EpiData Analysis version cannot yet make the connection between the main file and an external
label block.

course_a_ex03_solution
Page 2 of 2

course_a_ex04_task
Page 1 of 2

Sometimes we have time information but it is incomplete, such as when a patient may remember
the month but not the day of disease onset. In such a case a date field cannot be used sensibly
because a date needs all three date components. It becomes thus useful to utilize instead three
variables for day, month, and year respectively and then reserve it for the analysis to set rules
what approximation might be used if one or more date components are missing. For data entry,
this can also have the advantage that some components (like the year, or even the month) are
set to Repeat if records are entered serially along a time axis and several sequential records
have the identical year and perhaps also month.

A date component might also be used to construct a more complex identifier if the simple one
does not suffice. In these exercises using the tuberculosis microscopy laboratory we defined
the unique identifier as the laboratory serial number. However, the serial number starts with 1
every calendar year and is thus unique only for a single year. By combining the year plus the
serial number, it becomes unique for the laboratory at any time, and adding the laboratory
identifier, we can make a unique identifier for any examinee for any year, in any laboratory.

To learn about the workload of data entry, there is a possibility to instruct EpiData to record
automatically the computer time at the time of opening a new record and to add another time
stamp at the completion of the record.

We will introduce here these three concepts and integrate the computer-calculated fields into a
special section.

Capturing time with date components instead of with dates
Export the structure of the a_ex03.epx file to a new a_ex04.epx file and open the new
file. We then start with deleting the field regdate, dragging down the block of variables
below it, and inserting the three new integer variables regdd, regmm, and regyy of lengths
2, 2, and 4 respectively, for Registration day, Registration month, and
Registration year. We make each field Must Enter and provide a legal range and put
the respective three values 99, 99, and 9999 for not recorded into two different Valuelabels.
Remember from Exercise 2 that we need to untick the Show valuelabel text after … in the
Extended tab. We can make the fields for day and month set to Repeat as these two remain
identical in most laboratories for quite a few sequential records.

Making an identifier composed of 3 existing variables
On the top we section off a part that will accommodate three calculated fields: the new identifier,
the start time and the ending time of data entry for the record. Drag thus all fields down on the

Exercise 4: Create a composite identifier

At the end of this exercise you should be able to:
a. Recognize the efficiency of using date components instead of dates
b. Creating a unique identifier from several variables
c. Automatically capturing data entry time

course_a_ex04_task
Page 2 of 2

canvass and insert a section above them that we call Calculated fields. The identifier
id, labeled Unique identifier is a string field of length 14 as we will give it the form
YYYY-labcode-serno, i.e. the 4-digit year, a hyphen, the 4-digit laboratory code, a hyphen, and
the 4-digit laboratory serial number. It is placed inside the section and it has to be a No Enter
field as we want to prevent a data entry person being able to ever touch a computer-calculated
field. The top of our revised data entry form may thus look now as follows:

How do we go about making the value for this identifier? It can only be composed once all
three required components have been entered, i.e. after entering the Registration year.
We thus go to that field and go to the tab Calculate, where we choose the bottom option and fill
by selection from the drop-down fields and inserting a hyphen in between, that’s all there is to
it:

A little more sophisticated is the approach to make id a unique identifier. Intuitively, we might
think that we just make this field id the key field, but that is not how it’s done: it is each of the
components that is set to be the key and EpiData will then correctly interpret the resulting
combined field required to be unique. It may appear a bit counter-intuitive, but that’s how it’s
done. Remember where to Define Key? Right-click the data form name or go to the menu point
Dataform:

Tasks:
o Add two fields for Starting time and Ending time for data entry in the section Calculated

fields.
o Test the data entry form in EpiData EntryClient

Tasks:
o Add two fields for Starting time and Ending time for data entry in the section Calculated

fields.
o Test the data entry form in EpiData EntryClient

Solution:
A complete record may look as follows:

Solution to Exercise 4: Create a composite identifier

Key Point(s):
• If one variable is insufficient to create a unique identifier, one can construct a

composite identifier from more than one variable.
• Each of the contributing fields, but not the composite resulting variable is set to be

Key.
• EpiData provides automatically calculated time fields that can be used to capture

data entry time.

course_a_ex04_solution
Page 1 of 1

You have a line listing of 15 records on the page following the task description. These data
should be entered in this exercise. But before you start working, a few considerations are in
place.

Ensuring quality data entry
The motto for this course is:

You might be challenged about the interpretation of your data, that is part of the scientific
process, but your data should be of impeccable quality.

What do you think about the following graph?

Age-specific Tuberculosis Notification Rates by Sex

Age group (years)

0 15 25 35 45 55 65

C
as

es
 p

er
 1

00
,0

00
 p

op
ul

at
io

n

0

10

20

30

40

50

60

70

80

Males

Females

Exercise 5: Data entry and validation

“You wish never to find yourself in a position to defend the quality of your data”
Michael B Gregg, formerly MMWR Editor, deceased

See also: Gregg M B. Field epidemiology (2nd ed). Oxford University Press. 2002: p 414

At the end of this exercise you should be able to:
a. Know the three ways of reducing data entry errors
b. Copy the structure of a EPX file
c. Export data from EpiData files

d. Validate duplicate data files

course_a_ex05_task
Page 1 of 9

It looks nice and we could talk about the differences between males and females and this and
that. But we will keep it short: it is nonsense. The data underlying this graph have no basis,
they were made up. Of course, if we were to present these data for real, it would be outright
scientific fraud. Few people commit that (but it exists). Nevertheless, often no assurance can
be given that the computerized data are a true reflection of the original data source. People
may have in all honesty done “their best” and assume that they made no errors or so few that it
really doesn’t matter. However, this is not good enough for science in general and public health
and epidemiology in particular.

 There are three ways how we reduce and ultimately eliminate data entry errors:

o Defining well thought-through data entry controls in the EpiData Manager
o Working together
o Duplicate data entry and validation

Defining well thought-through data entry controls in the EpiData Manager
We have already a few inbuilt conditions that limit data entry errors by creating the
a_ex04.epx file. For instance, a Must Enter field will prevent a data entry person to skip an
actually recorded value, as one cannot continue without having entered a value for that field.
For the field sex, we allowed only 1, 2, and 9 as legal values. It is thus not possible to enter
“3” into this field. Combined with the pop-up menu during entry, no confusion can arise. The
controls set in the EpiData Manager are an extremely powerful tool to control how data entry
can be controlled through restrictions.

Working together
Entering data alone requires continuously shifting attention between the paper record and the
computer screen. This will almost by necessity result in numerous errors, be it that a record is
skipped or that it is forgotten what we just read. It should be routine that two persons work on
data entry: one person reads aloud the Field value, the other repeats it aloud and enters the value.

Duplicate data entry and validation
Even with both of the above precautionary measures, data entry errors will still occur, and worse,
to an unknown extent. The only way, and the only acceptable one, is to enter the data twice
into two different files, and then to compare the two files for discordances. Any discordance
uncovered will then be corrected the entry with the original paper record.

The rationale behind this process is: the probability of committing the same error in the same
field twice when data entry is done independently by two persons is very small. Hence, if we
list all the discrepancies by comparing the two databases and correct all of them, then we can
be reassured that the remaining frequency of data entry errors is miniscule.

EpiData provides this powerful tool and we need a unique identifier to do this. We have made
a provision that we have such an identifier (see previous exercises). Sometimes an identifier
must be constructed from more than one variable as we have shown.

If a duplicate key is revealed (because there is a perhaps a problem with a component
contributor), then a data entry note should be written, best as a text file that is kept open during
data entry and amended as one proceeds. In this note, you must specify exactly with what
identifier you have replaced the duplicate key, so that this note can be passed on to those who

course_a_ex05_task
Page 2 of 9

enter the data the second time, enabling them to use the same alternative key when the
necessarily stumble over the same problem.

Before you get to actually enter the data, you find here some assistance to make your data entry
work more efficient.

Make duplicate EPX files

As we are entering the same data twice, we need two sets of the *.epx files, one for the first,
the other for the second entry.

Task:

o Download the solution of Exercise 4 and save the file as a_ex05_a.epx and
a_ex05_b.epx files

Double-entry

Enter the 15 records into the a_ex05_a.epx, then repeat data entry with the
a_ex05_b.epx file.

Data validation
After completing double-entry, the two data files are compared, a procedure termed “data
validation”.

The first thing to verify is that we have the same number of records in both sets. If that is not
the case, then this must be fixed first. Here for instance, we chose to count the records:

and found them to be unequal:

While we know from this small dataset that there actually are 15 records, and thus that the first
set has the correct number and the second is missing 2, knowing the expected number of records
is the exception in real life. It may also very well be that both sets have the same number of
records but both are short of records because by chance each set is missing the same number of

course_a_ex05_task
Page 3 of 9

records. We thus have to check which records are missing and we do this by a validation,
actually comparing the two sets:

The first of the two files is the “referent” and it is the number of records in this set that is
displayed:

In the tab Compare, we untick the computer-provided time fields because they are likey to vary
for virtually every record between the two files and would undesirably be listed as discordances:

In the report, we move to the Overview and find the confirmation that the duplicate file (the
*_b.epx file) has 2 records missing:

Moving further down, we find the serial numbers missing from the second file and thus know
which two records must be added first before a proper validation is possible:

course_a_ex05_task
Page 4 of 9

The Validation report
We add these two records and then start again the validation process. This time we get the same
number of records in the two files and find one discordance in serno 3302:

It is essential that this validation report is saved to ensure having a permanent record of the
validation process. We propose to save it as a text file a_ex05_validation.txt.

Creating a final dataset
One might be tempted to make corrections of any errors that might be identified through
discordances in either the *_a.epx or the *_b.epx file. Doing so would, however, break the
“chain of evidence”: you could never repeat the validation process and get the same result, but
data quality-assurance requires that the validation process is actually exactly reproducible.
Therefore, the corrections must be made in a third file. To this end, we export the data from
one of the source files to another EpiData file that we will call the a_ex05_f.epx file. To
standardize as many things as possible, we always export the a_ex05_a.epx file to the
a_ex05_f.epx file (even if in fact it is irrelevant whether we use the a_ex05_a.epx or
the a_ex05_b.epx file, but consistency is good policy). We thus select from Export the
a_ex05_a.epx file and define in the menu the name and type and All records:

We get a report that export was successful:

course_a_ex05_task
Page 5 of 9

Back from Manager to the EntryClient we open a_ex05_f.epx and search the record with
serno 3302.

How to navigate through an *.epx file?

To navigate between the records of the *.epx file use the navigation panel on the left bottom
end of the data entry screen which can be used to navigate through the records.

Shown vertically one by one:

Go to first record

 Go to previous record

 This is record 11 out of a total of 15 records

 Go to next record

 Go to last record

 Insert a new record

 Mark current record for deletion

This is useful for a quick forth and back, mainly during data entry, but for the current task to
find a specific record in a potentially large file, we use Browse Data | Find:

We enter our criterion:

and get thus to the record:

course_a_ex05_task
Page 6 of 9

Comparing with the original paper record, we see that the true Examinee’s sex should be
female. Moving the cursor into the field and pressing F9, we can now pick the correcting
value:

As this is the only discordance we save the revised record and exit. We now have a validated
file with all discordances resolved.

How to delete a record?
Deleting a record consists of two steps – first, marking a record for deletion; second,
permanently deleting it. This is just a safety feature in EpiData to ensure the deletion of record
does not happen by chance.

Steps in marking a record for deletion (Look at the screenshot below)

1. Open the *.epx file and go to the record you want to delete.

2. Click on the red ‘cross’ mark next to the navigation panel at the left bottom of the data
entry screen. The word DEL appears at the side of the red ‘cross’ mark.

3. Click the arrow in the navigation panel to go to the next record. This will prompt you to
save the record. Click ‘Yes’ and this successfully marks the record for deletion.

4. Note that the record is not yet permanently deleted from the database. If you realize that
this record was not to be deleted, you can undo the action by clicking on the same button
and saving the record. DEL will disappear now: the red “cross” is a toggle key:

Click on the red cross DEL appears Click on the red cross again
and DEL disappears

How to permanently delete a record? (Pack Data Files)
For data protection, it is not foreseen to permanently delete a record in the EpiData EntryClient.
This must be done in the EpiData Manager. Close thus the file (if open) in EpiData EntryClient
and go to the Manager to Tools | Pack Datafiles:

course_a_ex05_task
Page 7 of 9

Choose the data file and tick the data form (it could be a relational data base with several forms
and you got to choose which one):

Because this is going to be permanent, you receive a final Warning:

After accepting, you get confirmation that it is done:

No backup file is written, this is permanent.

Tasks:

o Download the solution of Exercise 4 and save your a_ex04.epx file as
a_ex05_a.epx and a_ex05_b.epx.

o Enter the 15 records using the a_ex05_a.epx file. After completing data entry, enter
the same data again into the a_ex05_b.epx file.

o After you have completed the two files, proceed to validation as explained here.

o After ensuring that no record is missing in either file, export the a_ex05_a.epx file
to a a_ex05_f.epx file, check out the discordances if any and correct them. This is
your final dataset.

On the next page you find the dataset with 15 records

course_a_ex05_task
Page 8 of 9

Tuberculosis Programme Zimbabwe Form 2

Laboratory: Awuna Tuberculosis laboratory register Year: 2003

Lab
Serial
No.

Date
specimen
received

Name Sex
M/F Age Name of referring

facility
Address - patient

for diagnosis

Reason for examination* Results of specimen Only for SS+ for
diagnosis:

TB Number or
BMU**

Remarks
Diagnosis

(tick)
Month of
follow up 1 2 3

3298 26 Oct Mary F 35 Bindura Beijingstr. 6 5 neg neg

3299 26 Oct John M 20 Awuna Tokyo Ave 5 √ neg neg neg

3300 26 Oct Petra F 30 Birchenough Bangkok Rd 108 5 neg neg

3301 26 Oct Charles M 24 Bindura Hanoi Street 7a 2 neg neg

3302 26 Oct Tiffany F 38 Bindura Hongkong Ave 8 √ neg neg neg

3303 26 Oct George M 60 Bindura Zurich Rd 923 √ neg neg neg

3304 26 Oct Luke M 78 Awuna Paris Street 18a √ neg neg neg

3304 26 Oct Virginia F 28 Birchenough London Rd 24 √ neg neg neg

3305 27 Oct David M 50 Awuna Baltimore Str 1 6 neg neg

3306 27 Oct Hans M 50 Ganda Chivua Bern Str 12 √ 1+ 1+ 1+ Ganda Chivua
No 342

3307 27 Oct Bill M 68 Bindura Berlin Ave 88 √ neg neg neg

3308 27 Oct Susan F 29 Birchenough Amsterdam Rd 3 5 neg neg

3309 27 Oct Marc M 36 Bindura Vienna Str 76 2 neg neg

3310 27 Oct Eve F 15 Awuna Rome Ave 4 5 neg neg

3311 27 Oct Anthony M 37 Birchenough Antwerp Str 26c 6 neg neg

 * Check the appropriate category from the Request for Sputum Examination **TB register number

course_a_ex05_task
Page 9 of 9

Tasks:

o Download the solution of Exercise 4 and save your a_ex04.epx file as
a_ex05_a.epx and a_ex05_b.epx.

o Enter the 15 records using the a_ex05_a.epx file. After completing data entry, enter
the same data again into the a_ex05_b.epx file.

o After you have completed the two files, proceed to validation as explained here.

o After ensuring that no record is missing in either file, export the a_ex05_a.epx file
to a a_ex05_f.epx file, check out the discordances if any and correct them. This is
your final dataset.

Solution
Depending on the errors you made, you will get an output like the following:
==
Report: Double Entry Validation Report.
Created: 29-04-2015 22:03:30
==

File 1: C:\EpiData_course\a_ex05_a.epx
File 2: C:\EpiData_course\a_ex05_b.epx

File 1: C:\EpiData_course\a_ex05_a.epx

Title EpiData course
Created 28-04-2015 09:50:32
Last Edited 29-04-2015 20:33:53
Version 1
Cycle 29

Backup on shutdown: yes
Encrypted data: no

Dataforms:
--
Caption Created Structure Edited Data Edited Sections Fields
Records Deleted
--

Solution to Exercise 5: Data entry and validation

Key Point(s):
• It should be routine that two persons work on data entry, and never one.
• The only and acceptable way to minimize data entry errors is to enter the data

twice into two different files, and then compare the two files for discordances.
• Avoid using the mouse to move around fields during data entry, because the Check

file cannot be applied to fields you skip by moving the mouse from one field to
another.

course_a_ex05_solution
Page 1 of 3

Microscopy lab 28-04-2015 09:50:32 29-04-2015 20:33:53 29-04-2015 20:33:53 2 17
15 0
--

--
Caption Fields in key
--
Microscopy lab (serno:Laboratory serial number) + (regyy:Registration year) + (lab:Laboratory)
--

========================
DataForm: Microscopy lab
========================

Selections for validation:

Options:

Option Selected

Ignore deleted records No
Ignore missing records No
Add result to field No
Case sensitive text No

Key Fields:

lab serno regyy

Compared Fields:

id: Unique identifier
regdd: Registration day
regmm: Registration month
sex: Examinee's sex
age: Examinee's age in years
reason: Reason for examination
res1: Result of specimen 1
res1sc: Result of specimen 1 scanty
res2: Result of specimen 2
res2sc: Result of specimen 2 scanty
res3: Result of specimen 3
res3c: Result of specimen 3 scanty

Result of Validation:

Overview

Test Result

Records missing in main file 0
Records missing in duplicate file 0
Non-unique records in main file 0
Non-unique records in duplicate file 0
Number of fields checked 12
Common records 15
Records with errors 1
Field entries with errors 1
Error percentage (#records) 6.67
Error percentage (#fields) 0.56

Datasets comparison:

Main Dataset: Duplicate dataset:

Record no: 5 Record no: 5
Key Fields:
 lab = ML_J
 serno = 3302

course_a_ex05_solution
Page 2 of 3

 regyy = 2003
Compared Fields:
 sex = 2 sex = 1

After making correction in the “F” file, your data should be correct, or are they not? While
your final data file should be correct, there is still a slim chance that it has errors. How is this
possible? If by chance the same error was entered in both files (which can happen particularly
if the same person enters the data in both files), you will not be able to identify the error. For
uniformity, you should overwrite your existing file with the a_ex05_f.epx file that is
provided with the solution.

course_a_ex05_solution
Page 3 of 3

course_a_ex06_task
Page 1 of 6

Importing an EpiData REC / CHK file containing data

In the required zip folder you find 4 data sets, a, b, c, and d, complete with all 16 files, i.e. for
the “a” files a.qes, a.rec, a.chk, and a.eix, containing 75 records, and analogously for
the “b”, “c”, and “d” sets. It contains microscopy laboratory data from four laboratories in
Yangon (Myanmar), courtesy Dr Ti Ti. If you look at the A.QES file in EpiData Entry 3.1,
you see the visual format:

We note that the results were defined as floats with the following values (the definition of which
we can best see by opening the A.CHK file (e.g. in a text editor):
 LABEL label_result
 0.0 Negative
 0.1 "Scanty, 1 AFB per 100 fields"
 0.2 "Scanty, 2 AFB per 100 fields"
 0.3 "Scanty, 3 AFB per 100 fields"
 0.4 "Scanty, 4 AFB per 100 fields"
 0.5 "Scanty, 5 AFB per 100 fields"
 0.6 "Scanty, 6 AFB per 100 fields"
 0.7 "Scanty, 7 AFB per 100 fields"
 0.8 "Scanty, 8 AFB per 100 fields"
 0.9 "Scanty, 9 AFB per 100 fields"
 1.0 "1+ positive"
 2.0 "2+ positive"
 3.0 "3+ positive"
 4.0 "Positive, not quantified"
 5.0 "Scanty, not quantified"
 9.0 "No result recorded"
 END

Exercise 6: Upgrading an EpiData 3.1 REC/CHK file pair to an EPX file

At the end of this exercise you should be able to:

a. Understand how you import an EpiData Entry 3.1 REC / CHK file pair into
EpiData Manager

b. How to edit the new file and add the link to the metadata from the old CHK
file to the new EPX file.

course_a_ex06_task
Page 2 of 6

In EpiData Manager, go to File | Import File… and pick the a.rec to see it then in an editable
box:

You note that we encountered this box in an earlier exercise when we imported a value-label
set. Note that we can import the structure only or both the structure and the data, as we plan to
do here. Once confirmed with OK we get:

and see at the bottom left that there are indeed 75 records which we can browse in Dataform |
Browse Data (shortcut CTRL+D) (first lines only shown):

course_a_ex06_task
Page 3 of 6

Note that the button Show Values / Labels is non-functional because the labels are not yet
available, we thus see only the values at this point in time. Save the file when prompted as
a_ex06a.epx.

Make the metadata from the CHK file available to the EPX file

We work our way through the entry form from top to bottom.

The Unique laboratory identifier (filed name id) is a calculated value from the Laboratory code
and the Laboratory serial number. It is thus a field set to No Enter and calculated after both
components that make it up are available.

The Laboratory serial number (field name serno) is Must Enter and we Add leading zeros.

The Laboratory code (field name labcode) is Must Enter. We noted above in browsing that
the value was “A”. The field does also not have a Label Block (the Laboratory code was added
only after data entry in the analysis module). As we will have also laboratories B, C, and D,
we will add here a Label block with string values to later accommodate the three additional
laboratories. Thus create a New Value Label as:

As we do with variables with label blocks, we tick Always show picklist during entry. As we
have now all the necessary information we Combine Fields in the Calculate tab:

Let’s also make both labcode and serno Key fields (right-click the data form [which we
have here already properly relabeled]):

and make serno and labcode Key fields:

course_a_ex06_task
Page 4 of 6

The Registration date (field name regdate) is Must Enter and as all laboratory results are
from the year 2003 we might as well add a Range from 01/01/2003 to 31/12/2003.

The Examinee’s age in years (field name age) is Must Enter and as a continuous variable of
length 2 we may add Notes:

The Examinee’s sex (field name sex) has no Valuelabel ticked:

However, if you pick the drop-down list, you see that it actually exists (it is in the CHK file)
and all we need to do is to pick it:

and then we can view it with Edit that replaces New once picked:

The list of Value labels also shows that we have label_reason and label_result which
we can use for the last four variables to complete updating the new EPX file with the metadata
from the old EpiData Entry CHK file.

Finally, once the above is done, we may edit it nicely and check functionality in the EpiData
EntryClient (without saving the record!!):

course_a_ex06_task
Page 5 of 6

Exporting the structure of an EPX file and importing REC file data into the new structure

The data form structure of the now created a_ex06a.epx file can be exported without the
data using Export and ticking the appropriate box. We export it to a new file a_ex06b.epx:

We then open this a_ex0b.epx file, edit it (changing the name of the data form and the header
to become “Laboratory B”) and use Tools | Append and pick the b.rec file:

However, doing so, we get an error message:

The reason is that in the EpiData Entry REC file serno is the key, and in this EpiData Manager
EPX file serno and labcode are the keys. The best approach is to remove the b.chk file

course_a_ex06_task
Page 6 of 6

and to remove both keys in the EPX file and subsequently add them again after successful
import which is prompt if these actions are done:

If we wanted to have all four laboratories in one single a_ex06abcd.epx file, we could have
done that simply by adding all four REC files (after removing keys in the EPX file and removing
the CHK files for the four REC files after successfully using their metadata). However, it cannot
be done in one sweep, each must be added on its own.

Task:
o Create the entire set of four EPX files, so that in the end we have a_ex06a.epx,

a_ex06b.epx, a_ex06c.epx, and a_ex06d.epx

course_a_ex07_task
Page 1 of 2

Task:
o Create the entire set of four EPX files, so that in the end we have a_ex06a.epx,

a_ex06b.epx, a_ex06c.epx, and a_ex06d.epx

Solution:
We have four files with an identical structure (the Headers differ, but these are just labels) with
different records (but each file has 75 records):
a_ex06a.epx
a_ex06b.epx
a_ex06c.epx
a_ex06d.epx

The final data form for a file looks like this:

You have ensured that the two keys are added again after import in each of the four files:

Solution to Exercise 6: Upgrading an EpiData 3.1 REC/CHK file pair to
an EPX file

At the end of this exercise you should be able to:

a. Understand how you import an EpiData Entry 3.1 REC / CHK file pair into
EpiData Manager

b. How to edit the new file and add the link to the metadata from the old CHK
file to the new EPX file.

course_a_ex07_task
Page 2 of 2

While we are not going to enter new records into any of these files and therefore this adding of
the keys is not essential, it would be if new records were added to ensure that each resulting
combined identifier is unique.

course_a_ex07_task
Page 1 of 4

Not all laboratories keep their registers as The Union and WHO recommend for the
Tuberculosis Laboratory Register, where 1 line corresponds to 1 examinee rather than to 1
examination. In fact, many laboratories enter the results for each examination on one line. If
such an approach is chosen, we may find a register as follows:

Patient Date of exam Sex Marital status Blood sugar Sputum Result
A 24-Mar-2007 Male Married 6.3 Mucoid 1+
B 24-Mar-2007 Male Divorced 4.9 Muco-purulent Neg
C 24-Mar-2007 Female Single 5.2 Purulent Neg
D 24-Mar-2007 Female Widowed 7.3 Blood-tinged 2 per 100
A 25-Mar-2007 Male 7.3 Salivary Neg
D 25-Mar-2007 Female 7.4 Mucoid 2+
A 26-Mar-2007 7.2 Purulent 1+
C 26-Mar-2007 Female 4.8 Muco-purulent Neg
E 27-Mar-2007 Male Married 8.2 1+
F 27-Mar-2007 Female Annulled 7.4 Purulent Neg
G 27-Mar-2007 Male Cohabitating 6.9 Salivary Neg
G 28-Mar-2007 Male 7.2 Mucoid 2+
E 28-Mar-2007 Male 7.9 Purulent 2+
F 31-Mar-2007 Female 7.2 Muco-purulent 3+
H 31-Mar-2007 Married 6.6 Mucoid Neg
I 31-Mar-2007 Male Separated 8.3 Salivary Neg
H 1-Apr-2007 Female 6.9 Muco-purulent 1+
F 1-Apr-2007 Female Engaged 7.7 Purulent 2+
I 1-Apr-2007 Male Single 8.0 Mucoid 8 per 100
G 1-Apr-2007 Male 7.6 Muco-purulent 1+
K 2-Apr-2007 Female Married 4.5 Purulent Neg
I 2-Apr-2007 Male 8.2 Muco-purulent
H 2-Apr-2007 Female 6.6 Mucoid 1+
I 3-Apr-2007 Male 8.1 Mucoid 1+

This type of a register requires a different approach to data entry than we used before. Two
important things need to be considered:

1) The same patient may appear again and again on sequential dates

2) Not every patient has the same number of visits

Some patient characteristics do not change over time such as, in this example, the identity of
the patient, sex, and marital status (well, perhaps not during these short intervals). Others do
change, such as the date of examination, blood sugar, the aspect of the sputum and the sputum
smear examination result.

Exercise 7: A relational database

At the end of this exercise you should be able to:
a. Understand when a single data entry form and when a relational database

is the preferred data collection instrument
b. Create a relational database for a varying number of observations.

course_a_ex07_task
Page 2 of 4

To capture such information in a single data entry form as was done in the previous exercises
would be very inconvenient: 1) one would have to anticipate the maximum of allowable visits,
and 2) if one patient has a single visit, one would still have to complete all fields with the codes
for missing values up to the maximum allotted if we insist that all fields must usually be Must
Enter fields.

Building a relational database requires deciding which information is static for an individual
(during the observation period) and which information changes over repeated observations. We
will illustrate a relational database with a very limited set of variables.

What is the structure of such a relational database? The figure below outlines a relational
database with two levels.

At the Level 1 (the “Parent” file), we may have patients, denoted here with A and B. At Level
2 (the “Child” file), denoted here as A-1, A-2, and A-3, we may have different visits to a clinic
where each time the date of the visit is recorded, and blood pressure blood sugar are measured.
Each individual may have at least one, but up to an unlimited number of such visits, and the
number of visits varies for each individual.

In the following, we will call the records at Level 1 the parent records and those at Level 2 child
records.

To build the relational database, we collect different information at each level and link the two
levels, so that at some point during entering parent information will trigger the opening of the

Rule: If an individual has a fixed number of observations for each variable, then a single
EpiData form is the best solution. If an individual has a variable number of observations
for each variable, the choice is a relational data base.

Note: Because of the simplicity, it is always preferable to have a single data entry form.
However, if the data available concern an individual with fixed information (e.g. age,
sex, etc) on one hand, and variable information (e.g. serial examinations) and there are
fixed sets of variables in serial examinations (e.g. repeated measures of blood sugar and
blood pressure) and each examinee has a varying number of examinations, then it may
become more efficient to use a relational database.

course_a_ex07_task
Page 3 of 4

child form to enter one or more child records. One or more child records are added until one
wishes to return back to the upper level of parent records.

Important components for the structuring of the relation between the two data forms are:

• The two forms have a common identifier field. This identifier might be called
idparent.

• The child form must have its own unique identifier, which might be called idchild.

Illustrating it practically in EpiData Manager

We start a New Project. We note the brief information on the relational database in the opening
window:

Change the name of the Untitled Project to Exercise 7 and Dataform 1 to 1_parent and save the
project as a_ex07.epx.

We add as first field the string variable idparent, the Unique parent identifier of
length 2 as a Must Enter field. We add only two fields: age, an integer of length 2 for
Patient’s age in years and sex for Patient’s sex, an integer of length 1. Both
are Must Enter fields. For age as a continuous variable, we might write in Notes:
Enter 0 to 97 for exact age
Enter 98 if 98 or older
Enter 99 if not recorded

Finally, we define idparent as Key field. Next we make the 2_child Dataform (rename it
using F2) by clicking on the:

And we note that EpiData opens the new data form with the idparent identifier already
written onto the canvass:

If you click on it, you see that in the Field Properties menu everything is grayed out and in its
Extended tab we also see the grayed out setting to No Enter, all courtesy of EpiData Manager!

While we are in the 2_child data form, we add the four variables visit, syst, diast,
and bs, for Visit date, Systolic blood pressure, Diastolic blood
pressure, and Plasma glucose in mMol respectively, a date, two integer and one
float field, all Must Enter (and define some range, but assume no missing values). Preceding

course_a_ex07_task
Page 4 of 4

Visit date, add idchild, the Unique child identifier, a No Enter string field
of length 13, resulting from the combination of the values of idparent and visit.

This is all there is to it: the flow of the related forms is such that once the 1_parent is
completed, the flow leads right over to the 2_child data form, where you can complete from
one to many records before you move back up to a new 1_parent data form.

Other options
You can add more related forms. If there is more than one data form, you can choose under
Properties of the 1_parent data form (right-click its name) in the After Record tab the order
of flow which is to be followed after the parent record:

For a single related form as in our example, there is only one possibility, and this is pre-recorded
as default.

You can also set conditions in a field of the 1_parent form, i.e. which value in the field
should trigger access to the related field. As of now, there is still some bug that should be fixed
shortly that prevents this extended functionality to work as intended.

Task:
o Complete the related data set and check it for functionality in the EpiData EntryClient

course_a_ex07_solution
Page 1 of 1

Task:
o Complete the related data set and check it for functionality in the EpiData EntryClient

Solution:
A completed parent and child record set may look as this:

Solution to Exercise 7: A relational database

Key Point(s):
• A relational database is appropriate when a dataset contains fixed person

information (such as age, sex, hair color, and the like and variable information
like examination of weight and blood sugar over a variable number of
examination visits.

• A unique identifier in the parent file serves as the key connecting the parent file
with the child file

