
EpiData Software for Operations Research in
Tuberculosis Control

A course developed by the EpiData Association

Authors:
Hans L Rieder, Kirchlindach, Switzerland
Jens M Lauritsen, Odense, Denmark

The input with major contributions to current content and recent revisions is greatly
acknowledged:
Nguyen Binh Hoa, Hanoi, Viet Nam
Ajay M V Kumar, Bengaluru, India
Zaw Myo Tun, Singapore

course_0-1_title
Page 2 of 3

Date last revised: April 26, 2018

Note on versions of EpiData software: Always use the most recent release
version of EpiData software which can be obtained freely from the EpiData
website http://www.epidata.dk. The course is updated at least whenever a new
version requires adaptation or following an in-class course, whichever comes
earlier.

http://www.epidata.dk/

course_0-1_title
Page 3 of 3

Course content
Part A: Quality-assured data capture with EpiData Manager and EpiData

EntryClient
Exercise 1 A data documentation sheet for a simple questionnaire
Exercise 2 Create a basic data entry form
Exercise 3 Create a value-label pair from external data
Exercise 4 Create a composite identifier
Exercise 5 Data entry and validation
Exercise 6 Upgrading an EpiData 3.1 REC/CHK file pair to an EPX file
Exercise 7 Relational database

Part B: EpiData Analysis
Exercise 1 An introduction to EpiData Analysis
Exercise 2 More on EpiData Analysis
Exercise 3 Aggregating data and saving the summary data in a file
Exercise 4 From a spreadsheet to an EpiData file

Part C: Operations research
Exercise 1: Creating a working dataset
Exercise 2: Variability in serial smears
Exercise 3: Incremental yield from serial smears
Exercise 4: Confirmatory results in serial smears

Part D: More on EpiData software
Exercise 1: Relational database and aggregating vs from “Long-to-wide”
Exercise 2: A statistical process control chart
Exercise 3: A simplified survival analysis
Exercise 4: Creating a menu for standard reports
Exercise 5: Formatting standardized analysis output in a spreadsheet

Part E: Beyond EpiData Analysis using R
Exercise 1: Introduction to R software: basics
Exercise 2: Introduction to R software: data bases and functions
Exercise 3: Multivariable analysis in R part 1: A logistic regression
Exercise 4: Multivariable analysis in R part 2: A Cox proportional hazard model

Background
In the 1980ies, the United States Centers for Disease Control and Prevention (CDC)
developed public health software for its Epidemic Intelligence Service. The software package
was called Epi Info and, later supported and promoted by the World Health Organization,
experienced an unprecedented spread throughout the world’s public health community.
The initiative to make EpiData was taken by Jens M Lauritsen from Denmark. Initially it was
conceived of as part of the "Initiative for Accident Prevention" at Funen County. Why was it
necessary to develop a new data entry program, if Epi Info version 6 had all that was needed
in terms of control of data entry and simplicity? With the development of the Windows®
operating system the majority of current computer users found it increasingly harder to cope
with the DOS® operating system of working in Epi Info. Furthermore, with the change in the
operating system of computers to newer versions of the Windows® operating system, the Epi
Info 6.04d based on the DOS® operating system was eventually becoming obsolete (Windows
7® is no more reading it). Nevertheless, the principles underlying Epi Info are fundamentally
sound and needed to be preserved for the new generation of public health practitioners grown
up with the Windows® operating system.
On the Epi Info discussion list there were some discussions on strategies around 1997-1998,
when the Epi Info team at CDC in USA decided to make an updated Epi Info version 2000.
The updated Epi Info applies a different strategy in using a completely new way of working
and basing it on the Microsoft Access® database format instead of simple text files.
Commercially available proprietary software is not focused on documentation, simplicity of
use and validation of double-entered data. EpiData Entry is a program with a focus on data
entry. The ambition of EpiData Entry was to create a simple to use independent application,
which would not interfere with or require any special database system drivers (dll-based
routines) shared with or interfering with other applications.
EpiData software consisted of three modules, EpiData Manager, EpiData EntryClient, and
EpiData Analysis. The predecessor of EpiData Manager and EntryClient, EpiData Entry 3.1.,
followed the principles of Epi Info 6 with the so-called QES, REC, and CHK triplet, where
the *.qes file defined the data entry form structure with variable names, labels, type, and
length. This information was then passed on to the actual data base structure that would be
used for data entry, i.e. the *.rec file. The *.chk file controlled data entry and contained all
metadata.
By the 2010s it had become clear that an increasingly larger proportion of computer users had
become visually oriented and that systems requiring some comprehension of underlying DOS
principles became increasingly difficult to grasp for the regular user. In that vain, a system
based on three file types started to overtax some users. It was thus decided to revamp entirely
the system for data entry. There would be two software components, one reserved for the
person designing and controlling the data entry form, the EpiData Manager software, and the
other independent for the data entry person, called the EpiData EntryClient software.
For the EpiData Manager and EntryClient software, a single file is used and, as before, it is a
text file but written in a specially adapted language (XML) belonging to the family of
languages used for the internet. The language allows field names to be of any type, i.e.
instead of English characters only, they can also be e.g. in Chinese or Arabic characters. The
same goes for the values of text fields. The software comes in six flavors for the three

Background, objective, and course history

course_0-2_background
Page 2 of 15

operating systems Windows, Mac, and Linux, and each for computers with a 32- and 64-bit
architecture.
The development towards the replacement of EpiData Entry 3.1 with EpiData Manager and
EntryClient had gone on for about three years of intensive work until it reached a new level of
maturity in spring 2015 with release version 2. While some aspects that had been available in
its predecessor are still in the pipeline, the new software is considered a full and equivalent
replacement of the older one.
In this course you will be learning the use of both EpiData Manager and EpiData EntryClient
(Part A) and EpiData Analysis (Part B), and to apply them to operations research (Part C),
starting with its very basic functionality to increasing sophistication, and finally extend your
programming skills in EpiData Analysis (Part D). The final module concludes with an
introduction to R software with the examples of two specific multivariate tasks that exceed
the boundaries of EpiData Analysis.
The course is designed and build for PC computers, i.e. for machines using the Windows®
operating system. As the principles are the same, most material should be usable and
adaptable for the Linux® or Mac OS X® systems. While EpiData Manager and EpiData
EntryClient are available for all three operating systems, EpiData Analysis is, for the time
being, a Windows® software program only.

Course Objective:
Acquire the skills to capture research study data of high quality, supported by
thorough documentation of every procedure, conduct basic analyses, and apply
them to operations research.

course_0-2_background
Page 3 of 15

History of the course
The data for the original course were collected in a study simultaneously conducted in Benin,
Malawi, Nicaragua, and Senegal.
The persons who collaborated in study design, data collection, analysis, and writing of a
report were Séverin Anagonou (Benin), Thuridur Arnadottir (The Union), Fatoumata Ba
(Senegal), Awa Hélène Diop (Senegal), Donald A Enarson (The Union), Martin Gninafon
(Benin), A C Kasalika (Malawi), Hans L Rieder (The Union), Tone Ringdal (The Union),
Felix L M Salaniponi (Malawi), Alejandro A Tardencilla Gutierrez (Nicaragua) and
Arnaud Trébucq (The Union).
Utilizing the data generated in this collaborative research project, three courses of two weeks
duration each from 1997 to 1999 with a total of 18 participants were conducted in Paris by
The Union. Subsidies to defray costs of these three courses were borne by the United States
Centers for Disease Control and Prevention, the Coopération Française, the Norwegian Heart
and Lung Association, the International Organization for Migration, and the Korean Institute
of Tuberculosis.
The first course was held in April 1997 in Paris, France. The participants were Francis
Adatu-Engwau (Uganda), Nora Bonso-Bruce (Ghana), Awa Hélène Diop (Senegal), Asma
Elsony (Sudan), and Amina Jindani (The Union). The facilitators were Thuridur
Arnadottir, Eric Brenner (USA), Lawrence J Geiter (The Union), Hans L Rieder (The
Union), and Arnaud Trébucq (The Union).
The second course was held in April 1998 in Paris, France. The participants were
Mohammed Akhtar (Pakistan), Maurice Andriamiandrisoa (Madagascar), Manfred
Danilovits (Estonia), Lew Woo Jin (Korea, Republic of), Nguyen Phuong Hoa (Vietnam),
Shanta Bahadur Pande (Nepal), and Alejandro A Tardencilla Gutierrez (Nicaragua). The
facilitators were Thuridur Arnadottir (The Union), Eric Brenner (USA), Lawrence J Geiter
(The Union), Hans L Rieder (The Union), and Arnaud Trébucq (The Union).
The third course was held in April 1999 in Paris, France. The participants were Ademir de
Albuquerque Gomes (Brazil), Fatoumata Ba (Senegal), Ferdinand Kassa (Benin), Pushpa
Malla (Nepal), Tieng Sivanna (Cambodia), and Wang Jie-Siu (China), and. The facilitators
were Thuridur Arnadottir (The Union), Eric Brenner (USA), Lawrence J Geiter (The
Union), Hans L Rieder (The Union), and Arnaud Trébucq (The Union).
Because of the large costs associated with conducting the course, the course content and
format was tested through interactive distance learning during the year 2000 by email. We
are particularly indebted to Panganai Dhliwayo (Zimbabwe) and Robert Makombe
(Zimbabwe) who went through this course in their free time. This helped in clarifying
ambiguities and removing errors and uploading the course in September 2000 to the Internet
(http://www.tbrieder.org).
The fourth course was held in Addis Ababa, Ethiopia, in April 2001. The participants were
Ahmed Abdurehman (Ethiopia), Jemal Aliy (Ethiopia), Mekdes Gebeyehu Ayicheh
(Ethiopia), Abebe Habte (Ethiopia), Yohannes Mengistu (Ethiopia), Moustapha Ndir
(Senegal), Serkalem Tadesse (Ethiopia), Betru Tekle (Ethiopia), Mohammed Ahmed Yassin
(Ethiopia), and Getachew Eyob Yitelelu (Ethiopia). The facilitators were Nils E Billo (The
Union), Panganai Dhliwayo (Zimbabwe), and Hans L Rieder (The Union).
In 2002, the course material was once more revised to replace Epi Info 6 with EpiData Entry
for questionnaire design, data checks, data entry, and data validation. For data analysis the
6.04d DOS version of Epi Info was retained.

http://www.tbrieder.org/

course_0-2_background
Page 4 of 15

The fifth course was held in Paris, France, in January 2003. The participants were Nadia
Aït-Khaled (The Union), Kya Jai Maug Aung (Bangladesh), Chiang Chen-Yuan (Taiwan),
Paula I Fujiwara (The Union), Achilles Katamba (Uganda), Kim HeeJin (Korea, Republic
of), Dumitru Laticevschi (Moldova), Jones Michongwe (Malawi) and Jotam G Pasipanodya
(Zimbabwe). The facilitators were Panganai Dhliwayo (Zimbabwe), Robert Makombe
(Zimbabwe), and Hans L Rieder (The Union).
The sixth course was held in Yangon, Myanmar, in December 2003. The participants were
Nyein Nyein Aye (Myanmar), May Yee Chan (Myanmar), Tin Mi Mi Khaing (Myanmar),
Thandar Lwin (Myanmar), Htar Htar Oo (Myanmar), Saw Thein (Myanmar), Ti Ti
(Myanmar), Myo Zaw (Myanmar), and Thin Thin Yee (Myanmar). The facilitators were
Chiang Chen-Yuan (The Union), Hans L Rieder (The Union), and I D Rusen (Canada). In
all previous courses the hypothesis was to test whether The Union’s assumption that ten
suspects needed to be examined to identify one case of tuberculosis was applicable to the
study area. During the course it emerged, however, that even refutation of the hypothesis had
relatively little programmatic implication. It was thus decided to integrate the previously
supplementary exercises (dealing with variability of positive findings, patterns of recorded
results, and potential incremental yield) into one single hypothesis addressing the critical
value of the number of smear examinations that may be justified to identify one additional
case or failure on the third diagnostic or the second follow-up smear examination,
respectively.
The seventh course was held in Paris, France, in January 2004. The participants were
Wafaa Hassan Ali Taha (Sudan), Goar Balasanyants (Russia), Nulda Beyers (South Africa),
Kathy Lawrence (South Africa), Biggie Mabaera (Zimbabwe), Nymadawaa Naranbat
(Mongolia), Mahshid Nasehi (Iran), Mauro Occhi (Mozambique), Yevgeniy Shubin
(Russia), and Abigail Wright (World Health Organization). The facilitators were Panganai
Dhliwayo (Zimbabwe), Jens M Lauritsen (EpiData Association, Denmark), Robert
Makombe (Zimbabwe), and Hans L Rieder (The Union).
The eighth course was held in Berne, Switzerland, in July 2004. The participants were
Sondhja Bitter (Switzerland), Eva Blozik (Switzerland), Lorenz Borer (Switzerland),
Michael Endrich (Switzerland), Karin Imoberdorf-Baumgartner (Switzerland), Caroline
Keller (Switzerland), Hansjörg Lüthy (Switzerland), Christoph Pammer (Austria), Sabine
Recker (Switzerland), Kurt Schmidlin (Switzerland), Jan Wagner (Switzerland), Sabine
Walser (Austria), and Mark Witschi (Benin). The facilitators were Hans L Rieder (The
Union) and Marcel Zwahlen (University of Berne, Switzerland). The curriculum of this
course was changed in two important aspects from the previous courses. First, a core
curriculum was developed to allow the conduct of the course within five working days
without loss of any relevant course aspects. Refinements of specific aspects were offered in
addenda independent of each other. This allowed course completion within one week (core
curriculum) or eight days (core and extended curriculum). Second, the Epi Info Analysis
component was replaced by a beta test version of EpiData Analysis which proved to be
working smoothly without any glitches.
The ninth course was held in Paris, France, in January 2005. The participants were Anneke
Hesseling (South Africa), Hu Dongmei (China), Zanele Hwalima (Zimbabwe), Liu Zhentian
(China), Henri Luwaga (Uganda), Nguyen Thien Huong (Vietnam), John Osho (Nigeria),
Tran Ngoc Buu (Vietnam), Nevin Wilson (The Union), and Yao Hongyan (China). The
facilitators were Panganai Dhliwayo (The Union), Jens M Lauritsen (EpiData Association,
Denmark), Robert Makombe (Zimbabwe), and Hans L Rieder (The Union). In this course,
only free public domain software was used. Data management and analysis were done with

course_0-2_background
Page 5 of 15

EpiData and EpiData Analysis, supplemented where needed with spreadsheet functions of
OpenOffice.
The tenth course was held in Berne, Switzerland, in July 2005. The participants were
Thomas Bart (Switzerland), Lisanne Christen (Switzerland), Stephanie Christensen
(Switzerland), Michael Flück (Switzerland), Yvonne Jansen (Switzerland), Irène Marty
(Switzerland), Jeanne Moser (Switzerland), Christoph Napierala (Switzerland), Barbara
Prokup (Germany), Martin Raab (Switzerland), Franziska Rabenschlag-Trösch
(Switzerland), Claudia Sauerborn (Switzerland), and Yasemin Yüksel (Switzerland). The
facilitators were Hans L Rieder (The Union) and Marcel Zwahlen (University of Berne,
Switzerland). This course used the same software as the January 2005 course with the latest
pre-release version of EpiData Analysis (Version 0.9, Release 5, Build 26). Input from the
participants and faculty led to further streamlining of some exercises.
The eleventh course was conducted in Paris, in January 2006. The participants were Chay
Sokun (Cambodia), Andrew D R C Dimba (Malawi), Elhafiz Hussein Ibrahim (Sudan),
Akramul Islam (Bangladesh), Suksont Jittimanee (Thailand), Le Van Duc (Vietnam),
Nguyen Binh Hoa (Vietnam), Helmuth Reuter (South Africa), Ezra Shimeles (The Union),
and Xu Min (China). The facilitators were Achilles Katamba (Uganda), Jens M Lauritsen
(EpiData Association, Denmark), and Hans L Rieder (The Union). In September 2005, the
EpiData Association had released the stable EpiData Analysis Version 1.0. Between release
and course commencement, the EpiData Association released upgrade Version 1.1 which
added the last functionality (aggregate command) that had been possible previously only in
Epi Info DOS Version 6.
During 2005 and 2006 the structure of the course was changed into three parts (EpiData
Entry, EpiData Analysis, and Operations Research,). Parts A (EpiData Entry) and B (EpiData
Analysis) were stripped of the operations research component for the benefit of those who do
not have sufficient time available or who wish to familiarize themselves solely with the
software. Conversely, Part C (Operations research) was stripped of components now
introduced in Parts A and B, concentrating on the application of the latter to the example
research project.
In July 2006, the twelfth course was conducted in Berne, Switzerland, for Master of Public
Health students and other interested participants. These were Martin Adam (Switzerland),
Edith Betschart (Switzerland), Tobias Eckert (Switzerland), Denise Felber Dietrich
(Switzerland), T John Kessler-Teuscher (Switzerland), Esther Kolb (Switzerland), Brigitte
Kuenzle (Switzerland), Sonia Menéndez-González (Switzerland), Stefan Neuner-Jehle
(Switzerland), Christoph Paul Röder (Switzerland), and Hildebrand Schwab (Switzerland).
The facilitators were Hans L Rieder (The Union) and Marcel Zwahlen (University of Berne,
Switzerland).
In August 2006, the thirteenth course was given in Changsha, Hunan Province, China. All
participants were from China. They were were 范月玲 (Fan Yueling), 贾忠彬 (Jia Zhongbin),
阚晓宏 (Kan Xiaohong), 李晓凤 (Li Xiaofeng), 林岩 (Lin Yan), 邱柏红 (Qiu Baihong), 潭振 (Tan
Zhen), 王铂 (Wang Bo), 汪清雅 (Wang Qingya), 张恩溥 (Zhang Enpu), 张宏伟 (Zhang
Hongwei), 张会民 (Zhang Huimin), and 赵丁源 (Zhao Dingyuan). Facilitators were Chiang
Chen-Yuan (The Union) and Hans L Rieder (The Union).
In December 2006, the fourteenth and fifteenth courses were given sequentially in Beijing,
China. All participants were from China. In the thirteenth course the participants were 陈慧娟
(Chen Huijuan), 陈静 (Chen Jing), 陈伟 (Chen Wei), 房宏霞 (Fang Hongxia), 胡嘉 (Hu Jia), 梁路
(Liang Lu), 刘二勇 (Liu Eryong), 马斌忠 (Ma Binzhong), 王丹霞 (Wang Danxia), 吴顶峰 (Wu

course_0-2_background
Page 6 of 15

Dingfeng), 于宝柱 (Yu Baozhu), and 张慧 (Zhang Hui). In the fourteenth course, the
participants were 陈广华 (Chen Guanghua), 孔霞 (Kong Xia), 李曙光 (Li Shuguang), 罗丹 (Luo
Dan), 马艳 (Ma Yan), 庞学文 (Pang Xuewen), 司马雅云 (Sima Yayun), 徐吉英 (Xu Jiyin), 依帕尔
(Yi Pa’er), 张广恩 (Zhang Guangen), 赵津 (Zhao Jin), and 周扬 (Zhou Yang). Facilitators were
Jens M Lauritsen (EpiData Association, Denmark), Biggie Mabaera (University of
Zimbabwe, Zimbabwe), and Hans L Rieder (The Union), with the assistance of 胡冬梅 (Hu
Dongmei), 徐敏 (Xu Min), and 张慧 (Zhang Hui).
In June 2007, the sixteenth course was given in Khartoum, Sudan. Two major changes were
made to the course curriculum. The first change was that the database for Part C was changed
to the utilization of the dataset collected as a course project of the January 2003 and 2004
courses (data courtesy: Dumitru Laticevschi, Moldova; Nymadawaa Naranbat, Mongolia;
Achilles Katamba, Uganda; Biggie Mabaera, Zimbabwe). The second change was to use
the test version 2.0 of EpiData Analysis. All participants were from Sudan. The participants
were خدیجة ادم محمد (Khadiga Adam Mohammed), اسرار محمد عبدالسلام (Asrar M A/Salam
Elegail), معاذ سرالختم اسماعیل (Maaz Sier Elkhatim Ismail), حباب خالد الخیر (Habab Khalid
Elkheir Omer), امل السماني اسماعیل (Amel Elsammani Mohamed Ahmed Elmuozamil), مناضل
 Sayed Mohammed Shareef) سید محمد ھمت ,(Monadil Hassan Mohamed Ali) حسن محمد علي
Himat), ثویبة عمر علي محقر (Thoeiba Omer Ali Muhagger), عبدالمجید عثمان موسي (Abdelmageed
Osman Musa), علا محمود رحمة الله (Olla Mahmoud Rahamtalla) and مي عبدالرحمن عمارةعز (Azmi
Omara). The coordinator was لوران علي زین العابدین (Louran Zein Abdin Ali, National
Tuberculosis Programme Sudan), and facilitators were الحافظ حسین ابراھیم (Elhafiz Hussein
Ibrahim, Epi-Lab, Sudan), and Hans L Rieder (The Union).
In July 2007, the seventeenth course was given in Berne, Switzerland, for Master of Public
Health students and other interested participants. These were Nicole Bender-Oser
(Switzerland), Bettina Bringolf-Isler (Swizerland), Sabina Büttner (Switzerland), Christian
Frei (Switzerland), Florian Gutzwiller (Switzerland), Peter Heri (Switzerland), Kerstin Hug
(Switzerland), André B Kind (Switzerland), Dimitri Korol (Switzerland), Cornelia Marti
(Switzerland), Anne Spaar (Switzerland), and Françoise Teuscher (Switzerland). The
facilitators were Hans L Rieder (The Union) and Marcel Zwahlen (University of Berne,
Switzerland).
In November 2007, the course material was updated to make minor changes to Part A and to
accommodate the changes introduced with the release Version 2.0 of EpiData Analysis.
In April 2008, the eighteenth course was given in Chisinau, Moldova. EpiData Version 3.1
(Build 270108) and EpiData Analysis Version 2.0 (Pre-release 2.1 Test Build 132) was
utilized. The participants were Əlixanova Natəvan (Alikhanova Natavan), Azerbaijan; uCa
nanava (Ucha Nanava), Georgia; maia qavTaraZe (Maia Kavtaradze), Georgia; Otilia
Scutelniciuc, Moldova; Angela Capcelea, Moldova; Rita Seicas, Moldova; Viorel Soltan
Moldova; Ştefan Savin, Moldova; nino lomTaZe (Nino Lomtadze), Georgia; Constantin Dan
Nicolaiciuc, Romania; Iuliana Husar, Romania; Richard Oleko (Sudan). Facilitators were
Jens M Lauritsen (EpiData Association, Denmark), Biggie Mabaera (Temporary Consultant
to The Union, Lesotho), and Hans L Rieder (The Union).
In June 2008, the nineteenth course was given in Ulaanbaatar, Mongolia. EpiData Version
3.1 (Build 270108) and EpiData Analysis Version 2.0 (Pre-release 2.1 Test Build 132) were
utilized. The participants were Пүрэвдагва Анузаяа (Anuzaya Purevdagva), Цолмон
Билэгтсайхан (Bilegtsaikhan Tsolmon), Бүрнээбаатар Буянхишиг (Burneebaatar
Buyankhishig), Бүдбазар Энхтуяа (Budbazar Enkhtuya), Довдон Хандаасүрэн (Dovdon
Khandaasuren), N Naranbold (Н. Наранболд), Baatarkhuu Oyuntuya (Баатархүү
Оюунтуяа), Dorj Otgontsetseg (Дорж Отгонцэцэг), Demberelsuren Sodbayar

course_0-2_background
Page 7 of 15

(Дэмбэрэлсүрэн Содбаяр), Sandagdorj Tuvshingerel (Сандагдорж Түвшингэрэл),
Luvsansharav Ulzii-Orshikh (Лувсаншарав Өлзий-Орших). Hans L Rieder (The Union)
was the facilitator. Following are the names of Nymadawa Naranbat, who organized the
course, and the eleven participants written in the traditional Mongolian alphabet.

In June / July 2008, the twentieth course was given in Berne, Switzerland, for Master of
Public Health students and other interested participants. EpiData Version 3.1 (Build 270108)
and EpiData Analysis Version 2.0 (Pre-release 2.1 Test Build 132) were utilized. All
participants were from Switzerland. They were Caroline Bähler-Baumgartner, Daniela
Dyntar, Martin Egger, Carola A Huber, Ursula Kälin-Keller, Annette Koller Doser,
Andrea Merkel-Hoek, Eric Odenheimer, Helen Prytherch, Anna Späth, and Melinda
Spiesshofer. The facilitators were Hans L Rieder (The Union) and Marcel Zwahlen
(University of Berne, Switzerland).
In October 2008, the twenty-first course was given in Kampala, Uganda. Course I was
given during this five-day course. It was specifically designed to fit this 5-day course, also
incorporating the previously existing brief overview of EpiData software. EpiData Entry
Version 3.1 (Build 270108) and EpiData Analysis Version 2.0 (Pre-release 2.1 Test Build
141) were utilized. The participants were Raymond Asiimwe (Uganda), Bernard Ssentalo
Bagaya (Uganda), Freddy Bwanga (Uganda), Henry Byabajungu (Uganda), Basra Esmail
Doulla (Tanzania), Nicholas Ezati (Uganda), Fred Kangave (Uganda), George Lukyamuzi
(Uganda), Diana Nadunga (Uganda), and Raymond Shirima (Tanzania). Francis Adatu-
Engwau (Uganda) was a guest participant, and formerly a participant in the first course. The
facilitator was Hans L Rieder (The Union), supported in part by Achilles Katamba
(Makerere University, Uganda, and The Union Country Office, Uganda).
In February 2009, the twenty-second course was given in Kampala, Uganda. Course II, Part
B (EpiData Analysis) and Part C (Operations research) were given during this five-day
course, although some exercises had to be skipped due to the brief duration of the course.
EpiData Analysis Version 2.1 (Test Build 159) was utilized. The participants were Francis
Adatu-Engwau (Uganda), Bernard Ssentalo Bagaya (Uganda), Freddy Bwanga (Uganda),
Basra Esmail Doulla (Tanzania), Fred Kangave (Uganda), Diana Nadunga (Uganda), and
Raymond Shirima (Tanzania. The facilitator was Hans L Rieder (The Union), supported in
part by Achilles Katamba (Makerere University, Uganda, and The Union Country Office,
Uganda).
In July 2009, the twenty-third course was given in Berne, Switzerland, for Master of Public
Health students and other interested participants. EpiData Version 3.1 (Build 270108) and
EpiData Analysis Version 2.2 (Build 169) were utilized. All but one participant from the
principality of Liechtenstein were residents of Switzerland. They were Aline Barbir, Rita

course_0-2_background
Page 8 of 15

Born, Mazda Farshad, Oliver Fuchs, Juliette Gerber, Gerti Kitting Gaillard, Meltem
Kutlar Joss, Teresa Leisebach Minder, Elisabeth Oberfeld, Anna Plym, Corinna Rüegg,
Dino Schlamp, Eliane Siegenthaler, Federico Soldati, and Esther Walser (Principality of
Liechtenstein). The facilitators were Hans L Rieder (The Union) and Marcel Zwahlen
(University of Berne, Switzerland).
In October 2009, the twenty-fourth course was given in Paris, France, for fellows and
participants in the training module 2 offered by the Centre for Operational Research of The
Union. EpiData Entry Version 3.1 (Build 270108) and EpiData Analysis Version 2.2.1.171
were utilized. The participants were Dawit Assefa Lemma (Ethiopia), Walter Kizito
Kibango (Kenya), Proscovia Namuwenge Mukonzo (Uganda), Mweete Debra Nglazi (South
Africa), Nguyen Binh Hoa (Viet Nam), Mahfuza Rifat (Bangladesh), Srinath
Satyanarayana (India), Zaw Myo Tun (Myanmar), Hannock Mukoma Tweya (Malawi) and
Susanna Sophia Van Wyk (South Africa). The facilitators were Hans L Rieder (The Union)
and Anthony D Harries (The Union), assisted by Nguyen Binh Hoa (Fellow, Viet Nam).
In March 2010, the twenty-fifth course was given in Paris, France, for three selected fellows
and participants in the training module 2 offered by the Centre for Operational Research of
The Union. EpiData Entry Version 3.1 (Build 270108) and EpiData Analysis Version
2.2.1.171 were utilized. The course focused on Parts C (Operations Research) and D (More
on EpiData software). The participants Nguyen Binh Hoa (Viet Nam), Zaw Myo Tun
(Myanmar), and Hannock Mukoma Tweya (Malawi). The facilitators were Hans L Rieder
(The Union) and Jens M Laurtisen (EpiData Association).
In July 2010, the twenty-sixth course was given in Berne, Switzerland, for Master of Public
Health students and other interested participants. EpiData Version 3.1 (Build 270108) and
EpiData Analysis Version 2.2 (Build 171) were utilized. All participants were residents of
Switzerland. They were Brigitte Brunner, Adrian Businger, Elisabeth Maurer Schild,
Rebecca Osterwalder, Alexandra Rauch, Charles Senessie, Ulf Tölle, and Roco
Umbescheidt. The facilitators were Hans L Rieder (The Union) and Marcel Zwahlen
(University of Berne, Switzerland).
In October 2010, the twenty-seventh course was given in Paris, France, for fellows and
participants in the training module 2 offered by the Centre for Operational Research of The
Union. EpiData Entry Version 3.1 (Build 270108) and EpiData Analysis Version 2.2.1.171
were utilized. The participants were Felix Afutu (Ghana), Sarabjit Singh Chadha (India),
Karen Du Preez (South Africa), Razia Fatima (Pakistan), Oliver Gadabu (Malawi), Lucy
Guluka-Gawa (Malawi), Mohammed Kogali (Sudan), Rose Jepchumba Kosgei (Kenya),
Ajay M V Kumar (India), Tonderayi Clive Murimwa (Zimbabwe), Mauro Niskier Sanchez
(Brazil), and Kudakwashe Collin Takarinda (Zimbabwe). The facilitators were Hans L
Rieder (The Union), Nguyen Binh Hoa (Viet Nam), Zaw Myo Tun (Myanmar), and Sven
Gudmund Hinderaker (The Union).
In May 2011, the twenty-eighth course was given in Paris, France, for two selected fellows
from the training module 2 offered by the Centre for Operational Research of The Union.
EpiData Entry Version 3.1 (Build 270108) and EpiData Analysis Version 2.2.1.171 were
utilized. The course focused on Parts C (Operations Research) and D (More on EpiData
software). The participants Karen Du Preez (South Africa) and Ajay M V Kumar (India).
The facilitators were Hans L Rieder (The Union), Jens M Laurtisen (EpiData Association),
and Hannock Mukoma Tweya (Malawi).
In November 2011, the twenty-ninth course was given in Paris, France, for fellows and
participants in the training module 2 offered by the Centre for Operational Research of The

course_0-2_background
Page 9 of 15

Union. EpiData Entry Version 3.1 (Build 270108) and EpiData Analysis Version 2.2.1.171
were utilized. The participants were Henry Shadreck Kanyerere (Malawi), Nicholas Kirui
(Kenya), Pranay Lal (India), Sharath Bugurina Nagaraja (India), Sharan Ram (Fiji), Carlos
Alberto Mendoza-Ticona (Peru), Emmanuel Singogo (Malawi), Nelda van Soelen (South
Africa), Kerry Viney (New Caledonia), and Aung Naing Win (Myanmar). The facilitators
were Hans L Rieder (The Union), Sarabjit Chadha (The Union), and Ajay M V Kumar
(India).
In February 2012, the thirtieth course was given in Kathmandu, Nepal, for fellows and
participants in the training module 1b offered by the Centre for Operational Research of South
East Asia office of The Union. EpiData Entry Version 3.1 (Build 270108) and EpiData
Analysis Version 2.2.1.178 were utilized. The participants were Tshering Jamtsho (Bhutan),
Tashi Denup (Bhutan), Shyla Islam (Bangladesh), Wasantha Jayakodi (Sri Lanka), Swati
Srivastava (India), Suresh Shastri (India), Ramya Ananthakrishna (India), Rajendra Basnet
(Nepal), Caetano Gusmao (Timor Leste), Sokhan Khann (Cambodia), Sarwat Shah
(Pakistan), Iwayan Artwan (Indonesia). The facilitators were Ajay M V Kumar (The Union,
India) and Srinath Satyanarayana (The Union, India).
In March 2012, the thirty-first course was given in Bengaluru, India, for participants of the
operational research course conducted by the Centre for Operational Research of South East
Asia office of The Union in association with the National Tuberculosis Programme, United
States Centre for Disease Control and Prevention, and the National Tuberculosis Institute.
EpiData Entry Version 3.1 (Build 270108) was utilized. The participants (all residing in India
and working for or in close association with the national tuberculosis programme) were
Gurpeet Singh, Priyanka Agrawal, Subhakar, Raju Chepuri, Solomon Muller Ankala,
Chetan Purad, D J Deka, Rajeev Pathak, Pankaj Nimavat, Amar Shah, Sunil Kumar,
Karthickeyan DSA, Rajesh Deshmukh, Tapas Patra, Parija Debudatta, Asha Fedrick ,
Shivramakrishnan, Rajabhau D Yeole, Suparna Chatopadhaya, Shiv Kumar Singh, Vrinda
Sahasrabhojane, Anand and Tripathi. The facilitators were Ajay M V Kumar (The Union,
India) and Srinath Satyanarayana (The Union, India).

In April 2012, the thirty-second course was given in Paris, France, for three selected fellows
from the training module 2 offered by the Centre for Operational Research of The Union.
EpiData Entry Version 3.1 (Build 270108) and EpiData Analysis Version 2.2.1.178 were
utilized. The course focused on Parts C (Operations Research) and D (More on EpiData
software). The participants were Sarabjit Singh Chadha (India), Sharath Burugina
Nagaraja (India), and Nicholas Kirui (Kenya). The facilitators were Hans L Rieder (The
Union), Ajay M V Kumar (The Union, India), and Jens M Laurtisen (EpiData Association).
In May 2012, the thirty-third course was conducted in Goa, India, for about 60 or more
WHO-hired consultants working for the national tuberculosis programme in India (plus a
couple of observers from the WHO-India and WHO-SEARO office) to build their capacity in
data management; they were in turn expected to train all the 650 and more data entry
operators working for the national tuberculosis programme. EpiData Entry Version 3.1 (Build
270108) and EpiData Analysis Version 2.2.1.178 were utilized. The course duration was three
days and focused on Parts A (Data Entry) and B (Data Analysis). The facilitators were Ajay
M V Kumar (The Union, India), Sharath Burugina Nagaraja (India), Kiran Rade (India)
and Srinath Satyanarayana (The Union, India).
In May-June 2012, the thirty-fourth course was given in Nairobi, Kenya, as a component of
a course on data management for personnel working in tuberculosis reference laboratories,
largely in Africa. EpiData Entry Version 3.1 (Build 270108) and EpiData Analysis Version

course_0-2_background
Page 10 of 15

2.2.1.178 were utilized. The course focused on Parts A (Data Entry) and B (Data Analysis).
The participants were Pamela Juma Akinyi (Kenya), Vignon Charles Frank Faïhun (Bénin),
Frederick Kangave (Uganda), Thuwein Yusuf Makamba (Tanzania), Faisal Masood
(Pakistan), Margaret Ndisha (Kenya), Diana Nadunga (Uganda), Collins Tanaka Sakubani
(Zimbabwe), Tigist Habtamu Shiferaw (Ethiopia), Elizabeth Ndaafetwa Shipiki (Namibia),
Raymond Philip Shirima (Tanzania), and Mukururi Sibanda (Botswana). The facilitators
were Hans L Rieder (The Union) and Armand Van Deun (The Union). Subsequent to the
course, the structure of Part A (EpiData Entry) was adjusted to improve the flow into more
coherent blocks.
In July 2012, the thirty-fifth course was given in Berne, Switzerland, for Master of Public
Health students and other interested participants. EpiData Entry Version 3.1 (Build 270108)
and EpiData Analysis Version 2.2 (Build 178) were utilized. The participants (all residing in
Switzerland) were Lukas Fenner, Micòl Gianinazzi, Lotte Habermann-Horstmeier, Eva-
Maria Hau-Grosch, Marianne Jost, Tanja Löhri, Thomas Plattner, Regina Scharf, Laura
Wengenroth, Alfred Wiesbauer, and Natascha M Wyss. The facilitators were Hans L
Rieder (The Union) and Marcel Zwahlen (University of Berne, Switzerland).
In July 2012, the thirty-sixth course was given in Paris, France, for fellows and participants
in a training module offered by the Centre for Operational Research of The Union. EpiData
Entry Version 3.1 (Build 270108) and EpiData Analysis Version 2.2.1.178 were utilized. The
participants were Serge Ade (Benin), Fengling Mi (China), Emmanuel Kanike (Malawi),
Bodrun Siddiquea (Bangladesh), Kang Yang Lim (Singapore), Prashant Bhat (India),
Ganzaya Sukhbaatar (Mongolia), Hilary Gunguwo (Zimbabwe), Philip Owiti (Kenya),
Eunice Wahome (Kenya), Christine Njuguna (South Africa) and Kesete Yirdaw (Ethiopia).
The facilitators were Ajay M V Kumar (The Union, India), Nguyen Binh Hoa (Viet Nam)
and Srinath Satyanarayana (The Union, India).
In September 2012, the thirty-seventh course was given in Chennai, India, for participants
of the operational research course conducted by the South East Asia office of The Union in
association with the National Institute for Research in Tuberculosis (erstwhile Tuberculosis
Research Centre). EpiData Entry Version 3.1 (Build 270108) and EpiData Analysis Version
2.2.1.178 were utilized. The participants (all residing in and working for tuberculosis control
in India) were Kovid Sharma, Jaya Prasad Tripathy, Jaiswal Narendra, Jigneswar Patel,
Nanda Kumar, Sanat Kumar Tripathi, Kamal Chand Naik, Lord Wasim Reza, Priyakanta
Nayak, Ramesh Kumar, Palanivel C and Deepa D. The facilitators were Ajay MV Kumar
(The Union, India), Ramya Ananthakrishnan (REACH, India) and Amar Shah (WHO,
India).
In December 2012, the thirty-eighth course was given in Nadi, Fiji Islands, for participants
of the Pacific Operational Research Course conducted by the Centre for Operational Research
of The Union and The Secretariat of the Pacific Community. EpiData Entry Version 3.1
(Build 270108) and EpiData Analysis Version 2.2.1.178 were utilized. The participants, from
different countries of the Pacific region were Edwin Henry Daiwo (Solomon Islands),
Rupihner Defang (Federated States of Micronesia), Saen Fanai (Vanuatu), Louise Fonua
(Tonga), Natalie Girin (New Caledonia), Mareta Hauma (Republic of Marshall Islands),
Noel Itogo (Solomon Islands), Tom Jack (Republic of Marshall Islands), Veisinia Matoto
(Tonga), Joaquin Nasa (Republic of Marshall Islands), Markleen Tagaro (Vanuatu) and
Karen Tairea (Cook Islands). The facilitators were Ajay M V Kumar (The Union, South
East Asia office and also module chair), Karen Bissell (The Union), Shakti Gounder (Fiji
Ministry of Health), Bridget Kool (The University of Auckland, New Zealand), Sharan Ram

course_0-2_background
Page 11 of 15

(Fiji National University), Christine Roseveare (EpiData Trainer, New Zealand) and Kerri
Viney (Secretariat of the Pacific Community).
In January 2013, the thirty-ninth course on “Efficient, Quality assured Data capture using
EpiData” was given in Bengaluru, India, for medical college professionals working in close
collaboration with the Revised National TB Control Programme in Karnataka. This course
was conducted by the South-East Asia office of The Union in association with the Bangalore
Medical College and Research Institute. This course, the first of its kind in India, utilized
EpiData Entry Version 3.1 (Build 270108). The participants were Madhusudan M,
Mohammed Imran, Amit Kumar Rao, Arshiya Kouser S, Navya CJ, Vinay M, Nagaraja
Goud B, Ranganath TS, Ravish KS, Kishore SG, Sarsawathi S, Thilak SA, Shivaraj
BM, Riyaz Basha S, Nimmy Dominic, Ashok Kumar Gudagunti, Deepak Tamang,
Surbhi Joshi, Karuna D Sagili, Archana Trivedi, Swaroop Kumar Sahu, Josephine Priya K,
Suresh Kumbhar, Anushka T, Lilian Dsouza, Nevin Wilson and Sunita Prasad. The
facilitators were Ajay M V Kumar (The Union, South East Asia office and also module
chair), Balaji Naik (WHO-RNTCP, Bengaluru), Deepak KG (WHO-RNTCP, Tumkur),
Prashant Bhat (WHO-RNTCP, Hubli) and Palanivel (IGMCRI, Puducherry).
In February-March 2013, the fortieth course was given in Kathmandu, Nepal, for
participants of the Asian Operational Research Course conducted by the Centre for
Operational Research of South-East Asia office of International Union Against Tuberculosis
and Lung Disease (The Union). EpiData Entry Version 3.1 (Build 270108) and EpiData
Analysis Version 2.2.2.180 were utilized. The participants were Mangal Bahadur Tharu
(Nepal), Xia Yinyin (China), Yaping Chang (China), Lekey Khandu (Bhutan), Jakir Hossain
Bhuiyan Masud (Bangladesh), Sumudu Chandana Abeygunawardena (Srilanka), Olga
Denisiuk (Ukraine), Gabeena Mamoon (Pakistan), Satyavani (India), Mrinalini Das (India),
Shankar D (India), Ravinder Kumar (India). The facilitators were Ajay M V Kumar (The
Union, India), Swati Srivastava (PHFI, India), Balaji Naik (WHO-RNTCP, India), Karuna D
Sagili (The Union, India) and Deepak Tamang (The Union, India).
In March 2013, the forty-first course on “Efficient, Quality-assured Data capture using
EpiData” was given for medical college professionals and scientists from the Vector Control
Research Centre working in Puducherry, India. This course was conducted by the South-East
Asia office of The Union in association with the medical college Jawaharlal Institute of
Postgraduate Medical Education and Research (JIPMER). This course utilized EpiData Entry
Version 3.1 (Build 270108). The participants were Murugan V, Prasad Dikale, Kavita
Vasudevan, Hemant Shewade, Johnson Cherian, Mahalakshmi, Subitha L, Anindo
Majumdar, Kalaiselvi, Vedapriya, Anuj Mittal, Ramesh Chauhan, Madhan Raj, S
Srikanth, E Susiganesh Kumar, R Kanagarethinem, R Moorthy, Yogesh A Bahurupi, Om
Prakash Bera, Surendar Rangaswamy, Manoj Kumar Panigrahi, R Srinivasan, C
Sadanandane and Ganesh. The facilitators were Ajay M V Kumar (The Union, South-East
Asia office and also module chair), Palanivel (IGMCRI, Puducherry), Swaroop Kumar Sahu
(JIPMER, Puducherry), Karuna D Sagili (The Union, India) and Deepak Tamang (The
Union, India).
In March 2013, the forty-second course was given in Bengaluru, India, for participants of the
operational research course conducted by the Centre for Operational Research of South-East
Asia office of The Union in association with the India National Tuberculosis Programme,
United States Centers for Disease Control and Prevention (CDC Atlanta), and the National
Tuberculosis Institute, Bangalore. EpiData Analysis Version 2.2.2.180 was utilized. The
participants (all residing in India and working for or in close association with the national
tuberculosis programme) were Gurpeet Singh, Priyanka Agrawal, Raju Chepuri, D J Deka,

course_0-2_background
Page 12 of 15

Rajeev Pathak, Amar Shah, Sunil Kumar, Karthickeyan DSA, Rajesh Deshmukh, Parija
Debudatta, Asha Fedrick, Shivramakrishnan, Rajabhau D Yeole, Anand and Tripathi.
The facilitators were Ajay M V Kumar (The Union, India), Srinath Satyanarayana (The
Union, India), Balaji Naik (WHO-RNTCP, India), Sreenivas Nair (WHO-India), Vineet K
Chadha (NTI, India), Patrick Moonan (CDC Atlanta), Smitha Ghosh (CDC Atlanta) and
John Oeltmann (CDC Atlanta).
In March 2013, the forty-third course on “Efficient, Quality-assured Data Analysis using
EpiData” was given in Bengaluru, India, for medical college professionals working in and
around Bengaluru, Karnataka. This course was organized by Bangalore Medical College and
Research Institute in collaboration with the South-East Asia office of The Union. This course
utilized EpiData Analysis Version 2.2.2.180. The participants were Amit Kumar Rao,
Ashwini, Navya CJ, Nagaraja Goud B, Ranganath TS, Ravish KS, Sarsawathi S, Thilak
SA, Shivaraj BM, Riyaz Basha S, Nimmy Dominic, Swaroop Kumar Sahu, Josephine
Priya K, Lilian Dsouza, Hamsa L, Puneeth Kumar and Subhash Babu P. The facilitators
were Ajay M V Kumar (The Union, South-East Asia office and also module chair), Karuna
D Sagili (The Union, India) and Deepak Tamang (The Union, India).
In April 2013, the forty-forth course on “Advanced use of EpiData software for operations
research” was conducted in Delhi, India, with an emphasis on Parts B, C, and D, using
EpiData Entry Version 3.1 (270108) and EpiData Analysis Version 2.2.2.180. The
participants, all from India, were Jaya Prasad Tripathy, Palanivel C, Amar N Shah, Balaji
Naik, Priyakanta Nayak, Debadutta Parija, Mrinalini Das, Deepak Tamang, Karuna Devi
Sagili, and Riyaz Basha Sardar. The facilitators were Ajay M V Kumar (The Union, South-
East Asia office) and Hans L Rieder (The Union, Paris).
In May 2013, the forty-fifth course was conducted in Yaoundé, Cameroun, using EpiData
Entry Version 3.1 (270108) and EpiData Analysis Version 2.2.2.181. The participants were
Wilfried Békou Kossi (Bénin), Frédéric Békang Angui (Cameroun), André Nana Yakam
(Cameroun), Yvon Martial Ngana (Centrafrique), Jules Toloko Risasi (Congo, RD), Valéri
Oulaï Ibodé (Côte d’Ivoire). The facilitator was Hans L Rieder (The Union, Paris).
In May-June 2013, the forty-sixth course was conducted in Paris, France, using EpiData
Entry Version 3.1 (270108) and EpiData Analysis Version 2.2.2.182. The course title was
“Advanced use of EpiData software for operations research” and was given to four
participants selected from the Union’s Centre for Operational Research 2012 cohort who had
already passed “Module 1b”. The course focused on Parts B (Introduction to EpiData
Analysis), C (Operations Research) and D (More on EpiData software). The participants
were Kesete Yirdaw (Ethiopia), Prashant Bhat (India) , Philip Owiti (Kenya), and Lim Kang
Yang Leo (Singapore). The facilitators were Hans L Rieder (The Union), Ajay M V Kumar
(The Union, India), and Jens M Laurtisen (EpiData Association).
In July 2013, the forty-seventh course was conducted in Berne, Switzerland, using EpiData
Entry Version 3.1 (270108) and EpiData Analysis Version 2.2.2.182. The course title was
“From paper to computer records – ensuring data quality for analysis”. The course was
provided for participants enrolled in the Swiss Public Health training curriculum. The
participants were Lars P Andersen, Anka Baltensperger, Nicole Bartlomé, Katrin Crameri,
Corina Ebnöther, Nicole Gysin, Isabelle Keel, Gablu Kilcher, Jörg Lützner, Miriam
Pfiffner, Anne Schmidt, and Johannes Wacker. The facilitators were Hans L Rieder (The
Union) and Marcel Zwahlen (University of Berne, Switzerland).
In September-October 2013, the forty-eighth course was conducted in Dhaka, Bangladesh,
using EpiData Entry Version 3.1 (270108) and EpiData Analysis Version 2.2.2.182. In

course_0-2_background
Page 13 of 15

addition, an introduction was made to EpiData Manager public release version v1.4.2 and
EpiData Entry Client v1.4.2. The course title was “EpiData software for quality-assured data
entry and analysis”. The course was provided for personnel working in the Damien
Foundation projects in Bangladesh and selected personnel from the national tuberculosis
control program. The participants were Muhammad Ameer Ali, Panna Lal Goswani, Md
Anwar Hossain, Md Shamin Hossain, Aung Kya Jai Maug, Priojit Kumar Nandi, and Binoy
Tudu. The facilitator was Hans L Rieder (The Union).
In October 2013, the forty-ninth course was given in Chennai, India, for participants of the
National Operational Research Course (2013-14) conducted by the South-East Asia Regional
Office of The Union in association with the National Institute for Research in Tuberculosis,
India. EpiData Entry Version 3.1 (Build 270108) and EpiData Analysis Version 2.2.2.182
were utilized. The course was titled “Efficient, Quality-assured Data Capture and Analysis
using EpiData”. The participants (all residing in and working for tuberculosis control in India)
were Kalpita Shringarpure, Deepti Nirwal, Sairu Philip, Shankar Dapkekar, Kiran Kumar
Reddy, Kumaravel Ilangovan, Syed Imran Farooq, Hemant D Shewade, Umesh Chandra
Tripathi, Bhavin Vadera, Anshul Avijit, and Poorana Ganga Devi. The facilitators were
Ajay MV Kumar, Karuna Sagili, Deepak Tamang (The Union, India), Palanivel C, Swaroop
Sahu (JIPMER, Puducherry), and Mrinalini Das (MSF, India).
In March 2014, the fiftieth course was given in Kathmandu, Nepal, for participants of the
Asian Operational Research Course conducted by the Centre for Operational Research of
South-East Asia office of International Union Against Tuberculosis and Lung Disease (The
Union). EpiData Entry Version 3.1 (Build 270108) and EpiData Analysis Version 2.2.2.182
were utilized. The participants were Raman Mahajan (India), Wajira Rajapakshe (Sri
Lanka), Sarder Tanzir Hossain (Bangladesh), Nay Thiha (Myanmar), Nang Thu Thu Kyaw
(Myanmar), Basant Joshi (Nepal), Kimcheng Choun (Cambodia), Srinivas Bairy (India),
Kinley Zam (Bhutan), Sai Ko Ko Zaw (Myanmar), Aashifa Yaqoob (Pakistan) and Vishal
Dogra (India). The facilitators were Karuna D Sagili (The Union, India), Mrinalini Das
(MSF, India), Prashant Bhat (WHO-RNTCP, India), Hemant Shewade (Indira Gandhi
Medical College and Research Institute, India) and Jay Prasad Tripathy (PGIMER, India).
Ajay M V Kumar (The Union, India) participated as observer.
In July 2014, the fifty-first course was given in Paris, France, for participants of the fifth
Paris Operational Research Course conducted by the Centre for Operational Research of
International Union Against Tuberculosis and Lung Disease (The Union). EpiData Entry
Version 3.1 (Build 270108) and EpiData Analysis Version 2.2.2.182 were utilized. The
participants were Riitta Dlodlo (Zimbabwe), Thi Mai Phuong Nguyen (Vietnam), Janet
Dzangare (Zimbabwe), Daphne Lagrou (Afghanistan/Belgium), Shuisen Zhou (China), Mar
Verlade (Switzerland), Charity Kanyoro (Kenya), Mbazi Senkoro (Tanzania), Wondu
Teshome Amenu (Ethiopia), Michel Sawadogo (Burundi), Justine Mirembe (Uganda) and
Josephine Namboze (Zimbabwe). The facilitators were Ajay M V Kumar (The Union,
India), Rafael van den Bergh (Luxembourg), Kuda Takarinda (Zimbabwe), Philip Owiti
(Kenya) and C Palanivel (India).
In March 2015, the fifty-second course was given in Kathmandu, Nepal, for participants of
the fourth Asia Operational Research Course conducted by the Department of Research,
International Union Against Tuberculosis and Lung Disease (The Union), South-East Asia
Regional Office, New Delhi, India. EpiData Entry Version 3.1 (Build 270108) and EpiData
Analysis Version 2.2.2.182 were utilized. The participants were Sudeepa Khanal (Nepal),
Mongal Singh Gurung (Bhutan), Hamayoun Hemat (Afghanistan), Mahboob Ul Haq
(Pakistan), Aye Myat Thi (Myanmar), Thi Thanh Huyen Truong (Vietnam), Sujit Kumar

course_0-2_background
Page 14 of 15

Sah (Nepal), Zin Min Thet Lwin (Myanmar), Kathirvel Soundappan (India), Chandor
Wangdi (Bhutan), and Srinivas Reddy Edla (India). The facilitators were C Palanivel
(India), Vivek Gupta (The Union, India), Hemant Shewade (The Union, India), Philip Owiti
(Kenya), Mrinalini Das (MSF, India) and Jay Prasad Tripathy (India).
In March 2015, the fifty-third course was given in Cotonou, Bénin, for collaborators from 9
francophone countries in Africa in the observational study of the “Bangladesh 9-month
regimen” for multidrug-resistant tuberculosis. The course was given in French but the
English course material was used and it focused on the analysis of study data, using as
introduction material from Parts A and B. EpiData Entry Version 3.1 (Build 270108) and
EpiData Analysis Version 2.2.2.183 were utilized. The participants were Gisèle Badoum
(Burkina Faso), Wilfried Békou (Bénin) , François Ciza (Burundi), Valentin Fikuma
(République Centrafricaine), Yves Habimana-Mucyo (Rwanda), Charlotte Kamgué
Tchieche (Cameroun), Ferdinand Kassa (Bénin), Lucien Koffi Kouakou (Côte d’Ivoire),
Olivia Mbitikon (République Centrafricaine), Marie-Léopoldine Mbulula (République
Démocratique du Congo), Yvon Ngana (République Centrafricaine), Jürgen Noeske
(Cameroun), Ibodé Valéri Oulai (Côte d’Ivoire), Alberto Piubello (Niger), Tandaogo
Saouadogo (Burkina Faso), Bassirou Souleymane (Niger), Jules Toloko (République
Démocratique du Congo). The facilitators were Ghislain Kobto Koura (The Union), Hans L
Rieder (The Union), Valérie Schwoebel (The Union), and Arnaud Trébucq (The Union).
In April 2015, the fifty-fourth course on “Efficient, quality-assured data capture using
EpiData” was given for medical college faculty and public health professionals of South India
at Puducherry, India. This course was conducted by the South-East Asia Regional office of
The Union in association with the medical college Jawaharlal Institute of Postgraduate
Medical Education and Research (JIPMER). This course utilized EpiData Entry Version 3.1
(Build 270108). The participants were Sheethal MP, Gudadappa Kasabi, Prasanna
Thirunavukkarasu, Vaman Kulkarni, Giriyanna Gowda, Vinayagamoorthy V, Mohan
Kumar R, Jeyashree Kathiresan, Sagar A Borker, Rachana AR, Suguna E, Sudhir Prabhu
H, Asha B, Shankar Reddy Dudala, Sathish Chandra MR, Sowmya N Malamardi, Iswarya
S, Achyutananda Das Mohapatra, Rakesh K Nayak and Prakash M. The facilitators were
Palanivel C (JIPMER, Puducherry), Swaroop Kumar Sahu (JIPMER, Puducherry),
Kalaiselvi S(JIPMER, Puducherry), Subitha L (JIPMER, Puducherry), Vivek Gupta (The
Union, India), Hemant Shewade (The Union, India) and Ajay M V Kumar (The Union,
India).
In May 2015, the fifty-fifth course with EpiData software was given for staff at the Leibniz-
Center for Medicine and Biosciences, Research Center Borstel, Germany. Preceding the
course, Part A was revised and the exercises on data form design and data entry were
switched from utilization of EpiData 3.1 to EpiData Manager Version 2.0.4.43 and EpiData
EntryClient Version 2.0.3.15. For the analysis component, EpiData Analysis Version
2.2.2.183 was used. The participants were Patricia Sánchez Carballo, Jan Heyckendorf,
Barbara Kalsdorf, Ioana Olaru, Nelleke Smitsman, and Nasstasja Wassilew. The facilitator
was Hans L Rieder (Tuberculosis Consultant Services, Switzerland).
In July 2015, the fifty-sixth course was conducted in Berne, Switzerland, using EpiData
Manager Version 2.0.5.51 and EpiData EntryClient Version 2.0.3.15. For the analysis
component, EpiData Analysis Version 2.2.2.183 was used. The course title was “From paper
to computer records – ensuring data quality for analysis”. The course was provided for
participants enrolled in the Swiss Public Health training curriculum and students and staff
from the Institute of Social and Preventive Medicine of the University of Berne.. The
participants were Marcel Bruggisser, Beat Brüngger, Carine Graf Keer Rendon, Rahel

course_0-2_background
Page 15 of 15

Kasteler, Kathrin Pachlatko, Dominik Straumann, Nerina Vischer, Annette Weiss, and
Kathrin Zürcher. The facilitators were Marcel Zwahlen (University of Berne) and Hans L
Rieder (Tuberculosis Consultant Services, Switzerland).
In September 2015, the fifty-seventh course was conducted in Chennai, India, for
participants of the operational research course conducted by the South East Asia office of The
Union in association with the National Institute for Research in Tuberculosis (erstwhile
Tuberculosis Research Centre). EpiData Entry Version 3.1 (Build 270108) and EpiData
Analysis Version 2.2.2.183 were utilized. The participants (all residing in India and working
in public health) were Himanshu Gupte, Himbala Verma, Thirumugam M, Yasobant
Sandul, Dina Nair, Sendhilkumar Muthappan, Shobha Ekka, Ashish Kumar Pandey,
Akash Ranjan Singh, Valan Adimai Siromany, Kalaiselvi Selvaraj and Sudhir Chawla. The
facilitators were Hemant D Shewade (The Union, India), Jaya Prasad Tripathy (The Union,
India), Karuna Sagili (The Union, India), Palanivel C (JIPMER, India), Prashant Bhat
(CHAI, India) and Kalpita Shringarpure (Baroda Medical College, India).
In October 2015, the fifty-eighth course on “Efficient, Quality-Assured Data Analysis Using
EpiData” was conducted for medical college faculty and public health professionals of South
India at Puducherry, India. This course was conducted by the South-East Asia Regional
office of The Union in association with Jawaharlal Institute of Postgraduate Medical
Education and Research (JIPMER), a premiere medical college in India. This course utilized
EpiData Analysis V2.2.2.183. The participants were Sheethal MP, Prasanna
Thirunavukkarasu, Giriyanna Gowda, Vinayagamoorthy V, Mohan Kumar R, Jeyashree
Kathiresan, Rachana AR, Sudhir Prabhu H, Sathish Chandra MR, Sowmya N
Malamardi, Achyutananda Das Mohapatra, Rakesh K Nayak, Yogesh Bahurupi,
Mahalakshmi, Kavita Vasudevan, Prasad Dhikale, Ramesh Chand Chouhan, Bijaya Nanda
Naik and Prakash M. The facilitators were Palanivel C (JIPMER, Puducherry), Swaroop
Kumar Sahu (JIPMER, Puducherry), Kalaiselvi S (JIPMER, Puducherry), Jaya Prasad
Tripathy (The Union, India), Hemant D Shewade (The Union, India) and Ajay MV Kumar
(The Union, India).
In November 2016, the fifty-ninth course on “EpiData software for efficient, quality-assured
data entry and analysis, Part 2 of the course: EpiData Analysis module” was conducted at the
Forschungszentrum Borstel (Germany) for staff and invited guests. This course used EpiData
Manager v2.0.13.64 and EpiData EntryClient v2.0.10.26 (for one exercise only) and EpiData
Analysis V2.2.2.185. The participants were Serghei Covanţev (Chisinau, Moldova), Barbara
Kalsdorf (Borstel, Germany), Niklas Köhler (Lübeck and Borstel, Germany), Ioana Olaru
(Borstel, Germany), Patricia M Sánchez Carballo, Borsel (Germany), and Dagmar Schaub
(Borstel, Germany). The facilitator was Hans L Rieder (Tuberculosis Consultant Services,
Switzerland).
In April 2018, the sixtieth course on “EpiData software for efficient, quality-assured data
entry and analysis, Part 2 of the course: EpiData Analysis module” was conducted at the
Institute of Tropical Medicine in Antwerp, Belgium. This course used EpiData Manager
v4.2.0.0 and EpiData EntryClient v4.2.0.0 (for one exercise only) and EpiData Analysis
V2.2.2.187. The participants were Tom Decroo, Mourad Gumusboga, and Armand Van
Deun, all from the Institute of Tropical Institute. The facilitator was Hans L Rieder
(Tuberculosis Consultant Services, Switzerland).

If the course comes on a CD-ROM / DVD-ROM
If your course is on a CD-ROM, it might be easiest to copy its entire content, i.e., the folder
containing the course, to your computer hard disk. One level below the folder, you will see a
file:
index.html

This is the name commonly given by convention to the opening page (the “home page”) of a
web site. Indeed, the course material is organized like a web site. If you double-click on this
file (INDEX.HTML), the web opens in your default browser. For fastest access to the web
you might wish to make a short-cut to this opening page on your desktop and then drag it
down to the Quick Launch taskbar (Windows XP® and Windows Vista®). To create a desktop
shortcut, right-click on this file, go to Send To and Desktop (create shortcut) and click the
latter. You can drag this desktop shortcut down to the Quick Launch taskbar. This will always
give you visible access with a single click. Windows 7® has hidden the Quick Launch taskbar
and has replaced it with an option to pin programs to the Taskbar. It is possible to restore the
old Quick Launch taskbar if you wish (see next paragraph).

Restoring the Quick Launch bar in Windows 7®
Click anywhere on an empty part of the taskbar, right-click and ensure that “Lock the taskbar”
unticked:

then right-click again and choose “Toolbars” | “New toolbar”:

and type into the location bar:
%appdata%\Microsoft\Internet Explorer\Quick Launch

and press Enter. Ensure that the path is displayed at the top, and click Select Folder. The
Quick Launch bar will appear in the Taskbar. Drag the dots to pull it out, then right-click it
and untick “Show text” and “Show title”. You can now drag short-cuts from the Desktop into
the Quick Launch bar (and then delete them from the Desktop).

Preparatory steps before you begin

course_0-3_preparatory
Page 1 of 11

Creating working directories
We will require three folders, all in the root of the drive to which you have administrative
access, commonly this will be the C:\ drive:
\epidata
\epidata_course
\temp

The three components of EpiData software, i.e. EpiData Manager, EpiData EntryClient, and
EpiData Analysis, will be installed in the \epidata folder.

In the \epidata_course folder we will keep all our data files that we use and create
during this course.

You may already have a \temp folder as it is common, very useful and good practice to have
a temporary “storage” folder, i.e. a folder where we temporarily store files that we may
download from the Internet or indeed in this case from our disk-based course web before we
move them to the final destination on our PC. The content of the \temp folder should be
such as not ever to inflict harm or loss if its entire content is erased (else it wouldn’t really be
“temporary”).

Download EpiData Manager, EpiData EntryClient, and EpiData Analysis
EpiData Manager and EpiData EntryClient are very small executable files. Although the
version we use is Windows®-based, the setup does not interfere with your Windows® set-up:
all files are placed in a single directory (“folder” in current Windows® terminology) without
leaving any trace of it anywhere else on your system (no *.dll files).

While EpiData Manager and EpiData EntryClient are available for all three operating systems,
EpiData Analysis is, for the time being, a Windows® software program only, but with
emulators the latter can be run under Linux and Mac operating systems.
The numbers in the file names indicate version. As development continues these change, but
names of Manager and Entryclient will not change.
There are different ways to install / set up the software, and we propose the most simple one
which does not even require any installation procedure: there is thus no requirement for
administrator’s right, but instead you need to manipulate Windows® a little bit to get the
programs accessible through your Windows® Start menu.
If you open the EpiData web site at http://www.epdidata.dk and click the link to the download
page, you see:

You will note a whole list of options, Installation packages and further down Zipped
executables (see next page).

For the setup here, we are choosing the Zipped Executable for the Windows® operating
system. You need to know the architecture of your machine, whether it is 32-bit or 64-bit.

course_0-3_preparatory
Page 2 of 11

http://www.epdidata.dk/

If you do not know your machine’s architecture, then type:
msinfo32

into the Windows® Search bar:

[Enter], and you get the information:

Alternatively, you can right-click on My Computer and click on Properties. You will be able
to find the system type and operating system (here shown for a Windows 7® PC with a 64-bit
architecture):

course_0-3_preparatory
Page 3 of 11

From among the Zipped executables, save the pair that is appropriate for your computer to
your C:\TEMP folder. As a result you should get two of the following four zipped files:
epidataentryclient.2.0.2.13.win.32.zip
epidatamanager.2.0.2.28.win.32.zip

epidataentryclient.2.0.2.13.win.64.zip
epidatamanager.2.0.2.28.win.64.zip
The numbers in the file names indicate version. As development continues these change, but
names of Manager and Entryclient will not change. As we are in the process of downloading
from the EpiData web site, please move further down to EpiData Analysis:

Pick here please the executable setup file (circled in red above) and save it to your C:\TEMP
folder.
setupepidatastat_2.2.2.183.exe

If you are offline but have the course CD-ROM / DVD-ROM, all files are available on it.
“Download” them from the drive to your C:\TEMP folder and from there the following steps
will be identical.

A setup method to circumvent the requirement for administrator’s rights to install
software on your computer
Some users have a PC belonging or linked to a university (or other institution) that explicitly
limits access rights to a computer. This reduces the risk of a user installing malicious or other
unwanted software / code (broadly also known as “malware”) to a network-linked computer.
Different methods exist to prevent users from doing that, e.g. blocking a drive or the entire
computer altogether that will block installation. Usually, however, it will be possible to
create folders on any drive and to copy downloaded files into such a folder. This is the
approach we are employing here, i.e. escaping the usual installation routine for EpiData
Manager and EntryClient (but excepting here EpiData Analysis, but see later).

You have already created a folder C:\EPIDATA which will serve as your software folder. If
you have unzipping software such as the free open-source 7-zip installed and double-click for
instance:

course_0-3_preparatory
Page 4 of 11

epidataentryclient.2.0.2.13.win.64.zip

you should see its content with two folders and one file:

Copy / unzip all three (from the correct architecture compatible with your computer) into your
C:\EPIDATA folder. From the EpiData Manager zip file, we copy only the *.exe file:

(the folders are identical in the EpiData Manager and EntryClient zip files respectively). If
you cannot unzip because you are missing the software, please see below how to proceed.
With this, we already have everything for working with EpiData Manager and EpiData
EntryClient. Note again that it is critical to have the correct version (32- or 64-bit
respectively) because neither “upward” nor “downward” compatibility is assured between the
two versions.
In your file manager (Windows Explorer® or an alternative), find now the EpiData Analysis
setup file:
c:\temp\ setupepidatastat_2.2.2.183.exe
and double-click the file. The installation routine suggests the default installation folder:
c:\Program files\EpiData
or
Program Files (x86)\EpiData
While this would be perfectly fine, we recommend installing it instead into the same folder in
the root in which we already have the Manager / EntryClient software:
c:\epidata

The files will be extracted in a breeze.

If you look inside the folder and sort by extension, you see the three *.exe files:
epidataentryclient.exe
epidatamanager.exe
EpiDataStat.exe

which start respectively any of the three modules that together make up EpiData software.
The approach we chose (circumventing the installation process for Manager and EntryClient)
comes at a small cost: access was not written into the Windows® Start menu, but this is easily
fixed.

On your Desktop, right-click in an empty space and select New | Shortcut and then Browse
for and find the epidataentryclient.exe file:

course_0-3_preparatory
Page 5 of 11

and give it in the Next step an intuitively sensible name:

 And finish to see it on your Desktop:

Repeat the procedure for the epidatamanager.exe file, and if not yet done during
installation, also for the EpiDataStat.exe file, so that you have the linking icons to all
three on your Desktop:

For fast, single-click access, drag each of the three icons into your Quick Launch bar to get:

Create now on your Desktop a new Folder and name it, say, “EpiData software”, then drag
the above three links into that folder. The three icons will “disappear” from the Desktop into
the folder. You can now drag the folder into your Start menu (“All programs”) with no need
to place it alphabetically correctly as Windows® will take care of that. In this case, there was
already a folder “EpiData” for the software on this computer, and the new “EpiData software”
was added, showing upon single-click that it has now links to the three software components:

Clicking on any of these will open the respective module.

Getting everything in one zipped package
We have prepared a package named “epidata_course.zip” which can be found on the
CD-ROM / DVD-ROM or on the web site. If you unzip it into your C:\ drive, you get the
two folders C:\EPIDATA containing the software with paths and defaults set, and
C:\EPIDATA_COURSE containing the folder for the course material. All you need to do is

course_0-3_preparatory
Page 6 of 11

to make the links to the Desktop, the Quick launch bar and the Start menu as explained above
and you are set to go.

Not able to unzip?
If you are unable to unzip a zip file, it is likely that your computer has no software which can
zip and unzip the files. We have provided freely available, high-quality open-source software
(7-zip) in the course folder under the navigation panel item Software. Please download and
install it. Please ask your facilitator and learn this important skill as you will need it quite
often during the course.

Not able to view the file extensions?
By default, the Windows® setting hides file extensions. However, you will quickly realize
that it is essential to know them, thus change the default and make file extensions visible. Let
us quickly do this.

Look at the screen shots below. Open any folder on your computer. Click on Organize and
choose Folder and search options. A new window opens. Click on the View tab and look for
the check box with the description “Hide extensions for the known file types”. By default, the
check box is ticked. Click on it to un-tick the checkbox. Click on Apply and then OK to come
out of the window.

To visualize the extensions:

course_0-3_preparatory
Page 7 of 11

Setting up EpiData Manager
It is important to know the version of the software that you are working with. This serves two
important purposes – first, it will let us know whether we are using the latest version. Second,
it will be of immense help when you have some problem and are seeking troubleshooting
assistance from your colleague/mentor. Letting your mentor know the version of the software
you are using will help your mentor understand the problem and help you better. This will be
in our next paragraph.
Access EpiData Manager and you note the opening screen:

On the top line we see the software version:

An even greater and more detailed option is to go to Help | Copy Version Info in Manager
(identical access also in the EpiData Client):

It will be written (and confirmed as such) to the Clipboard and you get it pasted with
CTRL+V and on this computer the information is:
EpiData Manager
Program Version: 2.0.2.28 r1115
Core version: 2.0.0.0 r1126
FPC Version: 2.6.4
Platform: x86_64-Win64

If you post a question to the EpiData list, it would be most useful for those expected to help
you to have that information before they need to ask you to supply it! The developers made
an effort to keep your life simple with such neat small pieces to aid efficiency! Quite often,
users have an outdated buggy version, the problem of which was already solved in an updated
version. Rather than forcing the potential assistant to ask back about the version you use,
supply it together with your request for help.

Setting Preferences
Under Edit we find Preferences, also accessible via shortcut sequence ALT+E | ALT+S:

course_0-3_preparatory
Page 8 of 11

and we get an extensive menu:

For our initial setup, we will make only a few major and necessary menu settings. We
suggest that you study this in detail (every point) on your own sweet time. Of key importance
is to set the correct Paths, most notably changing the Default data folder to our course
working directory C:\EPIDATA_COURSE:

The other three paths remain unaltered as the default already defined by EpiData Manager.

In the Field Definitions, we could set various defaults for the different field types:

course_0-3_preparatory
Page 9 of 11

For the time being, we allow the default proposed by EpiData. Note perhaps the Default date
which is set to European style, but we could set an “American” or a “Chinese” date (critical is
to set it to what you are culturally used to reduce the risk of data entry errors):

EpiData writes the data you enter first into memory, not immediately to hard disk. It does the
latter after intervals you can set under Project Defaults | Backup and we recommend for the
beginner to change the default from 10_ to 2__ (minutes):

Note that while shorter times are convenient against loss (due to an OS crash), they come at a
cost: writing backups takes time, unnoticeable for small datasets, notable as the database
grows. Before you exit a data file, you will always be prompted to save, you cannot leave the
data inadvertently unsaved.

A note perhaps on Display of fields:

While we come back to the variables in the first exercise, it may be noted here that the name
of a variable (we call it “Field name”) usually requires a certain format with respect to case,
length, and permissible characters, while one is quite free with the so-called “Field label”, the
name that explains the field. For instance, we may have a field name age, and the field label
could be “Age in years at last birthday”. In EpiData 3.1 (and Epi Info 6), one
option was the standard to display both next to each other, followed by the field definition
like:
Age Age in years at last birthday ###

It was possible to suppress the field name by taking recourse to “automatic field naming”, but
it required to write the data entry form quite differently and admittedly a bit complex and not
so user-friendly. With EpiData Manager, the solution is a simple one for the user: tick or
untick the:

Because the field name is of no use for the data entry person (we require working with it in
analysis), we keep this unticked (but we see the field name clearly when we create the data
entry form).

Preferences in EpiData EntryClient
We open EpiData EntryClient, and also choose Edit | Preferences. We change the data path
to C:\EPIDATA_COURSE and leave the Colours as they are set by default: when using the

course_0-3_preparatory
Page 10 of 11

software in the EntryClient module we will learn practically if the colors are convenient, easy
for the eye, and allow distinguishing the important components. This is also often
individually different.
For the time being, these minor adjustment shall suffice.

At the end of this chapter, you should have done the following:

1. Installed EpiData Manager, EntryClient, and EpiData analysis (look for folder
EpiData in C: drive)

2. Created desktop shortcuts or quick launch bar icons for the software components and
checked their functionality

3. Created working directories in C: folder (named epidata_course and temp).

4. Have set the options in EpiData Manager and EntryClient software
If you have done the above steps successfully, we are now ready to move ahead!

course_0-3_preparatory
Page 11 of 11

Part A. EpiData Entry

Part A: Quality-assured data capture with EpiData Manager and EpiData
EntryClient

Exercise 1 A data documentation sheet for a simple questionnaire
Exercise 2 Create a basic data entry form
Exercise 3 Create a value-label pair from external data
Exercise 4 Create a composite identifier
Exercise 5 Data entry and validation
Exercise 6 Upgrading an EpiData 3.1 REC/CHK file pair to an EPX file
Exercise 7 Relational database

Acknowledgments:
We thank Ajay M V Kumar who had made valuable suggestions to improve the structure and
flow of argumentation of the preceding version (using EpiData Entry 3.1) of Part A which we
partially incorporated into this revised version.

course_a_ex01_task
Page 2 of 6

The first step in the process is to prepare a plan for data entry. This plan is called the data
documentation sheet. This should not be confused with data collection form or case report
form which is the proforma used for collecting the data from study participants or extracted
out of the program records. The data documentation sheet is a codebook containing the
details of all the variables (like field names, field labels, field type, field length, possible field
values, and field value labels) to be entered.
Note: Please do not worry if you do not yet understand all the technical terms at this point in
time. Be assured that you will appreciate these as you go along.
But let us proceed step by step and say that we have the following questionnaire:

This might present a typical simple questionnaire as used by an interviewer. Often such
questionnaires are first completed on a paper Case Report Form. The above is actually an
excerpt from the original Tuberculosis Laboratory Register proposed by The Union (note that
the current version has been slightly changed):

We will use this register as the basis for this course. For the time being, you plan to write a
short and concise electronic data capture form, retaining only variables that are easy to capture
and are likely to be useful for the analysis. Please note this as a first principle in being efficient
– capture only those variables which you will use for analysis!
Each of the questions can be conceived of as a variable and the answer to the question as the
value that the variable takes for a particular individual. Variables are also referred to as ‘Fields’
in EpiData – both refer to the same and will be used interchangeably. We will give each variable
a unique name. A completed entered data form for one study subject is called a ‘Record’. A
set of such records is called a ‘data file’. The data file thus contains several records and each
record contains information about one individual with respect to several variables. We are going

Exercise 1: A data documentation sheet for a simple questionnaire

Laboratory serial number: ___
Date specimen received (dd/mm/yyyy): ___/___/_____
Sex: ___
Age in years: ____
Reason for examination: ___
Result of specimen 1: ___
Result of specimen 2: ___
Result of specimen 3: ___

course_a_ex01_task
Page 3 of 6

to describe each variable with respect to several attributes in the data documentation sheet. Let
us now understand some terminology we are going to use.

• Field name: This is the name of the variable and in EpiData, there are certain rules to
be followed in arriving at this name. We will come to these rules in a short while.

• Field Label: This is the descriptive name for the variable and contains a more detailed
description than the variable name / field name can convey.

• Field Type: This describes the type of the variable – text, numeric or date being the
major types.

• Field length: This describes the number of characters that a value can take.

• Field values: This describes the possible values that a variable can take.

• Value labels: These are descriptive names for the values. For categorical variables
which are numerically coded, it is always useful to label them so that it is easier to read
and understand what each of the codes mean.

“Labels” are also called “metadata” or “data about data”. They play a key role in data files.
We may have entered a value “9” for a given field, but this number remains meaningless
without specifying for what this value stands. It is important to get acquainted with these terms
and understand them clearly since we will be using them frequently. We will be using several
examples later in this chapter to clarify these terms.
Field name: There are some software-specific rules in naming a variable.
First, a Field name has to be single word that has not more than ten characters. This means
that you cannot use a space in the name as a space makes it more than a word. Also, you cannot
use any special characters like comma, semicolon, full-stop or underscore, and the first
character should not be a number. Thus, do not start the variable name with a number. It cannot
be ‘1v’, but it can be ‘v1’.

Second, use a name which is intuitive to understand what it means instead of generic field
names like v1, v2 and so on.

Third, it may be a good practice to keep the field names in lower case. While EpiData is not
case-sensitive, some other software is. Important among such are e.g. R and Stata® which are
what we call “case-sensitive”. In the latter two, a field name of ‘sex’ (lower case), ‘SEX’
(Upper case), and ‘Sex’ (mixed case) are understood as different variables. If you later plan
to export your EpiData files for analysis to such a software package, it may make life
unnecessarily complicated if you have been inconsistent without a defined rule. Hence, the
recommendation to keep it uniformly, “lower case”.

The following words ‘date’, ‘month’, and ‘year’ are functions in EpiData and are reserved
names. Hence they cannot be used as variable names.
Field label: This is the full description of the variable and can be more than a word.
Field Type: There are different types of entry fields for the variables (we will follow the
EpiData notation and call them “Fields”):

Note that some other analysis software may accept only a field length of eight
characters. If you later plan to export your EpiData files for analysis to such a
software package and you had used the full field length of ten, then your field names
get truncated.

course_a_ex01_task
Page 4 of 6

• Text fields: These fields take letters or numbers or a combination of these as possible
values, like PETER, KOCH1882, giraffe, 45677 etc. You can type anything on the
keyboard into this field. If you enter a number into such a field, it is accepted but you
will not be able to make any calculation with it. These fields are also sometimes
designated as character or alphanumeric fields, or most simply “string” (denoted by S)
fields as they take any string of characters.

• Numeric fields: These are numbers. The numbers might be integers (denoted by I) like
885, 33, 1235 or real numbers like 3.4, 6.88, and 66.5 (also called floats and
denoted by ‘F’). You can make calculations with numeric fields.

• Date fields: (denoted by ‘D’): In different countries, different ways of writing dates are
used and this can be confusing for people from another culture. Some write 5 March
2005, others March 5 2005, and again others 2005 March 5. EpiData lets you choose
the type of date you wish to take. We made our choice for European dates in the
Preferences as we will be using European dates in this course, i.e. dates of the format 5
March 2005 or symbolized with DD/MM/YYYY.

• One other type of variables is called “logic” or “Boolean” variables. This is sometimes
used in food-borne outbreak investigations. There, answers to questions on food items
eaten is limited to “yes” and “no” and “missing”. There is no need for using this field
type and we discourage its use as it might pose problems in analysis. The alternative is
a numeric field with a label block.

While you are asked to limit the length of the field name, you have much more flexibility with
the length of the value a field can take, but we will try to use it as efficiently as possible, that is
we will limit the value length to the minimum needed.

Data Documentation Sheet
It is good practice to write what we call a data documentation sheet before you make your
actual data entry form in EpiData Manager. As mentioned earlier, EpiData refers to this as
Codebook.

In the past, fields like sex were commonly made text field with values “F” or “M” denoting
Females and Males. It is efficient as it uses only a length of 1 to remain unambiguous (well,
as long as the language is English or French, at least!). Things would get less efficient, if we
would have to code treatment outcome with the possible values “cured”, “completed”, “died”,
“failed”, “lost from follow-up”, “transferred out”, and “outcome not recorded”. Numeric
coding is much simpler as there are up to ten possible values with a field length of just 1:
1 Cured
2 Treatment completed
3 Died of any cause
4 Failed bacteriologically
5 Lost from follow-up
6 Transferred out
9 Outcome not recorded
Later, in the analysis, you will also realize that it is very convenient to apply numeric selection
criteria when you want to select a subset of data and undertake analysis only on the subset. Of
course, a prerequisite is that the link between the numeric value and the text label is
unambiguously clear. The role of labels is of enormous importance, also called meta-data or

course_a_ex01_task
Page 5 of 6

“data about data” as mentioned above. We are going to make full use of numeric coding of
field values and using explicit text as value labels.

Let us now go through a few examples of the variables (from the tuberculosis laboratory register
example) and describe the various attributes of the variables in the data documentation sheet.
As you go through, you will note that preparation of data documentation sheet requires thinking
and knowledge of study data.

course_a_ex01_task.docx
Page 6 of 6

This is how we would write such a data documentation sheet:
Field
name

Question [Field label] Field
type

Field
length

Field values Value labels Notes [Comment]

serno Laboratory serial number * I 4 1-9000,

9001, 9002,

 Serial number starting with 1 each year

Enter 9001, 9002,… if serial number is
not unique or missing, and write a data
entry note

regdate Registration date D 10 01/01/2000-31/12/2005 Range of legal registration dates

sex Examinee’s sex I 1 1

2

9

Female sex

Male sex

Sex not recorded

Task:
o Complete the data documentation sheet for all fields in the questionnaire. Note that you should always define a value if no answer was

provided to a question.
o Think of the most efficient ways to code reason for examination and results of microscopic examination

* Note: Often, it will be preferable to make the identifier a text field. If it is a number, as in this case here with the laboratory serial
number, precautions must be taken to distinguish e.g. “0001” from “1”, requiring that the numeric value is entered into one field.
We can make use of the possibility in EpiData Manager to add leading zeros where appropriate.

course_a_ex01_solution
Page 1 of 4

Task:
o Complete the data documentation sheet for all fields in the questionnaire. Note that you

should always define a value if no answer was provided to a question.
o Think of the most efficient ways to code reason for examination and results of

microscopic examination.

Solution:
There are many different solutions, but for the sake of uniformity, we will be using the
following (but later revise some components of it) as shown on the next page.

Solution to Exercise 1: A data documentation sheet for a simple
questionnaire

Key Point(s):
• It is good practice to write a data documentation sheet before you make your

actual data entry form with EpiData Manager.
• You should always define a value if no answer was provided to a question.
• “Date” is a reserved name in EpiData and cannot be used as a field name.

course_a_ex01_solution
Page 2 of 4

Field
name

Question [Field label] Field
type

Field
length

Field values Value labels Notes [Comment]

serno Laboratory serial
number

I 4 1-9000
9001, 9002,

 [Serial number starting with 1 each
year]
Enter 9001, 9002,… if serial number
is not unique or missing, and write a
data entry note

regdate Registration date D 10 01/01/2000-31/12/2005
sex Examinee’s sex I 1 1

2
9

Female sex
Male sex
Sex not recorded

age Examinee’s age in years I 3 0-125,
999

 [Range of legal age years]
Enter 999 if age not recorded

reason Examination reason I 1 0
1
2
3
4
5
6
7
8
9

Diagnosis
Follow-up at 1 month
Follow-up at 2 months
Follow-up at 3 months
Follow-up at 4 months
Follow-up at 5 months
Follow-up at 6 months
Follow-up at 7 months or later
Follow-up, month not stated
Reason not recorded

res1 Result of specimen 1 I 1 0
1
2
3
4
5
6
9

Negative
1+ positive
2+ positive
3+ positive
Positive, not quantified
Scanty, not quantified
Scanty, quantified
Result not recorded

[If the entered value is other than 6,
then bypass next field and bypass it]

res1sc Result of specimen 1
scanty

I 1 1
2
3
4
5
6
7
8
9

1 AFB per 100 OIF
2 AFB per 100 OIF
3 AFB per 100 OIF
4 AFB per 100 OIF
5 AFB per 100 OIF
6 AFB per 100 OIF
7 AFB per 100 OIF
8 AFB per 100 OIF
9 AFB per 100 OIF

res2 Result of specimen 2 I 1 0
1

Negative
1+ positive

[If the entered value is other than 6,
then bypass next field and bypass it]

course_a_ex01_solution
Page 3 of 4

2
3
4
5
6
9

2+ positive
3+ positive
Positive, not quantified
Scanty, not quantified
Scanty, quantified
Result not recorded

res2sc Result of specimen 2
scanty

I 1 1
2
3
4
5
6
7
8
9

1 AFB per 100 OIF
2 AFB per 100 OIF
3 AFB per 100 OIF
4 AFB per 100 OIF
5 AFB per 100 OIF
6 AFB per 100 OIF
7 AFB per 100 OIF
8 AFB per 100 OIF
9 AFB per 100 OIF

res3 Result of specimen 3 I 1 0
1
2
3
4
5
6
9

Negative
1+ positive
2+ positive
3+ positive
Positive, not quantified
Scanty, not quantified
Scanty, quantified
Result not recorded

[If the entered value is other than 6,
then bypass next field and bypass it]

res3sc Result of specimen 3
scanty

I 1 1
2
3
4
5
6
7
8
9

1 AFB per 100 OIF
2 AFB per 100 OIF
3 AFB per 100 OIF
4 AFB per 100 OIF
5 AFB per 100 OIF
6 AFB per 100 OIF
7 AFB per 100 OIF
8 AFB per 100 OIF
9 AFB per 100 OIF

course_a_ex01_solution
Page 4 of 4

Note the following here. For an unknown laboratory date (REGDATE), we must enter a legally
existing (valid) date and we chose a legal but practically impossible date in the past, i.e.
01/01/1800. EpiData will not accept a date 99/99/9999 nor for that matter
29/02/2001. It is a personal preference of us to usually use 9 or 99.9 or the like to define
unknown values, be this for text or numeric variables. We also introduced a “legal range” for
some variables like REGDATE and AGE. We did this a bit arbitrarily, but still tried to keep it
within what might be expected.
We made two fields for each result. There are 17 possibilities for a result, and therefore a length
of 2 is the minimum required, but even with that, the values might not be intuitive, but they
should be. An alternative version uses a float of length three to get for instance:
0.0 Negative
1.0 1+ Positive
2.0 2+ positive
…
0.1 Scanty, 1 AFB per 100 OIF
0.2 Scanty, 2 AFB per 100 AFB

Scanty results are relatively rare among positives (perhaps some 10% among diagnostic and
some 20% among follow-up examinations in quality-assured high-burden country laboratories),
and positives themselves are relatively rare among all (perhaps 10% to 20% among patients
coming for diagnostic evaluation). Thus, scanty positive results might be only 1% of all results.
We therefore chose to use integer variables and bypass the field scanty, unless the first field
defines the result as quantified scanty.

You are now ready to start with the design of the questionnaire with EpiData Manager, based
on the data documentation sheet prepared in Exercise 1.
When we open EpiData Manager, we have the interface with three rows, displaying the version
in the top row, menu items in the middle row and some specific menu items in the bottom row:

As we start from scratch, we begin with Select Project | New Project (or shortcut CTRL+N):

We note the opening of the set up:

The information on the right side informs about the differences of using a single data entry form
(as we will do now) or creating a relational dataset (as we will do in the last exercise of Part A).
Hovering over the small icons:

shows what they accomplish.

Exercise 2: Create a basic data entry form

At the end of this exercise you should be able to:
a. Create and edit a data entry form with EpiData Manager.
b. Include study information and password protection.
c. Use headings and sections.
d. Create basic label blocks, understand “Must enter”, jumps, ranges, using

label blocks for missing / out of range numeric data.
e. Align properly horizontally and vertically both for aesthetics and

functionality.

course_a_ex02_task
Page 1 of 11

Clicking on Untitled Project and pressing function key F2 allows us changing the name to, say,
“EpiData course”, and clicking on the Dataform 1 and pressing function key F2 allows us to
change the name of the form to “Microscopy lab”, so that we will get:

Right-clicking on the Project name gives us options:

As we play around, at some point in time, EpiData Manager will prompt us to save the project:

And we will do so promptly, saving the project as a_ex02.epx (the extension is supplied and
the suggested folder is our chosen data folder C:\EPIDATA_COURSE).

To resume from the above project options, let’s check Properties (shortcut ALT+P). You note
that we get a window with something we had already defined earlier during set-up in
Preferences:

If we click on any of the other two, e.g. Display of Fields, we get a small warning (also
mentioned during set-up):

We accept and get what we had already accepted as default in Preferences:

There are thus different possibilities to set our preferences and to change them here at any time
without first going back to the initial settings. Thus we OK and check out Set Password with a
right-click:

course_a_ex02_task
Page 2 of 11

There are different levels of password setting, this is for the entire project, but a password can
also be set for sections within a project. For the time being, we do not wish to set a password
for the project and we clear with the Enter key and get:

Do you note the difference between when we click on the project name or the data form name
respectively? Clicking on the project name “EpiData course” you get:

At the very right (circled red) you see that this is the first of the several vertically aligned tabs,
further including Coverage, Description, Ownership, Funding, and Version Details. In the
current tab we could add an Abstract, clicking on the second tab, Coverage, we can add
information on Geographical location, Language, Data time coverage, Population, and Unit of
observation. The third tab, Description, allows entering Keywords, Purpose, Citations, and
Design. The forth tab, Ownership, allows entering Organisation/Institute, Agency,
Authors/Contributors, and Rights. A fifth tab, Funding, is a free text field, and the final tab,
Version, permits entering information about the study and the study form. Short, this menu
option allows thorough documentation of the study. It is highly recommended that this is
actually used to its fullest for a real study. For the purpose of this course, we will leave it
unfilled.

Contrasting right-clicking the Project name and the Dataform name we get:

Project name: EpiData course Dataform: Microscopy lab

We have already checked out some of these options, while others will be used in what is coming
once we start to actually make the data entry form, while further ones like Browse Data will
only become available once we have data, while for now, as expected, an empty window opens:

course_a_ex02_task
Page 3 of 11

The two sub-menus above can also be accessed any time from the Project Details and Dataform
menus respectively:

The third menu point above, Document, gives a sub-menu and the sub-menu item Report
Structure has itself a sub-menu:

some of which we will be using at a later point of the course.
If the EpiData EntryClient software module is located in the same folder as the EpiData
Manager as is the case in our set-up (and it is recommended not to keep them separately), we
have direct access to it from the second-to-last menu item Enter Data:

The last menu item, Export, gives multiple options to export the structure or the data to various
formats:

We will be making use of this menu item at a later point in time.

Designing the data entry form
Before starting with the actual design of our data entry form, let’s clarify the terminology and
where what is going to be placed. There are four elements that go with a field:

course_a_ex02_task
Page 4 of 11

Field
name

Field label Field
value

Comment / Value label

We call the variable the Field name (see Exercise 1). As shown in Exercise 1, the Field name
may or may not be displayed. In setting up Preferences, we opted for not displaying it. To
have more explicit information than what can be conveyed by the length 10, single-word Field
name, we supplement the Field name with a more explanatory Field label. The third element
on the line is the Field definition which receives the actual Field value during data entry. The
Field value is the actual datum (singular of “data”) for that variable for that observation. For
continuous variables, we might add an explanatory Comment to be displayed in a Note during
data entry, here for instance what to do if the primary source has no information on this variable
for this observation. For categorical variables, the comment is not necessary: a label block will
comprehensively provide information on what is entered. As we use numeric coding, it would,
however, be a nice touch if after picking a value from a pick list (label block), the Value label
would appear to the right of the field, as a kind of visual confirmation that what had been
intended was actually picked.

If we click in the Dataform tab “Microscopy lab”, we look now at the data form canvas:

Above the grid we see various icons, most importantly right now those that symbolize different
variable types which we can identify by hovering with the cursor over each one:

From the excerpt here of these icons, from left to right, these are:

New Integer Field
New Float Field
New String Field
New DMY Field
New Time Field
Other Field Types…
New Heading
New Section

We start with the second-to-last on the left, the New Heading, click on it and get the menu:

course_a_ex02_task
Page 5 of 11

We overwrite the Text with:

Tuberculosis Microscopy Laboratory

Those with some notion of HTML (the language of the internet) may recognize that text size is
expressed relatively, where Heading 1 is the relatively largest and Heading 5 the relatively
smallest. Let’s choose (arbitrarily) Heading 2 and click Apply to get our heading:

You can drag this text box around to your preferred position. By right-clicking it, you can Edit
it at any time to change the wording or the size if you wish to do so.
In some larger data entry forms, we then may next choose to make sections to which we could
give different attributes, but for the time being, we will simply start with our fields.

Consulting the Data Documentation Sheet, we see the first field to be serno, the
Laboratory serial number, an integer field of length 4. Clicking on the icon for the
integer field, then clicking into a suitable place on the canvas, we get the Field Properties menu:

This is our main working tool for the design of the data entry form. We will therefore complete
each page where applicable and study carefully the options on each tab.

The field Name is given the default name V1 and we change this to serno as defined in the
Data documentation sheet. The Question is for the Field label which we defined as
Laboratory serial number, and its Length is 4. It has no Valuelabel (it is not a
categorical variable) and we have no Range to assign, thus completed we get:

course_a_ex02_task
Page 6 of 11

At the bottom of the Basic tab we tick to add leading zero’s:

We switch to the tab Extended showing (at the top):

The Entry Mode is of critical importance and there are three possibilities. The Default is “you
do as you wish”, i.e. the data entry person is allowed to enter or not to enter a value into the
field. The second option Must Enter signifies that a value has to be entered else the data entry
person cannot continue to work (or if bypassing the field by using the mouse, will be stopped
latest when trying to save the record). This is our preferred method because “forgetting to enter”
is not the same as “there is no information” and by forcing Must Enter a value must be entered.
Therefore, whenever a value for a variable is missing, we must tell the data entry person what
has to be entered in such a situation. We will thus make every field a Must Enter field with
two exceptions. The first exception is for calculated fields, something we will use in a later
exercise when we create a composite identifier. The second exception is for fields that can be
bypassed with Jumps as we will see shortly. For the Laboratory serial number we
thus tick Must Enter. There is a possibility for Automatic values, such as Repeat last value. If
we tick the latter, the next new record will inherit the value from the current one for this field.
This is convenient for instance if a long sequential series of records always has the same date
before it changes. Whenever we change the inherited value by overwriting it in a new record,
the new value will be passed on as a repeat value to the next record. Obviously, this is not what
we need for the Laboratory serial number. After having ticked Must Enter, we thus
move to the tab Jumps:

Jumps are used to define whether based on a value in the current field the next field is to be
bypassed or not. If the field asks for smoking status and the response is non-smoker then the
next field that would quantify the number of cigarettes per day is bypassed while it is not if the
response in the current field is smoker. We will use this with the results fields.

The Calculate tab allows creating the value for a new variable from the values of one or more
existing variables. For instance one could calculate the value of a date field from three date
components. We generally discourage the use of calculations during data entry, they belong to
the analysis, with one important exception though. Sometimes, a unique identifier for a record
can only be defined by constructing from more than one variable. We will show this in a later
exercise.

course_a_ex02_task
Page 7 of 11

What we write into the Notes tab will briefly pop up if the cursor is in the field. For the
Laboratory serial number we actually foresee such a situation, and this is to instruct
to enter “artificial” serial numbers 9001, 9002, etc. if we happen to stumble upon a non-
unique serial number. We thus enter a Note as for instance:

As an interlude here, we need to clarify key issues about the identifier. No variable is of more
importance in a record than the unique identifier. We can even state that a record is useless
without a unique identifier. For instance, if we have no value for age in a record, we can
always check whether it is truly missing from the original case report form if we can identify
that case report form by the unique identifier. Without it, we cannot possibly learn the truth. It
is impossible to validate our data with double-entry if we do not have unique identifiers. For
persons not familiar with the tuberculosis microscopy laboratory register, this is what you need
to know: each examinee who presents to the laboratory for a microscopic examination is given
a serial number which starts with 1 each calendar year. An examinee might thus provide a
series of up to 3 specimens and the examinee (not the examination) is the unit of observation
and “numbered” as such. The Laboratory serial number is unique for an examinee
presenting him- or herself newly for a serial set of examinations usually over a one- to three-
day period during the course of 1 year in 1 laboratory. We have not yet instructed EpiData
Manager to treat the Laboratory serial number as a unique identifier. This is not
done here in the Field Properties, it has to be done for the file (you may remember the options
by right-clicking the data form name Microscopy lab):

It is of critical importance to Define Key, thus when done, we close the Field Properties dialog
menu and go to the data form Microscopy lab, click on Define Key and select it:

What this will do is that whenever you enter a Laboratory serial number in a new
record, EpiData will check the entire data set whether or not this identifier has already been
used. If not, you can continue your work. If it had been used in another record, the EpiData
EntryClient will tell you in which record and offer to go to it to change it if it had been entered
erroneously or to enter an alternate in the current one (as suggested here in Notes). In any case,
you cannot continue working unless the identifier is assuredly unique for the file.

Our next field is the Registration date with the field name regdate. We thus pick
the icon for New DMY Field and start to complete the Basic tab of Field Properties. We did
define a legal range. Enter it and make the field Must Enter.

course_a_ex02_task
Page 8 of 11

The third field is sex which we defined as integer for length 1 and we need to create here a
new Valuelabel:

The sub-menu for the Valuelabel:

It is quickly completed – note that we give a sensible, easily identifiable Valuelabel Name.
Though we are quite free how we do that, taking the default is not very informative, thus:

We could tick the value for Not recorded as Missing, it might or might not come handy
later in the analysis, but we leave it unticked for the time being. After accepting, the Valuelabel
Name will get inserted automatically as Labelvalue into the foreseen box in the Basic tab:

else we can pick it from the drop-down list (red circled here). In the Extended tab we make the
field Must Enter and tick the two boxes applicable for the Valuelabel Setting:

The first (Show valuelabel …) is ticked by default, but the Always show picklist … must be set.
What the two accomplish is that the value goes into the field box and the Valuelabel is written
to the right of the field box (for visual verification), but before this is done, the Picklist with the
Value-Valuelabel pairs is popping up ready for selection as soon as the cursor gets into the field.
In EpiData Manager, it gets indicated in green that we have a given label block:

course_a_ex02_task
Page 9 of 11

In the EntryClient, ticking both boxes will give the pop-up (left) and the writing of the value
label (right) after the selection of the value:

The fourth variable is age, the Examinee’s age in years, with a field length of 3, and
for which we allow a range from 0 to 125, and a legal value of 999 for missing age:

The out-of-range legal value is put into a Valuelabel, thus pick New and add as follows:

Then set to Must Enter in the Extended tab, but set / keep all boxes in Valuelabel Setting
unticked: the value-label pair is just to “legalize” the value 999, not to have a rudimentary pop-
up window. Instead, we instruct the data entry person in the Notes tab what to do if the value
for age is missing:

The fifth variable is reason, the Reason for examination, an integer of length 1. The
principle is the same as for sex and nothing is new here above what was learned before.

The sixth variable is res1, the Result of specimen 1, an integer of length 1. Again,
the principle is the same as for the other categorical variables with label blocks, but we do have
something new. We will insert a Jumps command for every value, except if it is 6, Scanty
quantified. Because we need to tell EpiData where to go, if the field has or has not the
value 6, we propose that everything else but the Jumps command for fields res1, res1sc,
and res2 is completed first, and then we return to res1 to formulate the Jumps command (not

course_a_ex02_task
Page 10 of 11

critical here as will be seen). We don’t have to, but let’s arrange the fields for res1 and res1c
(and the other “pairs”) horizontally:

Note also that we do not need to write a label block for each result and for each scanty result, it
suffices to write a generic label block for results as all three results have the same Valuelabel
blocks and we may name it label_result and name the Valuelabel block for scanty results
something like label_scanty. After we have it for the first, we can pick it from the drop-
down list for the Valuelabel:

Once we are done with these, we return to the field res1 and open the Jumps tab to enter what
we require. Because the field to skip is the next field (res1sc here), we do not actually need
to state to which field to go. We just add all values except 6 and the instruction (Skip Next Field)
under the Go To Field. Click the + sign to the right to add a new line and enter the next value:

Tasks:
o Finalize the data entry form for the remaining results variables. Note that the fields for

scanty results cannot be Must Enter. Note further the options in the Drop down menu
for what is the default “Skip Next Field” to pick the best option for the last result.

o Align the field correctly using the Alignment icon. Note that correct vertical alignment
is critical if two variables are on the same horizontal pane (EpiData Manager gives nice
blue and red guiding lines). If two variables on the same horizontal pane are vertically
mismatched, the sequence of data entry will go wrong!

o Tell EpiData Manager to create the Codebook and save the output file as a text file
“a_ex02_codebook.txt”.

course_a_ex02_task
Page 11 of 11

Tasks:
o Finalize the data entry form for the remaining results variables. Note that the fields for

scanty results cannot be Must Enter. Note further the options in the Drop down menu
for what is the default “Skip Next Field” to pick the best option for the last result.

o Align the field correctly using the Alignment icon. Note that correct vertical alignment
is critical if two variables are on the same horizontal pane (EpiData Manager gives nice
blue and red guiding lines). If two variables on the same horizontal pane are vertically
mismatched, the sequence of data entry will go wrong!

o Tell EpiData Manager to create the Codebook and save the output file as a text file
“a_ex02_codebook.txt”.

Solution:
The data entry form may look as follows:

Once a data entry form has been prepared, it is best to test it right away in the EntryClient with
some fake data (without saving) to identify quickly problems.
You can leave the data entry form open in EpiData Manager and access the EpiData EntryClient
via the menu and after prompting the Manager will close.
Opening in the EntryClient:

Solution to Exercise 2: Create a basic data entry form

Key Point(s):
• The identifier is the most important variable in a record
• EpiData is not case-sensitive, but some other software is. It is therefore advisable

to use a simple rule such as consistently using lower-case for field names.

course_a_ex02_solution
Page 1 of 6

we see that all fields which should be Must Enter actually are (orange-brownish color) and that
the fields which can be bypassed (for quantified scanty results) are not.
Entering fake data, we get:

It all looks as it should, neat and nicely. Do not save the record and exit without saving.
We saved the CodeBook as text file and can look at it in a text editor. It must reflect what we
defined in the Data documentation sheet but is now much more detailed and a superb document
that can be shared with others who later collaborate in the analysis:
============================
Report: CodeBook
Created: 28-04-2015 18:33:16
============================

File 1: C:\EpiData_course\a_ex02.epx

File 1: C:\EpiData_course\a_ex02.epx

Title EpiData course
Created 28-04-2015 09:50:32
Last Edited 28-04-2015 18:06:40
Version 1
Cycle 13

Backup on shutdown: yes
Encrypted data: no

Dataforms:

course_a_ex02_solution
Page 2 of 6

Caption Created Structure Edited Data Edited Sections Fields Records Deleted

Microscopy lab 28-04-2015 09:50:32 28-04-2015 18:06:40 28-04-2015 09:50:32 1 11 0 0

Caption Fields in key

Microscopy lab (serno:Laboratory serial number)

========================
Dataform: Microscopy lab
========================

List Overview
--
Name Type Length Missing Value(s) Value Label Question / Caption
--
H1 Heading Tuberculosis Microscopy Laboratory
serno Integer 4 Laboratory serial number
regdate Date (DMY) 10 Registration date
sex Integer 1 label_sex Examinee's sex
age Integer 3 label_age Examinee's age in years
reason Integer 1 label_reason Reason for examination
res1 Integer 1 label_result Result of specimen 1
res1sc Integer 1 label_scanty Result of specimen 1 scanty
res2 Integer 1 label_result Result of specimen 2
res2sc Integer 1 label_scanty Result of specimen 2 scanty
res3 Integer 1 label_result Result of specimen 3
res3c Integer 1 label_scanty Result of specimen 3 scanty
--

.-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-.

Field: serno: Laboratory serial number

Type Integer
Length 4
Show Value Label true

.-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-.

Field: regdate: Registration date

Type Date (DMY)
Length 10
Entry Mode Must Enter
Range 01-01-2000-31-12-2005
Show Value Label true

.-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-.

Field: sex: Examinee's sex

Type Integer
Length 1
Entry Mode Must Enter
Show Value Label true
Show Picklist true

Value label: label_sex [I]: (Integer)
--
Value Label Missing (M), set: label_sex
--
1 Female
2 Male
9 Not recorded
--

.-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-.

Field: age: Examinee's age in years

Type Integer
Length 3
Entry Mode Must Enter
Range 0-125

Value label: label_age [I]: (Integer)
--

course_a_ex02_solution
Page 3 of 6

Value Label Missing (M), set: label_age
--
999 Age not recorded
--

.-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-.

Field: reason: Reason for examination

Type Integer
Length 1
Entry Mode Must Enter
Show Value Label true
Show Picklist true

Value label: label_reason [I]: (Integer)

Value Label Missing (M), set: label_reason

0 Diagnosis
1 Follow-up at 1 month
2 Follow-up at 2 months
3 Follow-up at 3 months
4 Follow-up at 4 months
5 Follow-up at 5 months
6 Follow-up at 6 months
7 Follow-up at 7 months or later
8 Follow-up, month not stated
9 Reason not recorded

.-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-.

Field: res1: Result of specimen 1

Type Integer
Length 1
Entry Mode Must Enter
Jumps 0 > Skip Next Field
 1 > Skip Next Field
 2 > Skip Next Field
 3 > Skip Next Field
 4 > Skip Next Field
 5 > Skip Next Field
 9 > Skip Next Field
Show Value Label true
Show Picklist true

Value label: label_result [I]: (Integer)

Value Label Missing (M), set: label_result

0 Negative
1 1+ positive
2 2+ positive
3 3+ positive
4 Positive, not quantified
5 Scanty, not quantified
6 Scanty, quantified
9 Result not recorded

.-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-.

Field: res1sc: Result of specimen 1 scanty

Type Integer
Length 1
Show Value Label true
Show Picklist true

Value label: label_scanty [I]: (Integer)
--
Value Label Missing (M), set: label_scanty
--
1 1 AFB per 100 OIF
2 2 AFB per 100 OIF
3 3 AFB per 100 OIF
4 4 AFB per 100 OIF
5 5 AFB per 100 OIF
6 6 AFB per 100 OIF
7 7 AFB per 100 OIF
8 8 AFB per 100 OIF
9 9 AFB per 100 OIF
--

course_a_ex02_solution
Page 4 of 6

.-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-.

Field: res2: Result of specimen 2

Type Integer
Length 1
Entry Mode Must Enter
Jumps 0 > Skip Next Field
 1 > Skip Next Field
 2 > Skip Next Field
 3 > Skip Next Field
 4 > Skip Next Field
 5 > Skip Next Field
 9 > Skip Next Field
Show Value Label true
Show Picklist true

Value label: label_result [I]: (Integer)

Value Label Missing (M), set: label_result

0 Negative
1 1+ positive
2 2+ positive
3 3+ positive
4 Positive, not quantified
5 Scanty, not quantified
6 Scanty, quantified
9 Result not recorded

.-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-.

Field: res2sc: Result of specimen 2 scanty

Type Integer
Length 1
Show Value Label true
Show Picklist true

Value label: label_scanty [I]: (Integer)
--
Value Label Missing (M), set: label_scanty
--
1 1 AFB per 100 OIF
2 2 AFB per 100 OIF
3 3 AFB per 100 OIF
4 4 AFB per 100 OIF
5 5 AFB per 100 OIF
6 6 AFB per 100 OIF
7 7 AFB per 100 OIF
8 8 AFB per 100 OIF
9 9 AFB per 100 OIF
--

.-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-.

Field: res3: Result of specimen 3

Type Integer
Length 1
Entry Mode Must Enter
Jumps 0 > Save Record
 1 > Save Record
 2 > Save Record
 3 > Save Record
 4 > Save Record
 5 > Save Record
 9 > Save Record
Show Value Label true
Show Picklist true

Value label: label_result [I]: (Integer)

Value Label Missing (M), set: label_result

0 Negative
1 1+ positive
2 2+ positive
3 3+ positive
4 Positive, not quantified
5 Scanty, not quantified
6 Scanty, quantified
9 Result not recorded

course_a_ex02_solution
Page 5 of 6

.-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-.

Field: res3c: Result of specimen 3 scanty

Type Integer
Length 1
Show Value Label true
Show Picklist true

Value label: label_scanty [I]: (Integer)
--
Value Label Missing (M), set: label_scanty
--
1 1 AFB per 100 OIF
2 2 AFB per 100 OIF
3 3 AFB per 100 OIF
4 4 AFB per 100 OIF
5 5 AFB per 100 OIF
6 6 AFB per 100 OIF
7 7 AFB per 100 OIF
8 8 AFB per 100 OIF
9 9 AFB per 100 OIF
--

.-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-..-^-.

course_a_ex02_solution
Page 6 of 6

In the previous Exercise we worked with small label blocks of not more than ten category levels.
These are quickly created directly in the data form. Often we encounter the need for larger
standard label blocks. This might be a list of administrative units in a country and it may have
hundreds of levels. Such lists might be publicly available on the internet from the government
and they can come in different formats such as text files or spreadsheets. In order to standardize
as much as possible for our data collection, we should take recourse to official lists whenever
possible, rather than inventing our own parallel system. If we can get such a list into a formatted
file for EpiData, it might also be used in more than a single project.
In this Exercise, we provide a spreadsheet which contains two variables, the name of a given
tuberculosis laboratory paired with its code, not dissimilar to a list of communities paired with
their zip codes.

Formatting the external file
The first thing to know is the file type, and into which format it should be brought. We have a
spreadsheet a_ex03_namecode.xls with two columns:

You remember how the label block for the field sex was set up:

On the left is the Value that is written into the field and on the left the Label that provides the
meta-data. The setup is thus the Value presenting a code on the left and the Label on the right.
With short lists there is no issue because our eye captures quickly both Value and Label, but
how about a very long list? How do we search a list of communities and their zip codes? People
tend to know the name of a community, but not their zip codes. We are also used to search
alphabetically by name not by zip code, yet we wish the code to be the value to be written into
the field, not the name. EpiData makes it easy for us: we can search substrings, and it will find
them in either column! If we start typing birch… in EpiData EntryClient, the software will

Exercise 3: Create a value-label pair from external data

At the end of this exercise you should be able to:
a. Create an EpiData two-variable dataset from a text file
b. Use an external two-variable dataset to create a label block internally or

externally

course_a_ex03_task
Page 1 of 6

go to the first appearance of these letters be they in the left or the right column. Therefore, what
we might do preferably, is to put the code of the laboratory into the left column and the name
of the laboratory into the right and sort alphabetically by the name of the laboratory (not its
code). This way the laboratory code is the value that is written into the field and the laboratory
name is its label. Therefore invert to get:

EpiData cannot read a spreadsheet file with an *.xls extension, but it reads text files with a
*.txt extension or the common text standard of comma-delimited *.csv files. Conversely,
most software, including proprietary Excel® or the non-proprietary LibreOffice Calc
spreadsheets can save a file as a *.csv file. Use thus Save as (in Excel®) in search for the
appropriate file type:

A word on delimiters: we do need a delimiter. A delimiter is an element that separates two
variables. In normal text, a space is the delimiter separating two words. For our purpose,
neither spaces nor tabs are good separators because they could be part of a variable. Indeed,
the name for one laboratory is Collin Saunders. If we had a space as separator, these two
components would erroneously be interpreted as two variables. A comma as in *.csv is better,
but it is not necessarily fail-safe, best would be semi-colon delimited: it is easy to see and it is
rarely used. In any case, in our 95 records (please visualize them in your text editor):
ML_J,Awuna
MS_D,Beitbridge
MC_A,Bindura
MN_G,Binga
ML_M,Birchenough
ML_I,Bonda
MS_G,Brunapeg
MW_J,Chegutu
MV_I,Chikombedzi
MC_H,Chimhanda

course_a_ex03_task
Page 2 of 6

there are no commas apart from the desired ones to separate the two variables. We almost have
now the format we require to make an EpiData *.epx file out of the *.csv file. Imporatant
Note: EpiData Manager interprets the first line as header but because the file does not have
headers, the first line will erroneously be cut off. Therefore, we add a header to the *.csv file
as follows:
labcode,labname
ML_J,Awuna
MS_D,Beitbridge
MC_A,Bindura
MN_G,Binga

Creating an EpiData *.epx file from a *.csv file

Open EpiData Manager and File | Import file …, and select the correct file type:

Pick the a_ex03_namecode.csv file. This will open the dialog window:

Note here the helpful options should you expect duplicates in Field Name – Field Value Labels.
We can leave the defaults as they are and click OK. This gives us an Untitled Project with an
(untitled) data form:

At the bottom of the screen we see that we have correctly 95 records:

Whether or not prompted to save, we save the file as a_ex03_namecode.epx. Right-
clicking the data form (or with CTRL+D):

course_a_ex03_task
Page 3 of 6

we browse to view the data set:

Closing and clicking on the first, and then on the second field respectively we can rename the
two field names to labcode and labname to have a bit more meaningful information:

To make a label block set of the file go to Tools | Value Labels from Data:

and pick the file itself, ensuring that Include is ticked and both Value Field and Label Field are
correctly selected:

We get confirmation that the Value Label Set was created:

Save and close.

Updating the EpiData data form

The first thing to do is to open the file a_ex02.epx from Exercise 2 and Export the structure
only to an EPX file we name a_ex03.epx:

course_a_ex03_task
Page 4 of 6

We then open the thus newly created a_ex03.epx. If we right-click on the project name
EpiData Course we get a menu line Value labels (ALT+V):

This gives us the Valuelabel Editor:

which allows the use of an external file as a label block. Using this approach (you will also
look for an alternative to incorporate it), we can keep the label block externally. As long as it
is in the same folder, the Manager / EntryClient will access it. Click and select the file:

We are shown the name of the file, what the Set Name for the label block is (_labcode), that it
is a string field with 95 Value labels:

course_a_ex03_task
Page 5 of 6

We have now an external label block available and its content is visualized by clicking on it:

On the data entry form, we add a new string variable lab of length 4 with the field label
Laboratory and add the now available Valuelabel:

Define the Extended as usual, save and test in EpiData EntryClient. Note particularly in
EntryClient that for searching you start typing the name of a Field label and the cursor jumps to
it.

Tasks:
o Remove the external label block.

o Use the a_ex03_namecode.epx file and use it internally as a label block.

o Discuss advantages and disadvantages of External versus Internal label blocks.

course_a_ex03_task
Page 6 of 6

Tasks:
o Remove the external label block.

o Use the a_ex03_namecode.epx file and use it internally as a label block.

o Discuss advantages and disadvantages of External versus Internal label blocks.

Solution:
This is the modified data entry form with a fake record:

We access the Valuelabel Editor with ALT+V, click on it and press the Delete key:

and it’s gone after accepting. To use the file internally, we close the Valuelabel Editor and use
instead Tools | Value labels from data, select the file, and insure that all is ticked and selected
correctly:

Solution to Exercise 3: Create a value-label pair from external data

Key Point(s):
• If possible, use an official list of, for instance, administrative units, and create a file

format that can be imported into EpiData (such as *.csv)
• Create an EpiData *.epx file and make a label block of it
• You can use that label block internally or externally in your data collection form

course_a_ex03_solution
Page 1 of 2

Importantly, the deletion of the external also removed the link to the Valuelabel for the field:

and this must then be set again. Conveniently, this internal label block can also be removed by
accessing the Valuelabel Editor with ALT+V and proceeding analogously.

Advantages and disadvantages
The advantage of an internal label block is to have everything in a single file. Unless the label
block is very large (how to define that?) it will thus mostly be advantages to do precisely that.
If a label block is very large (say the ICD 10 codes), then it might be advantages to actually
keep it externally as larger file names will slow down processing time. Furthermore, the current
EpiData Analysis version cannot yet make the connection between the main file and an external
label block.

course_a_ex03_solution
Page 2 of 2

course_a_ex04_task
Page 1 of 2

Sometimes we have time information but it is incomplete, such as when a patient may remember
the month but not the day of disease onset. In such a case a date field cannot be used sensibly
because a date needs all three date components. It becomes thus useful to utilize instead three
variables for day, month, and year respectively and then reserve it for the analysis to set rules
what approximation might be used if one or more date components are missing. For data entry,
this can also have the advantage that some components (like the year, or even the month) are
set to Repeat if records are entered serially along a time axis and several sequential records
have the identical year and perhaps also month.
A date component might also be used to construct a more complex identifier if the simple one
does not suffice. In these exercises using the tuberculosis microscopy laboratory we defined
the unique identifier as the laboratory serial number. However, the serial number starts with 1
every calendar year and is thus unique only for a single year. By combining the year plus the
serial number, it becomes unique for the laboratory at any time, and adding the laboratory
identifier, we can make a unique identifier for any examinee for any year, in any laboratory.
To learn about the workload of data entry, there is a possibility to instruct EpiData to record
automatically the computer time at the time of opening a new record and to add another time
stamp at the completion of the record.
We will introduce here these three concepts and integrate the computer-calculated fields into a
special section.

Capturing time with date components instead of with dates
Export the structure of the a_ex03.epx file to a new a_ex04.epx file and open the new
file. We then start with deleting the field regdate, dragging down the block of variables
below it, and inserting the three new integer variables regdd, regmm, and regyy of lengths
2, 2, and 4 respectively, for Registration day, Registration month, and
Registration year. We make each field Must Enter and provide a legal range and put
the respective three values 99, 99, and 9999 for not recorded into two different Valuelabels.
Remember from Exercise 2 that we need to untick the Show valuelabel text after … in the
Extended tab. We can make the fields for day and month set to Repeat as these two remain
identical in most laboratories for quite a few sequential records.

Making an identifier composed of 3 existing variables
On the top we section off a part that will accommodate three calculated fields: the new identifier,
the start time and the ending time of data entry for the record. Drag thus all fields down on the

Exercise 4: Create a composite identifier

At the end of this exercise you should be able to:
a. Recognize the efficiency of using date components instead of dates
b. Creating a unique identifier from several variables
c. Automatically capturing data entry time

course_a_ex04_task
Page 2 of 2

canvass and insert a section above them that we call Calculated fields. The identifier
id, labeled Unique identifier is a string field of length 14 as we will give it the form
YYYY-labcode-serno, i.e. the 4-digit year, a hyphen, the 4-digit laboratory code, a hyphen, and
the 4-digit laboratory serial number. It is placed inside the section and it has to be a No Enter
field as we want to prevent a data entry person being able to ever touch a computer-calculated
field. The top of our revised data entry form may thus look now as follows:

How do we go about making the value for this identifier? It can only be composed once all
three required components have been entered, i.e. after entering the Registration year.
We thus go to that field and go to the tab Calculate, where we choose the bottom option and fill
by selection from the drop-down fields and inserting a hyphen in between, that’s all there is to
it:

A little more sophisticated is the approach to make id a unique identifier. Intuitively, we might
think that we just make this field id the key field, but that is not how it’s done: it is each of the
components that is set to be the key and EpiData will then correctly interpret the resulting
combined field required to be unique. It may appear a bit counter-intuitive, but that’s how it’s
done. Remember where to Define Key? Right-click the data form name or go to the menu point
Dataform:

Tasks:
o Add two fields for Starting time and Ending time for data entry in the section Calculated

fields.
o Test the data entry form in EpiData EntryClient

Tasks:
o Add two fields for Starting time and Ending time for data entry in the section Calculated

fields.
o Test the data entry form in EpiData EntryClient

Solution:
A complete record may look as follows:

Solution to Exercise 4: Create a composite identifier

Key Point(s):
• If one variable is insufficient to create a unique identifier, one can construct a

composite identifier from more than one variable.
• Each of the contributing fields, but not the composite resulting variable is set to be

Key.
• EpiData provides automatically calculated time fields that can be used to capture

data entry time.

course_a_ex04_solution
Page 1 of 1

You have a line listing of 15 records on the page following the task description. These data
should be entered in this exercise. But before you start working, a few considerations are in
place.

Ensuring quality data entry
The motto for this course is:

You might be challenged about the interpretation of your data, that is part of the scientific
process, but your data should be of impeccable quality.

What do you think about the following graph?

Age-specific Tuberculosis Notification Rates by Sex

Age group (years)

0 15 25 35 45 55 65

C
as

es
 p

er
 1

00
,0

00
 p

op
ul

at
io

n

0

10

20

30

40

50

60

70

80

Males

Females

Exercise 5: Data entry and validation

“You wish never to find yourself in a position to defend the quality of your data”
Michael B Gregg, formerly MMWR Editor, deceased

See also: Gregg M B. Field epidemiology (2nd ed). Oxford University Press. 2002: p 414

At the end of this exercise you should be able to:
a. Know the three ways of reducing data entry errors
b. Copy the structure of a EPX file
c. Export data from EpiData files

d. Validate duplicate data files

course_a_ex05_task
Page 1 of 9

It looks nice and we could talk about the differences between males and females and this and
that. But we will keep it short: it is nonsense. The data underlying this graph have no basis,
they were made up. Of course, if we were to present these data for real, it would be outright
scientific fraud. Few people commit that (but it exists). Nevertheless, often no assurance can
be given that the computerized data are a true reflection of the original data source. People
may have in all honesty done “their best” and assume that they made no errors or so few that it
really doesn’t matter. However, this is not good enough for science in general and public health
and epidemiology in particular.
 There are three ways how we reduce and ultimately eliminate data entry errors:
o Defining well thought-through data entry controls in the EpiData Manager
o Working together
o Duplicate data entry and validation

Defining well thought-through data entry controls in the EpiData Manager
We have already a few inbuilt conditions that limit data entry errors by creating the
a_ex04.epx file. For instance, a Must Enter field will prevent a data entry person to skip an
actually recorded value, as one cannot continue without having entered a value for that field.
For the field sex, we allowed only 1, 2, and 9 as legal values. It is thus not possible to enter
“3” into this field. Combined with the pop-up menu during entry, no confusion can arise. The
controls set in the EpiData Manager are an extremely powerful tool to control how data entry
can be controlled through restrictions.

Working together
Entering data alone requires continuously shifting attention between the paper record and the
computer screen. This will almost by necessity result in numerous errors, be it that a record is
skipped or that it is forgotten what we just read. It should be routine that two persons work on
data entry: one person reads aloud the Field value, the other repeats it aloud and enters the value.

Duplicate data entry and validation
Even with both of the above precautionary measures, data entry errors will still occur, and worse,
to an unknown extent. The only way, and the only acceptable one, is to enter the data twice
into two different files, and then to compare the two files for discordances. Any discordance
uncovered will then be corrected the entry with the original paper record.
The rationale behind this process is: the probability of committing the same error in the same
field twice when data entry is done independently by two persons is very small. Hence, if we
list all the discrepancies by comparing the two databases and correct all of them, then we can
be reassured that the remaining frequency of data entry errors is miniscule.
EpiData provides this powerful tool and we need a unique identifier to do this. We have made
a provision that we have such an identifier (see previous exercises). Sometimes an identifier
must be constructed from more than one variable as we have shown.
If a duplicate key is revealed (because there is a perhaps a problem with a component
contributor), then a data entry note should be written, best as a text file that is kept open during
data entry and amended as one proceeds. In this note, you must specify exactly with what
identifier you have replaced the duplicate key, so that this note can be passed on to those who

course_a_ex05_task
Page 2 of 9

enter the data the second time, enabling them to use the same alternative key when the
necessarily stumble over the same problem.
Before you get to actually enter the data, you find here some assistance to make your data entry
work more efficient.

Make duplicate EPX files
As we are entering the same data twice, we need two sets of the *.epx files, one for the first,
the other for the second entry.

Task:

o Download the solution of Exercise 4 and save the file as a_ex05_a.epx and
a_ex05_b.epx files

Double-entry
Enter the 15 records into the a_ex05_a.epx, then repeat data entry with the
a_ex05_b.epx file.

Data validation
After completing double-entry, the two data files are compared, a procedure termed “data
validation”.
The first thing to verify is that we have the same number of records in both sets. If that is not
the case, then this must be fixed first. Here for instance, we chose to count the records:

and found them to be unequal:

While we know from this small dataset that there actually are 15 records, and thus that the first
set has the correct number and the second is missing 2, knowing the expected number of records
is the exception in real life. It may also very well be that both sets have the same number of
records but both are short of records because by chance each set is missing the same number of

course_a_ex05_task
Page 3 of 9

records. We thus have to check which records are missing and we do this by a validation,
actually comparing the two sets:

The first of the two files is the “referent” and it is the number of records in this set that is
displayed:

In the tab Compare, we untick the computer-provided time fields because they are likey to vary
for virtually every record between the two files and would undesirably be listed as discordances:

In the report, we move to the Overview and find the confirmation that the duplicate file (the
*_b.epx file) has 2 records missing:

Moving further down, we find the serial numbers missing from the second file and thus know
which two records must be added first before a proper validation is possible:

course_a_ex05_task
Page 4 of 9

The Validation report
We add these two records and then start again the validation process. This time we get the same
number of records in the two files and find one discordance in serno 3302:

It is essential that this validation report is saved to ensure having a permanent record of the
validation process. We propose to save it as a text file a_ex05_validation.txt.

Creating a final dataset
One might be tempted to make corrections of any errors that might be identified through
discordances in either the *_a.epx or the *_b.epx file. Doing so would, however, break the
“chain of evidence”: you could never repeat the validation process and get the same result, but
data quality-assurance requires that the validation process is actually exactly reproducible.
Therefore, the corrections must be made in a third file. To this end, we export the data from
one of the source files to another EpiData file that we will call the a_ex05_f.epx file. To
standardize as many things as possible, we always export the a_ex05_a.epx file to the
a_ex05_f.epx file (even if in fact it is irrelevant whether we use the a_ex05_a.epx or
the a_ex05_b.epx file, but consistency is good policy). We thus select from Export the
a_ex05_a.epx file and define in the menu the name and type and All records:

We get a report that export was successful:

course_a_ex05_task
Page 5 of 9

Back from Manager to the EntryClient we open a_ex05_f.epx and search the record with
serno 3302.

How to navigate through an *.epx file?

To navigate between the records of the *.epx file use the navigation panel on the left bottom
end of the data entry screen which can be used to navigate through the records.

Shown vertically one by one:

Go to first record

 Go to previous record

 This is record 11 out of a total of 15 records

 Go to next record

 Go to last record

 Insert a new record

 Mark current record for deletion

This is useful for a quick forth and back, mainly during data entry, but for the current task to
find a specific record in a potentially large file, we use Browse Data | Find:

We enter our criterion:

and get thus to the record:

course_a_ex05_task
Page 6 of 9

Comparing with the original paper record, we see that the true Examinee’s sex should be
female. Moving the cursor into the field and pressing F9, we can now pick the correcting
value:

As this is the only discordance we save the revised record and exit. We now have a validated
file with all discordances resolved.

How to delete a record?
Deleting a record consists of two steps – first, marking a record for deletion; second,
permanently deleting it. This is just a safety feature in EpiData to ensure the deletion of record
does not happen by chance.

Steps in marking a record for deletion (Look at the screenshot below)
1. Open the *.epx file and go to the record you want to delete.

2. Click on the red ‘cross’ mark next to the navigation panel at the left bottom of the data
entry screen. The word DEL appears at the side of the red ‘cross’ mark.

3. Click the arrow in the navigation panel to go to the next record. This will prompt you to
save the record. Click ‘Yes’ and this successfully marks the record for deletion.

4. Note that the record is not yet permanently deleted from the database. If you realize that
this record was not to be deleted, you can undo the action by clicking on the same button
and saving the record. DEL will disappear now: the red “cross” is a toggle key:

Click on the red cross DEL appears Click on the red cross again
and DEL disappears

How to permanently delete a record? (Pack Data Files)
For data protection, it is not foreseen to permanently delete a record in the EpiData EntryClient.
This must be done in the EpiData Manager. Close thus the file (if open) in EpiData EntryClient
and go to the Manager to Tools | Pack Datafiles:

course_a_ex05_task
Page 7 of 9

Choose the data file and tick the data form (it could be a relational data base with several forms
and you got to choose which one):

Because this is going to be permanent, you receive a final Warning:

After accepting, you get confirmation that it is done:

No backup file is written, this is permanent.

Tasks:

o Download the solution of Exercise 4 and save your a_ex04.epx file as
a_ex05_a.epx and a_ex05_b.epx.

o Enter the 15 records using the a_ex05_a.epx file. After completing data entry, enter
the same data again into the a_ex05_b.epx file.

o After you have completed the two files, proceed to validation as explained here.

o After ensuring that no record is missing in either file, export the a_ex05_a.epx file
to a a_ex05_f.epx file, check out the discordances if any and correct them. This is
your final dataset.

On the next page you find the dataset with 15 records

course_a_ex05_task
Page 8 of 9

Tuberculosis Programme Zimbabwe Form 2

Laboratory: Awuna Tuberculosis laboratory register Year: 2003

Lab
Serial
No.

Date
specimen
received

Name Sex
M/F Age Name of referring

facility
Address - patient

for diagnosis

Reason for examination* Results of specimen Only for SS+ for
diagnosis:

TB Number or
BMU**

Remarks Diagnosis
(tick)

Month of
follow up 1 2 3

3298 26 Oct Mary F 35 Bindura Beijingstr. 6 5 neg neg

3299 26 Oct John M 20 Awuna Tokyo Ave 5 √ neg neg neg

3300 26 Oct Petra F 30 Birchenough Bangkok Rd 108 5 neg neg

3301 26 Oct Charles M 24 Bindura Hanoi Street 7a 2 neg neg

3302 26 Oct Tiffany F 38 Bindura Hongkong Ave 8 √ neg neg neg

3303 26 Oct George M 60 Bindura Zurich Rd 923 √ neg neg neg

3304 26 Oct Luke M 78 Awuna Paris Street 18a √ neg neg neg

3304 26 Oct Virginia F 28 Birchenough London Rd 24 √ neg neg neg

3305 27 Oct David M 50 Awuna Baltimore Str 1 6 neg neg

3306 27 Oct Hans M 50 Ganda Chivua Bern Str 12 √ 1+ 1+ 1+ Ganda Chivua
No 342

3307 27 Oct Bill M 68 Bindura Berlin Ave 88 √ neg neg neg

3308 27 Oct Susan F 29 Birchenough Amsterdam Rd 3 5 neg neg

3309 27 Oct Marc M 36 Bindura Vienna Str 76 2 neg neg

3310 27 Oct Eve F 15 Awuna Rome Ave 4 5 neg neg

3311 27 Oct Anthony M 37 Birchenough Antwerp Str 26c 6 neg neg

 * Check the appropriate category from the Request for Sputum Examination **TB register number

course_a_ex05_task
Page 9 of 9

Tasks:

o Download the solution of Exercise 4 and save your a_ex04.epx file as
a_ex05_a.epx and a_ex05_b.epx.

o Enter the 15 records using the a_ex05_a.epx file. After completing data entry, enter
the same data again into the a_ex05_b.epx file.

o After you have completed the two files, proceed to validation as explained here.

o After ensuring that no record is missing in either file, export the a_ex05_a.epx file
to a a_ex05_f.epx file, check out the discordances if any and correct them. This is
your final dataset.

Solution
Depending on the errors you made, you will get an output like the following:
==
Report: Double Entry Validation Report.
Created: 29-04-2015 22:03:30
==

File 1: C:\EpiData_course\a_ex05_a.epx
File 2: C:\EpiData_course\a_ex05_b.epx

File 1: C:\EpiData_course\a_ex05_a.epx

Title EpiData course
Created 28-04-2015 09:50:32
Last Edited 29-04-2015 20:33:53
Version 1
Cycle 29

Backup on shutdown: yes
Encrypted data: no

Dataforms:
--
Caption Created Structure Edited Data Edited Sections Fields
Records Deleted
--

Solution to Exercise 5: Data entry and validation

Key Point(s):
• It should be routine that two persons work on data entry, and never one.
• The only and acceptable way to minimize data entry errors is to enter the data

twice into two different files, and then compare the two files for discordances.
• Avoid using the mouse to move around fields during data entry, because the Check

file cannot be applied to fields you skip by moving the mouse from one field to
another.

course_a_ex05_solution
Page 1 of 3

Microscopy lab 28-04-2015 09:50:32 29-04-2015 20:33:53 29-04-2015 20:33:53 2 17
15 0
--

--
Caption Fields in key
--
Microscopy lab (serno:Laboratory serial number) + (regyy:Registration year) + (lab:Laboratory)
--

========================
DataForm: Microscopy lab
========================

Selections for validation:

Options:

Option Selected

Ignore deleted records No
Ignore missing records No
Add result to field No
Case sensitive text No

Key Fields:

lab serno regyy

Compared Fields:

id: Unique identifier
regdd: Registration day
regmm: Registration month
sex: Examinee's sex
age: Examinee's age in years
reason: Reason for examination
res1: Result of specimen 1
res1sc: Result of specimen 1 scanty
res2: Result of specimen 2
res2sc: Result of specimen 2 scanty
res3: Result of specimen 3
res3c: Result of specimen 3 scanty

Result of Validation:

Overview

Test Result

Records missing in main file 0
Records missing in duplicate file 0
Non-unique records in main file 0
Non-unique records in duplicate file 0
Number of fields checked 12
Common records 15
Records with errors 1
Field entries with errors 1
Error percentage (#records) 6.67
Error percentage (#fields) 0.56

Datasets comparison:

Main Dataset: Duplicate dataset:

Record no: 5 Record no: 5
Key Fields:
 lab = ML_J
 serno = 3302

course_a_ex05_solution
Page 2 of 3

 regyy = 2003
Compared Fields:
 sex = 2 sex = 1

After making correction in the “F” file, your data should be correct, or are they not? While
your final data file should be correct, there is still a slim chance that it has errors. How is this
possible? If by chance the same error was entered in both files (which can happen particularly
if the same person enters the data in both files), you will not be able to identify the error. For
uniformity, you should overwrite your existing file with the a_ex05_f.epx file that is
provided with the solution.

course_a_ex05_solution
Page 3 of 3

course_a_ex06_task
Page 1 of 6

Importing an EpiData REC / CHK file containing data

In the required zip folder you find 4 data sets, a, b, c, and d, complete with all 16 files, i.e. for
the “a” files a.qes, a.rec, a.chk, and a.eix, containing 75 records, and analogously for
the “b”, “c”, and “d” sets. It contains microscopy laboratory data from four laboratories in
Yangon (Myanmar), courtesy Dr Ti Ti. If you look at the A.QES file in EpiData Entry 3.1,
you see the visual format:

We note that the results were defined as floats with the following values (the definition of which
we can best see by opening the A.CHK file (e.g. in a text editor):
 LABEL label_result
 0.0 Negative
 0.1 "Scanty, 1 AFB per 100 fields"
 0.2 "Scanty, 2 AFB per 100 fields"
 0.3 "Scanty, 3 AFB per 100 fields"
 0.4 "Scanty, 4 AFB per 100 fields"
 0.5 "Scanty, 5 AFB per 100 fields"
 0.6 "Scanty, 6 AFB per 100 fields"
 0.7 "Scanty, 7 AFB per 100 fields"
 0.8 "Scanty, 8 AFB per 100 fields"
 0.9 "Scanty, 9 AFB per 100 fields"
 1.0 "1+ positive"
 2.0 "2+ positive"
 3.0 "3+ positive"
 4.0 "Positive, not quantified"
 5.0 "Scanty, not quantified"
 9.0 "No result recorded"
 END

Exercise 6: Upgrading an EpiData 3.1 REC/CHK file pair to an EPX file

At the end of this exercise you should be able to:
a. Understand how you import an EpiData Entry 3.1 REC / CHK file pair into

EpiData Manager
b. How to edit the new file and add the link to the metadata from the old CHK

file to the new EPX file.

course_a_ex06_task
Page 2 of 6

In EpiData Manager, go to File | Import File… and pick the a.rec to see it then in an editable
box:

You note that we encountered this box in an earlier exercise when we imported a value-label
set. Note that we can import the structure only or both the structure and the data, as we plan to
do here. Once confirmed with OK we get:

and see at the bottom left that there are indeed 75 records which we can browse in Dataform |
Browse Data (shortcut CTRL+D) (first lines only shown):

course_a_ex06_task
Page 3 of 6

Note that the button Show Values / Labels is non-functional because the labels are not yet
available, we thus see only the values at this point in time. Save the file when prompted as
a_ex06a.epx.

Make the metadata from the CHK file available to the EPX file

We work our way through the entry form from top to bottom.

The Unique laboratory identifier (filed name id) is a calculated value from the Laboratory code
and the Laboratory serial number. It is thus a field set to No Enter and calculated after both
components that make it up are available.

The Laboratory serial number (field name serno) is Must Enter and we Add leading zeros.

The Laboratory code (field name labcode) is Must Enter. We noted above in browsing that
the value was “A”. The field does also not have a Label Block (the Laboratory code was added
only after data entry in the analysis module). As we will have also laboratories B, C, and D,
we will add here a Label block with string values to later accommodate the three additional
laboratories. Thus create a New Value Label as:

As we do with variables with label blocks, we tick Always show picklist during entry. As we
have now all the necessary information we Combine Fields in the Calculate tab:

Let’s also make both labcode and serno Key fields (right-click the data form [which we
have here already properly relabeled]):

and make serno and labcode Key fields:

course_a_ex06_task
Page 4 of 6

The Registration date (field name regdate) is Must Enter and as all laboratory results are
from the year 2003 we might as well add a Range from 01/01/2003 to 31/12/2003.

The Examinee’s age in years (field name age) is Must Enter and as a continuous variable of
length 2 we may add Notes:

The Examinee’s sex (field name sex) has no Valuelabel ticked:

However, if you pick the drop-down list, you see that it actually exists (it is in the CHK file)
and all we need to do is to pick it:

and then we can view it with Edit that replaces New once picked:

The list of Value labels also shows that we have label_reason and label_result which
we can use for the last four variables to complete updating the new EPX file with the metadata
from the old EpiData Entry CHK file.

Finally, once the above is done, we may edit it nicely and check functionality in the EpiData
EntryClient (without saving the record!!):

course_a_ex06_task
Page 5 of 6

Exporting the structure of an EPX file and importing REC file data into the new structure

The data form structure of the now created a_ex06a.epx file can be exported without the
data using Export and ticking the appropriate box. We export it to a new file a_ex06b.epx:

We then open this a_ex0b.epx file, edit it (changing the name of the data form and the header
to become “Laboratory B”) and use Tools | Append and pick the b.rec file:

However, doing so, we get an error message:

The reason is that in the EpiData Entry REC file serno is the key, and in this EpiData Manager
EPX file serno and labcode are the keys. The best approach is to remove the b.chk file

course_a_ex06_task
Page 6 of 6

and to remove both keys in the EPX file and subsequently add them again after successful
import which is prompt if these actions are done:

If we wanted to have all four laboratories in one single a_ex06abcd.epx file, we could have
done that simply by adding all four REC files (after removing keys in the EPX file and removing
the CHK files for the four REC files after successfully using their metadata). However, it cannot
be done in one sweep, each must be added on its own.

Task:
o Create the entire set of four EPX files, so that in the end we have a_ex06a.epx,

a_ex06b.epx, a_ex06c.epx, and a_ex06d.epx

course_a_ex07_task
Page 1 of 2

Task:
o Create the entire set of four EPX files, so that in the end we have a_ex06a.epx,

a_ex06b.epx, a_ex06c.epx, and a_ex06d.epx

Solution:
We have four files with an identical structure (the Headers differ, but these are just labels) with
different records (but each file has 75 records):
a_ex06a.epx
a_ex06b.epx
a_ex06c.epx
a_ex06d.epx

The final data form for a file looks like this:

You have ensured that the two keys are added again after import in each of the four files:

Solution to Exercise 6: Upgrading an EpiData 3.1 REC/CHK file pair to
an EPX file

At the end of this exercise you should be able to:
a. Understand how you import an EpiData Entry 3.1 REC / CHK file pair into

EpiData Manager
b. How to edit the new file and add the link to the metadata from the old CHK

file to the new EPX file.

course_a_ex07_task
Page 2 of 2

While we are not going to enter new records into any of these files and therefore this adding of
the keys is not essential, it would be if new records were added to ensure that each resulting
combined identifier is unique.

course_a_ex07_task
Page 1 of 4

Not all laboratories keep their registers as The Union and WHO recommend for the
Tuberculosis Laboratory Register, where 1 line corresponds to 1 examinee rather than to 1
examination. In fact, many laboratories enter the results for each examination on one line. If
such an approach is chosen, we may find a register as follows:

Patient Date of exam Sex Marital status Blood sugar Sputum Result
A 24-Mar-2007 Male Married 6.3 Mucoid 1+
B 24-Mar-2007 Male Divorced 4.9 Muco-purulent Neg
C 24-Mar-2007 Female Single 5.2 Purulent Neg
D 24-Mar-2007 Female Widowed 7.3 Blood-tinged 2 per 100
A 25-Mar-2007 Male 7.3 Salivary Neg
D 25-Mar-2007 Female 7.4 Mucoid 2+
A 26-Mar-2007 7.2 Purulent 1+
C 26-Mar-2007 Female 4.8 Muco-purulent Neg
E 27-Mar-2007 Male Married 8.2 1+
F 27-Mar-2007 Female Annulled 7.4 Purulent Neg
G 27-Mar-2007 Male Cohabitating 6.9 Salivary Neg
G 28-Mar-2007 Male 7.2 Mucoid 2+
E 28-Mar-2007 Male 7.9 Purulent 2+
F 31-Mar-2007 Female 7.2 Muco-purulent 3+
H 31-Mar-2007 Married 6.6 Mucoid Neg
I 31-Mar-2007 Male Separated 8.3 Salivary Neg
H 1-Apr-2007 Female 6.9 Muco-purulent 1+
F 1-Apr-2007 Female Engaged 7.7 Purulent 2+
I 1-Apr-2007 Male Single 8.0 Mucoid 8 per 100
G 1-Apr-2007 Male 7.6 Muco-purulent 1+
K 2-Apr-2007 Female Married 4.5 Purulent Neg
I 2-Apr-2007 Male 8.2 Muco-purulent
H 2-Apr-2007 Female 6.6 Mucoid 1+
I 3-Apr-2007 Male 8.1 Mucoid 1+

This type of a register requires a different approach to data entry than we used before. Two
important things need to be considered:

1) The same patient may appear again and again on sequential dates
2) Not every patient has the same number of visits

Some patient characteristics do not change over time such as, in this example, the identity of
the patient, sex, and marital status (well, perhaps not during these short intervals). Others do
change, such as the date of examination, blood sugar, the aspect of the sputum and the sputum
smear examination result.

Exercise 7: A relational database

At the end of this exercise you should be able to:
a. Understand when a single data entry form and when a relational database

is the preferred data collection instrument
b. Create a relational database for a varying number of observations.

course_a_ex07_task
Page 2 of 4

To capture such information in a single data entry form as was done in the previous exercises
would be very inconvenient: 1) one would have to anticipate the maximum of allowable visits,
and 2) if one patient has a single visit, one would still have to complete all fields with the codes
for missing values up to the maximum allotted if we insist that all fields must usually be Must
Enter fields.

Building a relational database requires deciding which information is static for an individual
(during the observation period) and which information changes over repeated observations. We
will illustrate a relational database with a very limited set of variables.
What is the structure of such a relational database? The figure below outlines a relational
database with two levels.

At the Level 1 (the “Parent” file), we may have patients, denoted here with A and B. At Level
2 (the “Child” file), denoted here as A-1, A-2, and A-3, we may have different visits to a clinic
where each time the date of the visit is recorded, and blood pressure blood sugar are measured.
Each individual may have at least one, but up to an unlimited number of such visits, and the
number of visits varies for each individual.

In the following, we will call the records at Level 1 the parent records and those at Level 2 child
records.
To build the relational database, we collect different information at each level and link the two
levels, so that at some point during entering parent information will trigger the opening of the

Rule: If an individual has a fixed number of observations for each variable, then a single
EpiData form is the best solution. If an individual has a variable number of observations
for each variable, the choice is a relational data base.

Note: Because of the simplicity, it is always preferable to have a single data entry form.
However, if the data available concern an individual with fixed information (e.g. age,
sex, etc) on one hand, and variable information (e.g. serial examinations) and there are
fixed sets of variables in serial examinations (e.g. repeated measures of blood sugar and
blood pressure) and each examinee has a varying number of examinations, then it may
become more efficient to use a relational database.

course_a_ex07_task
Page 3 of 4

child form to enter one or more child records. One or more child records are added until one
wishes to return back to the upper level of parent records.
Important components for the structuring of the relation between the two data forms are:

• The two forms have a common identifier field. This identifier might be called
idparent.

• The child form must have its own unique identifier, which might be called idchild.

Illustrating it practically in EpiData Manager
We start a New Project. We note the brief information on the relational database in the opening
window:

Change the name of the Untitled Project to Exercise 7 and Dataform 1 to 1_parent and save the
project as a_ex07.epx.

We add as first field the string variable idparent, the Unique parent identifier of
length 2 as a Must Enter field. We add only two fields: age, an integer of length 2 for
Patient’s age in years and sex for Patient’s sex, an integer of length 1. Both
are Must Enter fields. For age as a continuous variable, we might write in Notes:
Enter 0 to 97 for exact age
Enter 98 if 98 or older
Enter 99 if not recorded

Finally, we define idparent as Key field. Next we make the 2_child Dataform (rename it
using F2) by clicking on the:

And we note that EpiData opens the new data form with the idparent identifier already
written onto the canvass:

If you click on it, you see that in the Field Properties menu everything is grayed out and in its
Extended tab we also see the grayed out setting to No Enter, all courtesy of EpiData Manager!

While we are in the 2_child data form, we add the four variables visit, syst, diast,
and bs, for Visit date, Systolic blood pressure, Diastolic blood
pressure, and Plasma glucose in mMol respectively, a date, two integer and one
float field, all Must Enter (and define some range, but assume no missing values). Preceding

course_a_ex07_task
Page 4 of 4

Visit date, add idchild, the Unique child identifier, a No Enter string field
of length 13, resulting from the combination of the values of idparent and visit.

This is all there is to it: the flow of the related forms is such that once the 1_parent is
completed, the flow leads right over to the 2_child data form, where you can complete from
one to many records before you move back up to a new 1_parent data form.

Other options
You can add more related forms. If there is more than one data form, you can choose under
Properties of the 1_parent data form (right-click its name) in the After Record tab the order
of flow which is to be followed after the parent record:

For a single related form as in our example, there is only one possibility, and this is pre-recorded
as default.

You can also set conditions in a field of the 1_parent form, i.e. which value in the field
should trigger access to the related field. As of now, there is still some bug that should be fixed
shortly that prevents this extended functionality to work as intended.

Task:
o Complete the related data set and check it for functionality in the EpiData EntryClient

course_a_ex07_solution
Page 1 of 1

Task:
o Complete the related data set and check it for functionality in the EpiData EntryClient

Solution:
A completed parent and child record set may look as this:

Solution to Exercise 7: A relational database

Key Point(s):
• A relational database is appropriate when a dataset contains fixed person

information (such as age, sex, hair color, and the like and variable information
like examination of weight and blood sugar over a variable number of
examination visits.

• A unique identifier in the parent file serves as the key connecting the parent file
with the child file

course_b_ex01_task
Page 1 of 20

Part B. EpiData Analysis

Part B: EpiData Analysis
Exercise 1 An introduction to EpiData Analysis
Exercise 2 More on EpiData Analysis
Exercise 3 Aggregating data and saving the summary data in a file
Exercise 4 From a spreadsheet to an EpiData file

course_b_ex01_task
Page 2 of 20

The image below shows the EpiData Analysis interface with all components open:

The screen shot shows the various windows:
On the right:

• With F2 (toggle key) you access various Commands

• With F3 (toggle key) you see information on field names, types, and labels

• With F7 (toggle key) you display the History of commands in the current session
(which you can paste into the Editor which you access with F5 (center).

In the center:

• With F5 you access the Editor in which we will be writing our program (script) which
can be run as a batch and will produce output in the Results window (the Viewer)

On the left:

At the end of this exercise you should be able to:
a. Do some analyses using the commands on the menu bar.
b. Use the ‘Editor’ to write commands into a program that can be saved to

make a permanent record.
c. Do some calculations.
d. Create new variables.

Exercise 1: An introduction to EpiData Analysis

Results Window
(Viewer)

Editor
(F5)

Commands (F2)

Variables (F3)

History (F7)

Command prompt (F4)

course_b_ex01_task
Page 3 of 20

• The Viewer or the Results window, here after running the program shown in the Editor.
On the top you see in black the commands interspersed with green information on
what is being done / has been done and finally the requested output table of a
frequency for the variable sex.

At the bottom:

• Accessible with mouse-click or F4 is the Command line into which you can type any
command (we could have written FREQ sex here instead of into the Editor, provided
that the file was open). Below the Command line, from left to right, you see the
current folder including the path to it, a green button indicating readiness, the number
of records (75) and that all of them from the dataset a.epx have been selected. That
the open data file is the a.epx can be seen at the very top of the screen.

If we look at more details, we find on top of the screen:

Top row: EpiData version (important to specify when reporting bugs) and path and currently
open file name.
Center row: Menu bar
Bottom row: Work tool bar

If you select in the Menu bar Windows you get a drop-down menu:

This gives you spelled out the names of the various command and
windows and the shortcuts F1 ,…, F7 that can be used to access
them.

If we open a file, the Viewer (Results window) gives information (written in green) on
File name, File label, number of Fields and number of Records:

At the bottom of the screen (below the command line) we find the location (path) on the very
left, in the center the green bullet indicating readiness, and right to it the number of records

course_b_ex01_task
Page 4 of 20

(75 here) available, further to the right that the entire dataset is available (All selected), and at
the very right that EpiData Analysis has opened an output file EAoutput.htm:

We can double-click on the path (c:\epidata_course here) if we wish to change it and
get a pop-up box to Browse for the desired data Folder (see more on that below).

We can only summarize some basic essentials in the approach to the use of EpiData Analysis
and we will split it into the following components:

• Using the menu interactively

• Writing a script (program) to execute a series of commands

• Analysis of continuous variables

• Analysis of categorical variables

Using the menu interactively
When you open EpiData Analysis, you see information on Version and currently open dataset
in the top row, the Menu bar in the second and the Work tool bar in the third row:

For beginners, it is best to use the Menu and Work tool bars. Before anything else, we need
to tell EpiData where our data files are located. This can be done in different ways. The
simplest way is probably to double-click at the bottom left on the path that is there:

This will open an Explorer-like window:

allowing searching for the desired folder. This folder selection will persist during the current
session (unless you change it during the session), but once you exit and re-enter EpiData
Analysis, the path will again be the default path. Therefore, it is desirable to get a bit more
control over the default path and folder that is opened when you start EpiData Analysis.
Commonly, one works in project folders like we do here where the:

course_b_ex01_task
Page 5 of 20

..\epidata_course

is our project folder. On the top you have Edit with a pop-up menu:

If you open Edit Setup (EpiDataStat.ini), you get the file opened in the Editor allowing us to
customizing it to our needs:

In lines 4 to 16 above we set font sizes, font types and other things (that can be changed
according to your needs). It is lines 18 to 20 that are of interest here for the data folder. We
start in line 19 with:
[drive name]:\folder in the PC root\subfolder\sub-sub-folder

You note specifically in line 20 cd c:\epidata_course. It is this line which directs
EpiData Analysis to open at start-up in that folder. If we had not customized the starting
folder in this EpiDataStat.ini file, EpiData Analysis would start in its program file
folder.
In both lines 19 and 20 above you find the command “cd”. “CD” denotes “Change Directory”
(a term formerly used to denote for what Microsoft denotes now as “folder”). In line 19,
EpiData is instructed to go to a folder temp (and will do so if it exists, but stops if it doesn’t).
In line 20, the previous instruction is overridden and it will end up (the last instruction sets the

course_b_ex01_task
Page 6 of 20

final destination) in the epidata_course folder. We can thus list our different working
folders and just rearrange them so that the currently desired is the last one. Note though that
each of the listed folders must exist, else you get an error message at the start of EpiData
Analysis and it will stop at the last “legal” folder found in the list of folders you may have:

Opening an EpiData data set

The command to open an EpiData EPX or REC file is Read which can be accessed by clicking
on the respective icon in the menu (or with the short-cut ALT+R). Make sure (the first time)
that you are in the right folder “c:\epidata_course” to choose the file:
a.epx

from the [C:]\epidata_course folder. In the Viewer window you should then get:

Below the command line you note:

that all of the 75 records are selected. You will see later that any selections you make are
listed here and the remaining number of records is shown.

 Browsing the EpiData data set

Clicking on Browse (or short-cut ALT+B) gives a menu box:

course_b_ex01_task
Page 7 of 20

where you can choose All or ticking which ones you need specifically. Note at the bottom the
possibilities Run and Execute (circled above in blue and red respectively). The difference is
that Run shows the results and simultaneously closes this selection box. If you change your
mind, you have to reopen it and start again from scratch. In contrast, with Execute this
window with all selections stays open and you can modify easily if you dislike what you got:

Note the “switch” (toggle key) box Values/Labels. If you click on it you get:

If the toggle key is on the Values, the information in the older EpiData file format comes from
the *.REC file, if on the Labels, it comes from the *.CHK file, in the *.EPX file format,
there is only one file. Thus, if the *.CHK was not in the folder, the toggle key would not
work and only the Values would be seen. You can thus BROWSE either the Field values or the
Field labels.
If you right-click on the field name (e.g., sex):

You can Copy the column (you can also copy one or more cells or rows) to Clipboard, or you
can Sort the data set on the chosen field.

If you go to the command line (F4), and use the up-arrow key, you get the last command:

course_b_ex01_task
Page 8 of 20

Now you know that the actual syntax to browse is the command BROWSE followed by the
variable(s). Note that as in EpiData Entry, the capitalizing is just the way that EpiData shows
the commands, it is not something you are required to use.
The use of the interactive approach with clicking can thus be used to see the actual commands
that are behind the clicking which will come in handy when we start writing a program. All
what we do is also written into the history which can be accessed from Windows or with the
short-cut key F7, where the last lines read:
Read
Read "C:\epidata_course\a.epx"
BROWSE id serno labcode regdate age sex reason res1 res2 res3
BROWSE id age sex

Again, to make life easier for the beginner, the history can be invoked and pasted into the
Editor, and then edited for the program.
Browsing allows seeing variables and their values for each record, but one would also like to
know all possible values and labels for a given variable. In the Menu bar, choose Variable
definitions from the drop-down menu of Data:

and in the Viewer you get (beginning only shown):

Note at the very beginning var which is the command equivalent to the selection from the
Menu and which you can type into the command line to clicking on the menu.

If you are only interested in one specific variable, for instant the variable reason, you can
right-click on it in the variables window:

course_b_ex01_task
Page 9 of 20

and you get to see what the label block looked like during data entry.

Making a graph

To make for instance a bar graph (or any other), open the graph dialogue by clicking on
Graph (ALT+G) and pick for instance the field sex:

and modify the lines for Title and Sub-Title if you wish:

then click Execute get:

Note that you not only get the graph you asked for but above it in this instance also the syntax
required to get it which you can copy and paste into your program.

Interactive analysis

Clicking on Analysis (ALT+A) give a drop-down menu:

course_b_ex01_task
Page 10 of 20

Let’s use the first one, Describe to describe the content of a numeric field such as age and get:

We will come back later to the error of including here examinees with an age coded as
missing (99) and how to fix that.

In the Results menu, you can clear the Viewer output (and memory) with Clear screen (short
cut function key F12):

Writing a script (program) to execute a series of commands
This is all good and fine. It is what might be called “interactive analysis”. The advantage is
that you can very quickly “fish” in your dataset and familiarize yourself with it. The
disadvantage of interactive analysis is that everything is lost once you leave EpiData Analysis.
It defies thus the underwritten purpose that everything you do in research must be thoroughly
documented.

The solution of EpiData Analysis to documentation is to use:

(Function key F5 also opens the Editor)
It opens a new window which is simply a text editor for EpiData Analysis programs that take
the extension *.PGM. There are many different ways to do it, but things become more
quickly automated if done always in the same way. We propose that the first few command
lines have the following content:

course_b_ex01_task
Page 11 of 20

Save the program immediately as “b_ex01.pgm” (the extension is supplied automatically)
in our working folder and verify at the top that this is so:

It is always a good idea to make comments on what you do. Comments in EpiData Analysis
are written by putting an asterisk * as the first thing on a line like in:
* The title of my program

If you want a command to be executed but would like to write a comment, you may do this
with a double forward slash (“//”) after the command:
cls // This will clear the screen and free memory

It is also a good idea to write the date of the first version, lesser so of subsequent versions,
because the original date will disappear from the file information once you update and save
while one is often interested when it was started. It is also helpful to state who wrote the first
draft, and add names if it is a collaborative work. We cannot overemphasize the importance
of thorough annotations.
In lines 6 to 8 we start with a clean slate:
cls // CLS clears the screen (identical to the interactive F12)
close // CLOSE closes any open data (*.REC) file
logclose // LOGCLOSE closes any open log file

While cls and close are usually easily understood, the concept of “logclose” is perhaps
intuitively not equally clear. When we opened EpiData Analysis and read the “a.epx,
EpiData Analysis gave the following information below the command line:

On the very right, the EAoutput.htm is the log file that EpiData Analysis opens and in
which it records our doings and at which we can look (after quitting EpiData Analysis). We
recognize some of the things we just did if we open it in our browser (the extension *.htm
identifies it as a file to be examined in a browser):

course_b_ex01_task
Page 12 of 20

With our command “logclose”, this file is closed (and its name disappears from the line
below the command line) and we are ready to write another log file (into which we perhaps
wish to write specifically a table output or record anything else). We close it because like
with data files only one log file can be open at a time. We could of course close it just before
opening another one, but we propose to start with a clean slate where everything is closed, the
screen is empty and the memory free.
We propose the above to be a standard approach to start any program: identifying, labeling
and dating, followed by making a clean slate.
As we can work (and have open) only one data file at a time and we have closed any other
that might be open with the above command, we can now open the file to analyze, with the
command:
read “a.epx”

This does the same thing as we did above interactively when pressing the button Read: it
opens an EpiData data file. The next three lines:
append /file="b.epx"
append /file="c.epx"
append /file="d.epx"

do something that is often required: we have several files with the same data structure and we
wish to combine them vertically (“append”) to have a single data set for analysis. In this
case, the four *.EPX files a, b, c, and d contain each 75 records from four different
tuberculosis sputum smear microscopy laboratories (these are real data from Yangon, data
courtesy Dr Ti Ti). Finally, we save the data in a new file, and thus have now:
read "a.epx"
append /file="b.epx"
append /file="c.epx"
append /file="d.epx"
savedata "abcd.rec" /replace

Without the /replace, this would run once, but give an error the second time:
DataFile and/or Chk file exists.
Add /REPLACE or erase

Important Note: The current version of EpiData Analysis (Build 2.2.2.183) can read
*.EPX files, but it cannot yet save files in this format: any file you save will have the
EpiData Entry 3.1 format with a *.REC file extension. Simultaneously, a paired *.CHK
file containing the metadata will be saved.

course_b_ex01_task
Page 13 of 20

c:\epidata_course\abcd.rec
c:\epidata_course\abcd.chk
Exception occured: Operation aborted
Failed to save data to c:\epidata_course\abcd.rec

Creating a new *.REC file (as here) with “savedata” also creates an accompanying
*.CHK file as we see from the error message.

This requirement is a precaution to prevent the inadvertent overwriting of an existing file.
The option /replace gives the explicit permission to overwrite the file in case it exists.

Finally, we close the file (a.epx) which is still open (the file that was read last is always
the file that is open) and we need to close it first before we can open the newly created
abcd.rec:
close
read "abcd.rec"

Now we are ready to analyze the data.

First run what we have. At the top of the Editor you see Run with two options:

F9 runs the entire program and F8 whatever command line(s) you selected. To run a single
command line, there is no need to mark it, just place the cursor anywhere onto it and press F8.

Analysis of continuous variables
We have one continuous variable in this data set, age in years (at last birthday). What you
cannot know without a data documentation sheet is that examinees with unknown age were
given a value 99 for age.

It is of course possible to make a frequency of age but this could give us up to 100 different
values for a 2-digit field like age. Frequencies are better used for categorical variables while
for continuous variables we use other methods to describe them. As is a common standard in
any analysis package, we give a command followed by the name of the variable(s) on which
the command should be executed. Type (on two lines):

describe age
means age

We get:

course_b_ex01_task
Page 14 of 20

The first output is from “describe”, the second from “means”. Comparison shows that
means is more informative than describe. We also note that the maximum is 99.00,
meaning that at least one person had a unknown age coded as 99. Thus, our calculations are
incorrect: we need to exclude the unknowns before calculating this kind of statistics:
select age<>99

The command to select a subset is select followed by the variable var01 in question,
followed by an operator and the value. You may need these operators:
= Equal to
< Less than
> Greater than
>= Greater or equal to
<= Less or equal to
<> Unequal

There are more operators which you may look up in the Help file (F1).

Repeat means age after the appropriate selection and get:

Note at the bottom of the EpiData Analysis screen:

Apparently, our selection led to the exclusion of 3 examinees from the set of 300. Often we
wish to compare a continuous variable in subgroups, for instance sex. The command is:
means age /by=sex

which gives us:

Please note that the stratifying variable (sex, in this case) has to be a numeric variable for
this command to work, another reason why we prefer numeric variables with value labels to
text variables. The output shows that there is a small difference in the mean age between
females and males. To know if this difference was just by chance or is statistically significant,

course_b_ex01_task
Page 15 of 20

we may wish to do an unpaired t test. We then simply add the option /T (capitalization not
required):
means age /by=sex /T

which gives us (only the lower part shown here):

The p value of 0.846 (being more than 0.05, the level used conventionally to assess statistical
significance) here thus tells that the difference between mean ages of males and females is not
statistically significant. Please note that this also gives the results of Bartlett’s test of
homogeneity of variance at the bottom of the output, one of the assumptions to be satisfied
before using the t test. If the p value of Bartlett’s test is <0.05, then the assumption of
homogeneity of variance is violated and it suggests to use one of the non-parametric tests for
assessing statistical significance. (Read about a non-parametric test called Kruskal-Wallis test
and the command kwallis in the help file)

Note:
• If there are paired observations for the same individuals, then the paired t test is

recommended. To calculate this in EpiData, calculate the difference in paired values in
a new variable (let us say “diff”) and run the command line means diff /t.

• If there are more than two means to be compared, then we use ANOVA (Analysis of
Variance), though the EpiData command to achieve it will be the same /t.

In addition to the numeric output, one might like to see it graphically represented with a
boxplot:
boxplot age /by=sex

The command to de-select is simply SELECT. You thus select (one or more selections),
execute a program and then deselect to return to the full data set:
select age<>99
boxplot age /by=sex

course_b_ex01_task
Page 16 of 20

select

Sometimes, we wish to categorize a continuous variable. For age, a common categorization is
“WHO age groups”. This is how we would write the commands:
cls
select
define agegrp #
if age>=00 and age<15 then agegrp=1
if age>=15 and age<25 then agegrp=2
if age>=25 and age<35 then agegrp=3
if age>=35 and age<45 then agegrp=4
if age>=45 and age<55 then agegrp=5
if age>=55 and age<65 then agegrp=6
if age>=65 and age<99 then agegrp=7
if age =99 then agegrp=9
label agegrp "WHO standard age groups"
labelvalue agegrp /1="0- to 14-yr-old"
labelvalue agegrp /2="15- to 24-yr-old"
labelvalue agegrp /3="25- to 34-yr-old"
labelvalue agegrp /4="35- to 44-yr-old"
labelvalue agegrp /5="45- to 54-yr-old"
labelvalue agegrp /6="55- to 64-yr-old"
labelvalue agegrp /7="65-yr-old and older"
labelvalue agegrp /9="Unknown age"

After ensuring that we have the full data set (“SELECT”), we define a new integer variable
agegrp and categorize the patients’ age into the seven WHO age groups plus one for those
with no age recorded. After categorization, we give a Field label and then Value labels.
Looking at how to use this new variable leads us over to the analysis of categorical variables.
Because “CLS” does more than just clearing the screen – it also frees memory – we tend to
write frequently a cls into the program. You can also manually, while a program runs, press
F12, and it will do the same thing, speeding up the running of the program.
We could have defined a text variable:
define agegrptxt1 _________
define agegrptxt2 <AAAAAAAAA>

Analysis of categorical variables
The most frequent command we use for a categorical variable is, well, frequencies:
cls
freq agegrp

course_b_ex01_task
Page 17 of 20

The output displays thus the Value labels we wrote, not the values, but we can have both with
the option /vl:
freq agegrp /vl

This is important to know if we want to make a selection like for instance including those in
the category “Unknown age” by writing “select agegrp<>9”. With frequencies we
often want to know the percentage distribution:
freq agegrp /c

The option “/c” is thus for column percent, while an option “/r” would be for row percent
(not applicable here but in tables). With frequencies, one can also get 95% confidence
intervals (not very sensible here, just shown for the principle):
freq agegrp /c /ci

If you use more than one variable:
freq sex reason

you get frequencies for each of the (as many as you like) variables:

course_b_ex01_task
Page 18 of 20

Let’s make one more new variable for a case definition. The dataset is, as mentioned above,
from laboratory registers. Each examinee can have up to three sequential examinations. Let’s
define that an examinee is a “case” if any of the three possible examinations has at least 1
acid-fast bacillus (a proxy for tubercle bacilli) in it. If we make a frequency of the first result
and also ask for the display of the values (not just the value labels):
freq res1 /vl

We get something, but not quite what we need. What we need is to know what values were
possible, not just which values were actually present. We can obtain that information by
typing var (as explained above) into the command line and we get the coding for the entire
dataset. Alternatively, for just one categorical variable, we can right-click the variable in the
variable (F3, if not open) window (see above).
We can repeat this for each of the three result variables and we see that all use the same label
block. Based on this information, we can now safely define a case:
define case #
 let case=0
if res1>0 and res1<9 then case=1
if res2>0 and res2<9 then case=1
if res3>0 and res3<9 then case=1
label case "Smear microscopy defined case"
labelvalue case /0="Non-case"
labelvalue case /1="Case"

and try:
tables case sex /r /c /tp /pct

course_b_ex01_task
Page 19 of 20

This gives us row (/r), column (/c), and total (/tp) percentages. The /pct aligns them
properly in separate columns.
Note that in the command, whichever variable you write first after the command tables is the
column variable (outcome variable in epidemiologic terms) and the second variable is the row
variable (exposure variable).
Meanwhile you have noted that EpiData Analysis gives just the raw numbers as default output
in a frequency or table, but you can add multiple options, and combine them as needed.
Options are preceded by the forward slash (/).
tables case sex /r /t

shows us with the option “/t” (for performing the Chi-square test) that there is no significant
difference between males and females in being a case. In some instances, when the expected
cell value of a 2-by-2 table is less than 5, it is recommended to use Fischer’s exact test instead
of the Chi-square test. For Fischer’s exact test, use the option “/ex”. This is indicated by
EpiData automatically. We could make 95% confidence intervals with frequencies, but we
cannot use the “/ci” option for tables. We need a little trick to get that, and that is with the
confidence interval plot:
ciplot case sex

And if we don’t want to see the graph, only the table we use the option “/ng” (“no graph”)
ciplot case sex /ng

By default, the higher value of the variable is considered as outcome. In case you want to
change that, use the option “/O=value” (O for outcome).

Tasks:

course_b_ex01_task
Page 20 of 20

o Determine the year of birth (new variable created from age and date of registration),
then make groups of examinees (another variable) born respectively before 1930, from
1930 to including 1949, 1950 and later, and those without known year of birth.

o Use two approaches, one with text field coding and the other with numeric coding and
value labels.

course_b_ex01_solution
Page 1 of 2

Tasks:
o Determine the year of birth (new variable created from age and date of registration),

then make groups of examinees (another variable) born respectively before 1930, from
1930 to including 1949, 1950 and later, and those without known year of birth.

o Use two approaches, one with text field coding and the other with numeric coding and
value labels.

Solution:
The output solution is as follows:

The “Task” part of program B_EX01.PGM might look as follows:
**
* Part B, Exercise 1
* Task
**

cls
close
logclose

Solution to Exercise 1: An introduction to EpiData Analysis

Key Point(s):
• It is important to make a comment first in the program. This preferably is what

you want to do in that program. Comments are preceded by an asterisk and are
bypassed by the analysis program.

• The F9 key runs the whole program whilst the F8 key runs only the selected part
of the program.

course_b_ex01_solution
Page 2 of 2

read "a.epx"
append /file="b.epx"
append /file="c.epx"
append /file="d.epx"
savedata "abcd.rec" /replace

close
read "abcd.rec"

* Define the year of birth
define birthyr ####
birthyr=year(regdate)-age
if age=99 or year(regdate)=1900 then birthyr=9999

* Using text variables
* define groupings for birth years
define birthgrp1 _______________
 let birthgrp1="other"
if birthyr <1930 then birthgrp1="1929 and before"
if birthyr>1929 and birthyr<1950 then birthgrp1="1930-1949"
if birthyr>1949 then birthgrp1="1950 and later"
if birthyr=9999 then birthgrp1="Unknown"
label birthgrp1 "Exercise birth years text coding"

* Using numeric variables
* define groupings for birth years
define birthgrp2 #
 let birthgrp2=8
if birthyr <1930 then birthgrp2=1
if birthyr>1929 and birthyr<1950 then birthgrp2=2
if birthyr>1949 then birthgrp2=3
if birthyr=9999 then birthgrp2=9
label birthgrp2 "Exercise birth years numeric coding"
labelvalue birthgrp2 /1="Born before 1930"
labelvalue birthgrp2 /2="Born 1930 to 1949"
labelvalue birthgrp2 /3="Born after 1950"
labelvalue birthgrp2 /8="Unaccounted for"
labelvalue birthgrp2 /9="Unknown birth year"

cls
tables sex birthgrp1
tables sex birthgrp2

course_b_ex02_task
Page 1 of 16

More about data set manipulation
Merge and append

In the first exercise of Part B you learned to append files. It was said then that you append
files if the files have the same structure. That is not exactly necessary. You can append files
with different structures as long as you ensure 1) that the file that is read contains all the same
variables as the file(s) you plan to append to it, and 2) that the variables have the same
definitions. Let’s show an example of two data sets, Set A and Set B, each with three records,
where id is the unique identifier in each set:

Set A Set B

Note, that the identifiers in Set A are all different from the identifiers in Set B, the
information in the two sets belongs thus to a total of six different individuals. We can append
the two files if we first create the same variables in the file we read (let’s say Set A) before we
append Set B:
cls
close
read "b_ex02_01.rec"
define bs #.#
define ht ###
append /file="b_ex02_02.rec"
We get correctly a file with six records:

Exercise 2: More on EpiData Analysis

At the end of this exercise you should be able to:
a. Know more about data set and variable manipulation
b. Know more about tables
c. Know more about graphs

course_b_ex02_task
Page 2 of 16

We could have gone the way with merge. Merge requires the identifier to be unique within
a set which is the case for id within Set A and within Set B. If we use merge, there is no
need to first ensure that all variables exist in the set that is read:
cls
close
read "b_ex02_01.rec"
merge id /file="b_ex02_02.rec"

We get:

In other words, we get exactly the same thing, except that EpiData Analysis added a variable
MergeVar which can take 3 values:
Only in memory (Original)
Only in external file
In both [not existing here]

If the two data sets thus contain different individuals, we can choose either append or
merge as long as we ensure that (if we choose append) the read file has all the variables
that the appended file has. If one or more individuals are identical in Set A and set B, then
using append becomes wrong because we would get two records from the same individual.
In such a case, we must use merge. To exemplify this, we saved the above data Set B as
b_ex02_03.rec, after changing the value for id=d to id=c. In other words, person “c”
is in both data sets. If we juxtapose the results from appending and merging:

Appending Merging

The file resulting from appending has 6 records, two of which belong to individual “c”, the
result is thus wrong. Conversely, the file resulting from merging has only 5 records
corresponding to the total of 5 individuals and is thus correct. EpiData Analysis gives us with
the automatically created field MergeVar also the relevant information about the source of
the data.
In a later exercise you will learn about important options (look-up table) that you may need
when merging data files.

course_b_ex02_task
Page 3 of 16

Select

We used select as follows:
read “abcd.rec”
select age<>99
means age /by=sex
select
freq sex

We selected a subset, then carried out the command, and finally used select again to obtain
back the full data set. Thus, before we wrote select again, we kept the reduced data set.
Sometimes it is desirable to make a selection only for a specific command as in the above
example. A powerful possibility in EpiData Analysis is to do precisely that by writing the
condition for which a command is to be executed onto the same line as the command. Instead
of the above, we thus write:
read “abcd.rec”
means age /by=sex if age<>99
freq sex

Drop and Keep

Select reduced the number of records in a data set. Sometimes it is useful to reduce the
number of variables, not the number of records in a data set. This is where drop and keep
come in. The two are complementary. We have identifier field id and serno in the data
set abcd.rec. If we don’t want to keep them, we would write:
cls
close
read "abcd.rec"
drop id serno
savedata "abcd_temp_01.rec" /replace

This is more efficient than the complementary approach with keep:
cls
close
read "abcd.rec"
keep labcode regdate age sex reason \
 res1 res2 res3
savedata "abcd_temp_02.rec" /replace

Note here also in passing that you can use the backslash \ to continue a command on the
following line (this was not possible in the CHK file).

Sort
Sorting a dataset on one or more variables is a key component in programming. For instance,
if you would like to sort our data set abcd.rec on the laboratory, you would write:
cls
close
read "abcd.rec"
sort labcode

and within each laboratory by registration date:

course_b_ex02_task
Page 4 of 16

sort labcode regdate

…

The last sorting command overrides any previous sorting command. Note that saving a data
set after sorting will save it in the last sort order.

Define and gen

We used so far define to create a variable in the memory exactly as we did in the CHK file
for temporary variables. For instance, if we create a new field case to define a sputum-smear
positive case:
define case #
case=0
if res1>0 and res1<9 then case=1
if res2>0 and res2<9 then case=1
if res3>0 and res3<9 then case=1
label case "Microscopy case definition"
labelvalue case /0="Non-case"
labelvalue case /1="Case"

There is an alternative in EpiData Analysis, gen for generating a new variable. Be careful
though to use “gen” and not “generate” because the latter is also a legitimate command,
but with an entirely different meaning (it creates empty records). We would thus write
instead of the above:
cls
gen i case2=0
if res1>0 and res1<9 then case2=1
if res2>0 and res2<9 then case2=1
if res3>0 and res3<9 then case2=1
label case2 "Microscopy case definition"
labelvalue case2 /0="Non-case"
labelvalue case2 /1="Case"

We don’t have to assign it a value (as we do here with “=0”). If we don’t, the value is set to
missing with a period. With define we defined at the same time with the field name also
both its type and length. An integer variable created with gen will automatically get a field
length of 9.
There are other field types we can create this way:
gen d copydate=regdate
gen f agedays=age*365.25
gen s(2) labsex=labcode+sex

If you create a float field, it will have the length 12, including 4 decimal points. This could
be inconvenient, if we create a label block for instance (like we had for the results) as we must
pay attention that there is full compatibility. There is no option to change this default.

course_b_ex02_task
Page 5 of 16

Wonderfully, we can change the default length (of 20) for string fields, in the non-sensical
example here defined as having a length of 2.

Note that “gen” is a bit faster to code, “define” runs faster. This becomes important in
large datasets. For date and string fields “gen” is virtually always preferable, for integer
fields “define” is perhaps preferable if you know the expected length of the field, and for
float fields, “define” is probably almost always preferable.

Recode

We had used DEFINE and / or GEN go make new variables. If we have a continuous variable
from which we wish to make a categorical one, like converting the variable AGE to age
groups, EpiData offers RECODE, as shown in this example:
define agegrp2 #
recode age to agegrp2 00-14=1 15-24=2 25-34=3 35-44=4 45-54=5 \
 55-64=6 65-98=7 99=9
freq agegrp2

gives:
agegrp2
 N
00-14 6
15-24 57
25-34 84
35-44 67
45-54 28
55-64 25
65-98 30
.99 3
Total 300

Thus, the groupings become the labels. Of course, one can override these default value labels.

String fields and substrings
Let’s assume we wish to make a string field for each microscopy result, which can take on the
three values “N” (for negative), “P” (for any positive), and “9” (for not available). We thus
write:
cls
close
read "abcd.rec"

 gen s(1) result1="P"
if res1=0 then result1="N"
if res1=9 then result1="9"
cls
 gen s(1) result2="P"
if res2=0 then result2="N"
if res2=9 then result2="9"
cls
 gen s(1) result3="P"
if res3=0 then result3="N"
if res3=9 then result3="9"

course_b_ex02_task
Page 6 of 16

We then wish to combine the three results into one single string to obtain the pattern:
cls
gen s(3) pattern=result1+result2+result3
label pattern "Pattern of 3 serial smears"
freq pattern

and get:

Finally, we can extract a subset of a string field:
cls
gen s(1) firstres=substr(pattern,1,1)
label firstres "Result of 1st smear"
freq firstres /c /ci

and get:

Admittedly, not the most efficient approach to something that could have been obtained
directly from the original field res1, but the point here is to show the way how to extract a
substring from a text field:

SUBSTR (fieldname, start position, number of characters including start position)

Thus:
cls
gen s(2) res12=substr(pattern,1,2)
gen s(2) res23=substr(pattern,2,2)
freq res12 res23

gives:

Date fields
We know that date fields are a hassle because they don’t fit our decimal system and people
use different ways to write dates. To further complicate matters, EpiData Analysis deals

course_b_ex02_task
Page 7 of 16

somewhat differently with date definitions than we learned in the CHK file. There are
different ways of doing it, but it might be best to learn one and learn to master it. Let’s
assume, we wish to calculate the number of years elapsed since the registration of the
examinee in our data set and 1 January 2013. The syntax to accomplish this is:
cls
close
read "abcd.rec"
gen f intyrs=(dmy(01,01,2013)-regdate)/365.25

We thus tell EpiData Analysis 1) that it is a date and 2) the format of our date with dmy
followed by the values for the three date components in parenthesis, separated by commas.

Results variables
If we execute certain commands, EpiData Analysis will produce variables in memory that
keep temporarily certain values which we can visualize with the command result. For
example:
cls
close
read "abcd.rec"

means age if (age<>99) and (sex=1)
result

produces:

Our interest here is in the Temporary Variables Value. We can use them and save
the values of any of them into another variable. For instance:
means age if (age<>99) and (sex=1)
result
gen meanfem=$mean1

means age if (age<>99) and (sex=2)
result
gen meanmal=$mean1

course_b_ex02_task
Page 8 of 16

We don’t even need to write the line “result” if we know how EpiData Analysis defines
the variable we require.

Visualizing with BROWSE:

It is not of particular value here (every record has the same values), but this is a potentially
very powerful tool to further process data.

Writing output into a file

You learned perhaps a bit mechanically to start every program with a command “logclose”
to close any log file that might be open, but you haven’t quite tested the opposite, the opening
of a log file. You can write any output into three types of files, text, HTML, or Excel. We
strongly discourage Excel, because for proprietary reasons EpiData is forced to use an
outdated format. If you need your output in a spreadsheet program, it is way preferable to
save the output into a text file and then open the text file in your spreadsheet application
software.
The commands are straight forward:
logopen “my_output.txt” /replace
* Some EpiData Analysis commands
logclose

Specifically, if we write:
cls
close
read "abcd.rec"

logopen "output_01.txt" /replace
tables sex reason
logclose

If we look at the output_01.txt file in our text editor, we see:
Logopen output_01.txt
 EpiData Analysis V2.2.2.180 27-Apr-13 17:45
. tables sex reason
Examination reason Female Male Total
Diagnosis 52 82 134
Follow-up at 2 months 18 22 40
Follow-up at 3 months 4 8 12
Follow-up at 4 months 0 3 3
Follow-up at 5 months 13 22 35
Follow-up at 6 months 11 20 31
Follow-up at 7 months or later 3 13 16
Follow-up, month not stated 8 19 27
Reason not stated 0 2 2
Total 109 191 300

course_b_ex02_task
Page 9 of 16

. logclose
Apart from the “ragged” appearance, there is also too much superfluous output there, if we
only want the table. We can greatly improve it by setting the echo first off before opening the
log file and then setting it on again after it has been closed:
set echo=off
logopen "output_01.txt" /replace
tables sex reason
logclose
set echo=on

This way, we get it trimmed down:
Examination reason Female Male Total
Diagnosis 52 82 134
Follow-up at 2 months 18 22 40
Follow-up at 3 months 4 8 12
Follow-up at 4 months 0 3 3
Follow-up at 5 months 13 22 35
Follow-up at 6 months 11 20 31
Follow-up at 7 months or later 3 13 16
Follow-up, month not stated 8 19 27
Reason not stated 0 2 2
Total 109 191 300

If we go now to our spreadsheet program and open it as a delimited text file:

it will come out nicely as intended:

course_b_ex02_task
Page 10 of 16

More about tables
Let’s first copy our case definition from above:
cls
close
read "abcd.rec"

define case #
case=0
if res1>0 and res1<9 then case=1
if res2>0 and res2<9 then case=1
if res3>0 and res3<9 then case=1
label case "Microscopy case definition"
labelvalue case /0="Non-case"
labelvalue case /1="Case"

and then make another categorical variable from the categorical variable reason to get only
three levels and verify that we got what we intended to get, making a cross-table between the
old variable (reason) and the new one (reason2) derived from it:
cls
gen i reason2=2
if reason=0 then reason2=1
if reason=9 then reason2=9
label reason2 "Reason for examination"
labelvalue reason2 /1="Diagnosis"
labelvalue reason2 /2="Follow-up"
labelvalue reason2 /9="Reason unknown"
tables reason2 reason

Previously when we made a table also showing the values with:
tables case sex /vl

we got:

If we look at the sorting sequence, we see that the sequence is ascending by value (not
ascending by label alphabet, see labels for case definition). We can invert the sequence with:
tables case sex /vl /sd

course_b_ex02_task
Page 11 of 16

There are multiple sorting options but one should take note that some more complex sorting
options do not deliver what we expect, thus always check carefully. For simple sorting like
ascending on values (/sa) or descending on values (/sd) as we just did, we usually get what
we want.
Important to note is what happens if we like to get an odds ratio, compare the two outputs:
cls
tables case sex
tables case sex /o

“Plain” “Epidemiologic”

This is a reflection of the fact that EpiData Analysis is truly an epidemiologist’s tool: most
commonly in outbreak investigations or case-control studies we show the cases to the left and
the non-cases to the right of the column, and show the exposure on top and the non-exposure
at the bottom of the row.
If we now want to switch these, then we have to check carefully whether we get what we want,
but one or the other options will give us what we need. Let’s try then with our logic from
above telling us that we should probably sort in ascending order:
tables case sex /o /sa

Indeed, it did invert it. If we wish to invert only one of the two, say keep the “epidemiologic”
presentation for cases and non-cases, but change it for sex, then we might need to do some
recoding:
cls
gen i sexinvert=1
if sex=1 then sexinvert=2
label sexinvert "Sex of person"
labelvalue sexinvert /1="Male"
labelvalue sexinvert /2="Female"
tables case sexinvert /o

and we get:

course_b_ex02_task
Page 12 of 16

Again, be sure to always check that what you get is what you need and learn creatively to
approach things as you need them to be.

Stratification
So far, we have dealt with two-by-two tables, but one of the common requirements is a
stratified analysis. EpiData Analysis makes it easy for us in that we just list the variables in a
tables command, though we must pay attention to the sequence of the variables. If we
need to look at cases versus non-cases by sex, stratified by the (summary) reason, we write:
tables case sex reason2 if reason2<>9

and get:

The first table is the crude, unstratified table, the following table(s) are the results of case by
sex in the different strata. Of course, the interest here is commonly a summary odds ratio
calculated by the Mantel-Haenszel procedure:
tables case sex reason2 /o if reason2<>9

We get more output here: first the “epidemiologic” table with crude odds ratios and 95%
confidence intervals followed by these measures of association in the strata:

course_b_ex02_task
Page 13 of 16

After these tables, we get the summary of the adjusted analysis:

Note also the all-important information at the bottom to help us ensuring that we got what we
wanted:

More about graphs
In the previous exercise, we did:
select age<>99
boxplot age /by=sex

and got this graph:

To explore the options a bit more without first taking recourse to the Help file, we will
approach it by using the menu interactively:

We will use Execute (not Run) to progressively edit the graph to our liking, completing the
first tab “Variables”:

course_b_ex02_task
Page 14 of 16

Then we refine the tab “Graph/Axis”:

then “Titles”:

and finally “Misc”:

course_b_ex02_task
Page 15 of 16

The most important part comes now in that we go to the command line (F4) and use the up
cursor to get the entire list of commands, mark it, and paste it into our PGM file, making back
slashes where appropriate and then have:
cls
BOXPLOT age /By=sex \
 /SizeX=600 /SizeY=400 \
 /Noxtick \
 /Ymin=0 /Ymax=90 /Yinc=10 \
 /Ti="Tuberculosis Microscopy Register" \
 /Sub="Age of examinees in years by sex" \
 /Fn="Graph for exercise 2, Part B" \
 /Save="b_ex02"

We do some additional editing, like allowing replacement of the graph (which is necessary if
we name the output), and look some additional things up in the Help file, and finally have it
refined to:

Note the difference in quality if we replace:
 /Save="b_ex02" /replace \

with:
 /Save="b_ex02.wmf" /replace \

We note:

Tuberculosis Microscopy Register
Age of examinees in years by sex

Graph for exercise 2, Part B

Examinee's sex
Female Male

90
80
70
60
50
40
30
20
10
0

course_b_ex02_task
Page 16 of 16

o If we save the graph as *.wmf (Microscoft metafile, a vector graph), it does not show
up in the Results window

o Vector graphs are crisp and sharp and retain this irrespective of changing the graph
size

o The result is not a faithful reproduction of the default *.png graph.

Sometimes the title gets too large in the metafile. This can be remediated by adding the SET
to change the default font size from 10 to 9:
set graph font size=9

Task:

o Write a program B_EX02.PGM using the data set “abcd.rec”. Limit your analysis
to patients with a diagnostic sputum smear examination. Create an output that shows
the incremental yield of cases from the first, second and third of three serial smears.
With incremental yield we mean determining the proportion of examinees who are
positive already on the first, patients who are negative on the first, but positive on the
second, and examinees who are negative on the first two but positive on the third serial
smear examination. The denominator should be those who have had the required
number of smears to determine the yield.

Tuberculosis Microscopy Register
Age of examinees in years by sex

Graph for exercise 2, Part B

Examinee's sex
Female Male

90
80
70
60
50
40
30
20
10
0

Task:

o Write a program B_EX02.PGM using the data set “abcd.rec”. Limit your analysis
to patients with a diagnostic sputum smear examination. Create an output that shows
the incremental yield of cases from the first, second and third of three serial smears.
With incremental yield we mean determining the proportion of examinees who are
positive already on the first, patients who are negative on the first, but positive on the
second, and examinees who are negative on the first two but positive on the third serial
smear examination. The denominator should be those who have had the required
number of smears to determine the yield.

Solution:
The desired output is:

Solution to Exercise 2: More on EpiData Analysis

Key point(s):
a) EpiData Analysis is a powerful tool to manipulate and restructure data sets
b) Tabular outputs can be customized to specific needs
c) To evaluate graph options, one may best use first the visual menu-driven

interface and then copy and paste the resulting options into a program for
permanent reproduction.

course_b_ex02_solution
Page 1 of 2

The part of the program B_EX02.PGM which gave this output:
* Task Exercise 2, Part B

cls
close
read "abcd.rec"

define case #
case=0
if res1>0 and res1<9 then case=1
if res2>0 and res2<9 then case=1
if res3>0 and res3<9 then case=1
label case "Microscopy case definition"
labelvalue case /0="Non-case"
labelvalue case /1="Case"

cls
gen s(3) esspattern="NNN"
if res3=9 then esspattern="NN9"
if res2=9 then esspattern="N99"
if res3>0 and res3<9 then esspattern="NNP"
if res2>0 and res2<9 then esspattern="NPx"
if res1>0 and res1<9 then esspattern="Px"
label esspattern "Six essential patterns"

set echo=off
select reason=0
cls
type "Yield of first smear: Px [exclude none]" /h2
freq esspattern /c /ci
type "Yield of second smear: NPx [exclude: N99]" /h2
freq esspattern /c /ci if esspattern<>"N99"
type "Yield of third smear: NNP [exclude: N99, NN9]" /h2
freq esspattern /c /ci if esspattern<>"NN9" and esspattern<>"N99"
select
set echo=on

course_b_ex02_solution
Page 2 of 2

course_b_ex03_task
Page 1 of 4

We are quite familiar with:
cls
close
logclose

read "abcd.rec"

freq sex

getting as result:

If we replace “freq” with “agg” (short for aggregate):
agg sex

we get essentially the same information (without the marginal, i.e. here the total):

Making a frequency of a variable is nothing other than aggregating the values of that variable
to the smallest common denominator and the same thing is done with aggregate. We can
do it analogously for a table:
tables sex labcode

This gives (discounting the marginal) 8 inner cells for the 2 by 4 possibilities:

If we replace tables by aggregate:
agg sex labcode

we get the 8 inner cells listed in a column sorted by sex then by labcode:

Exercise 3: Aggregating data and saving the summary data in a file

At the end of this exercise you should be able to:
a. Understand “Aggregate” data and apply it to a specific task

course_b_ex03_task
Page 2 of 4

As an option we can close the file that was open (the abcd.rec):
agg sex labcode /close

and we can see what remains in the Variables window:

We can browse it as it has been written to an EpiData REC file, aggregated into 8 records:

As an additional option we can save this aggregation to a REC file (note that the option is
“/save”, not “/savedata”:
agg sex labcode /close /save="labsex_set.rec" /replace

then close everything and re-open either file.

The first property of the aggregate command is thus that it can replace the summary of a
tables command and save the cells of the table (made from 1, 2, or more variables) in a
REC file.

The second property of the aggregate command is related to the power it provides with
options. For example:
cls
close
logclose
read "abcd.rec"
agg sex /mean=age if age<>99

gives:

course_b_ex03_task
Page 3 of 4

We have now the mean age by sex, but we could also get the mean age by sex and
laboratory:
agg sex labcode /mean=age if age<>99

and as above, all can be written into a REC file:
agg sex labcode /mean=age /close /save="labsex_set_2.rec" /replace \
 if age<>99
cls
close
read "labsex_set_2.rec"

The automatically created variable N denotes the number of records in the original file, Nage
the number of records in the original file with non-missing information on age, and MEAage,
the mean age in the aggregated stratum.

There are more options of this kind, like:
/min
/max
/stat
/sum

You can also cumulate different options, and you can use the same option for different
variables, e.g. “/sum=var1 /sum=var2 /min=var3”.

It is the option /sum we are particularly interested here to apply. We can sum up all the
values of a given variable across all records aggregated within a stratum. For instance, in the
following task you will need to count the number of smears each examinee had, and then you
can sum up all the smears within each stratum resulting from your aggregation.

Workload in the laboratory

course_b_ex03_task
Page 4 of 4

One measure of the workload in laboratories is the number of smears they have to examine
per day. Even the busiest laboratories do not work every day, they may close on weekends
and public holidays. One may get some approximate estimate of the number of working days,
but a much cleaner way is to count the actual working days. The tuberculosis laboratory
register gives a possible good approximation with the date of registration. While smears are
also examined on other than the registration date (the first specimen defines that date, and a
patient gives the first specimen on the spot but brings in an early morning specimen one day
later), this is a reasonably good approximation to the number of days work was actually
carried out, certainly better than some other approximation without a good data basis.
We provide a data set “b_ex03_workload.rec” from three laboratories in Zimbabwe
(data courtesy Dr Biggie Mabaera), each complete but also limited to during one calendar
year.

Task:
o The B_EX03_WORKLOAD.REC has been edited to contain only three laboratories

(out of the original 30) and only the year 2002. Nonsensical results (e.g., first
examination not recorded, followed by a valid result) have been excluded. Create a
program B_EX03.PGM to provide the mean number of smears examined per
registration day in each of the three laboratories.

Task:
o The B_EX03_WORKLOAD.REC has been edited to contain only three laboratories

(out of the original 30) and only the year 2002. Nonsensical results (e.g., first
examination not recorded, followed by a valid result) have been excluded. Create a
program B_EX03.PGM to provide the mean number of smears examined per
registration day in each of the three laboratories.

The result:

The program B_EX03.PGM is very simple in the end (but admittedly it took us a while to get
to this level of efficiency):
cls
close
logclose

read "b_ex03_workload.rec"

* Determine the number of smears for each examinee
gen i smears=1
if result2<>9 then smears=2
if result3<>9 then smears=3

* Sum up the number of smears done on each
* working day in each laboratory
aggregate regdate laboratory /sum=smears /close

* Calculate the average number of smears done
* each working day in each laboratory
cls
means sumsmears /by=laboratory

Solution to Exercise 3: Aggregating data and saving the summary data

Key point(s);
a) Aggregate is a powerful tool to summarize the analogue to a tabular output

in a REC file and to make calculations on the vertical for each stratum thus
obtained.

course_b_ex03_solution
Page 1 of 1

course_b_ex04_task
Page 1 of 13

Quite often data are captured in a spreadsheet. When trying to then analyze these data, the
substantial limitations to the use of spreadsheet software in this respect become recognized.
We are then compelled to import the spreadsheet data into a data file format more amenable
to analysis. An EpiData file is an appealing solution as the software also disposes of powerful
restructuring tools permitting reshaping the data into a format that is convenient for analysis
using EpiData Analysis.
There are two approaches which are the same in principle: 1) copying the spreadsheet content
to the clipboard, or 2) exporting the spreadsheet content to a delimited text file. EpiData
Analysis is given a respective command to either read the clipboard content or the text file.
We will demonstrate both approaches with two simple examples and then provide for the task
a real dataset of somewhat more complexity.

Formatting the spreadsheet correctly
In the required files, you find the workbook “b_ex04_spreadsheet_data_1_original.xlsx” with
8 records (data rows) and 6 variables (column headings):

The workbook has this single sheet labeled “original”. Under no circumstance do we wish to
make any alteration whatsoever to the original. We therefore make as the first thing a copy of
this content into a new sheet in the same workbook. We create a new sheet and label it
“epidata”. We don’t want to copy and paste but we rather resolve the copying by using a
formula.
In the new sheet “epidata” in cell A1 we type the “=” sign (no quotes) and then place the
cursor into cell A1 in the “original” sheet and press the Enter key. This gets us back to cell
A1 in the “epidata” sheet in which we now find written:

Exercise 4: From a spreadsheet to an EpiData file

At the end of this exercise you should be able to:
a. Master the import of spreadsheet content into an EpiData file
b. Recode the imported content to an analyzable file

course_b_ex04_task
Page 2 of 13

Copy cell A1 in “epidata” to the first two rows, columns A to F and get:

There are 3 rules that must be followed else the transfer of data from spreadsheet to EpiData
will either not function or it will contain errors:
1) The variable names must be valid EpiData names i.e. a) single word, b) length not
exceeding 10 characters, c) not beginning with a number.
2) The first row of data cannot contain any empty cell.
3) The data for a given variable must all be of the same type.
We thus overwrite the first row containing the variable names with valid EpiData names.
Doing this, we remember that EpiData is not case sensitive, but many other analysis software
is (like Stata or R). Despite EpiData not being case sensitive for variable names, we will
make it always strictly unambiguous with a simple rule: we recommend and use only lower-
case letters for variable names. Thus, we might write:

While a length of up to 10 characters is allowed for EpiData variable names, we prefer to
have the names even shorter: our longest names here have 7 characters. We will later make
explicit variable labels so that it is unambiguously clear what the variable names refer to.
Next we modify the formula for the cells A1 to F1 in a way to take care of two things at the
same time, i.e. providing a value for a given cell in case it is empty and defining the type of
variable the column contains. We assume that column A with the identifier always contains a
value (else we will discard records without identifier later in EpiData Analysis). Thus, cell
A1 is left untouched. Column B is a string (text) field and it has length 1. Accordingly, we
modify the current formula from:

to:

If you are not familiar with the “IF” statements in spreadsheet syntax, you may consult the
help file. Basically it is:
IF(logical test, if true write this, else write that)

course_b_ex04_task
Page 3 of 13

We thus evaluate with the logical test whether the content of the cell in the sheet “original” is
not empty (denoted as opening and closing double-quote “”), and if it is not empty, then we
take that value, else an x is written (denoted as a string by surrounding it with double-quotes
“x”).

We copy the thus revised formula of cell B2 to cell C2. “x” is obviously erroneous, because
this is a date field, not a string field. It probably depends on the language of your spreadsheet
software how a date is written, thus check first in the help file. In our English version it
becomes:

We need to choose a legal date, but one that obviously cannot be a genuine date of birth in our
data set. We chose the earliest possible date in the spreadsheet after the anchor date (which is
31 Dec 1899, in EpiData it is 31 Dec 1799), thus the choice of 1 Jan 1900: it’s legal, it is
written as an actual date, and it is obviously not a genuine date of birth in the context of the
data set.
Cell D2 is a string analogous to cell B2 which we thus copy to here, but make perhaps 3 x’s
as it is a longer field than just length 1:

Cell E2 is actually the same as D2, so we copy cell D2 to cell E2. We introduce something
more here. While it is actually not relevant for this specific case here, it can become relevant
with text fields like comments: in EpiData a text field cannot exceed a length of 80 characters,
else an error occurs when attempting to read a field with a larger length. To prevent that the
value in such a string field exceeds the permissible length, we tell the spreadsheet that it
should cut off anything beyond a certain length. We choose here (arbitrarily) that critical
length to be 50 characters after which the rest is cut off and write:

The function in the spreadsheet software is “MID” and it requires three arguments, 1) the cell
name, 2) the starting character position (1), and 3) the ending character position (50).

The final variable sqmeter (first data cell F2) is an integer field of a length 3, thus the
formula becomes a copy of D2, yet the value for missing doesn’t have quotes and must be a
number (because the variable is an integer field):

As the first two rows are now complete, row 2 can be copied up to and including row 9 and
we get:

course_b_ex04_task
Page 4 of 13

If we mark the data rectangle A1:F9, copy it to clipboard and then paste it into our text editor,
we get:

This suggests that the clipboard memory content has a Tab-delimited format. You can test this
assumption by placing your cursor after the “A” and then move the cursor: it jumps to before
“m”. In Notepad++ text editor (available on the course web) you can choose View=>Show
symbol=>Show white space and TAB and you actually see spaces as points and TABs as →
arrows:

EpiData will correctly interpret the difference between a TAB delimiter and one or more
space characters.

Reading data from clipboard into EpiData Analysis and save it as an EpiData file
In EpiData Analysis we prepare the basics to read data from clipboard and save them to an
EpiData *.REC file:
cls
close
logclose

course_b_ex04_task
Page 5 of 13

read /cb
savedata "spreadsheet_data_1.rec" /replace

The command is remarkably simple: read with the option /cb (for clipboard). It makes of
course sense to save it right away from memory to a data file with an intermediary name of
your choice. Also, save the program as “b_ex04_task.pgm”.

Switch to the sheet “epidata” and copy the rectangular data A1:F9 to the clipboard, then
switch back to EpiData analysis and run all with F9. The output should then read:

If we browse, we get:

From the Variables window (press F3, if not shown spontaneously), we check whether all the
variables are of the type that we wanted them to be, most notably that dates are date variables
and numbers are integer or float variables:

This is the case here, but this should not just be assumed: we may encounter that a date field
has become a text field because the spreadsheet column hadn’t been formatted correctly or
that one single date among all had a wrong format. It is crucial to ensure that all is in order in
respect to the type of variable.

course_b_ex04_task
Page 6 of 13

It is immediately apparent in the small dataset here that all records have an identifier.
However, we better check it formally as we cannot use records that cannot be checked against
the original. We make a binary variable:
cls
close
read "spreadsheet_data_1.rec"

cls
gen i hasid=1
if id=. then hasid=0
freq hasid /m

and get:

We are thus satisfied that all records have an identifier. That none is a duplicate will be done
later again in another form, but this is how we would do that:
cls
sort id
gen i seq=1
if id=id[_n-1] then seq=seq[_n-1]+1
freq seq

and we get:

No identifier occurs more than once and every record has an identifier. What we did here was
to sort the records by ID to ensure that any identical identifiers would be next to each other.
Then we make a variable SEQ and give it in every record the default value 1. A powerful
capability of EpiData Analysis is to look at records before or after the current position of the
process. EpiData Analysis proceeds record by record through a data file, from top to bottom.
The current record has the position [_n]. There is no need to give the designation for the
current record, but in fact id and id[_n] are both valid designations for the identifier in the
current position. id[_n-1] designates the identifier of the record immediately preceding
that of the current record, while id[_n+5] would be the identifier of the fifth record forward
from the current one. Our commands above thus say “if the record before the current one has
the same identifier as the current one, then add 1 to the value of seq in the current record to
the value that seq has in the record before the current record”. As a result, all seq values
must be 1 if there are no multiples of the identifier. We will make extensive use of this
positioning when we deal with the analysis of a relational database. For the time being we

course_b_ex04_task
Page 7 of 13

can asterisk the frequencies and drop the two variables we just created, and give a label to the
variable ID:
cls
close
read "spreadsheet_data_1.rec"

cls
gen i hasid=1
if id=. then hasid=0
* freq hasid /m

cls
sort id
gen i seq=1
if id=id[_n-1] then seq=seq[_n-1]+1
* freq seq

drop hasid seq

label id "Unique identifier"

It is still common practice to use string (text) fields for the values of categorical variables like
sex or housing arrangement, etc, as was also done here in the spreadsheet. For instance, a
frequency of the variable SEX gives here:

The value “x” was our doing to denote the value in records with no information on the
variable SEX. In this spreadsheet, there was no control over the way how the value should be
written and we have thus 4 instead of the 2 known sexes. Of course, in EpiData it is easy to
exert control to avoid such errors (it’s also possible in a spreadsheet). In any case, there are
issues with using text values for categorical variables. There are good reasons why it is
nowadays standard to use systematically numeric coding for all variables unless there is a
compelling reason to use a string (such as always for identifiers as nobody uses them to count
something). The main reason for numeric coding is efficiency. Evaluation of text fields in
analysis is “expensive” as text must be evaluated, then converted into numbers internally:
computers don’t add up letters, they add up numbers. Text values take processing time in
excess of what is required if all calculation can be done directly with numbers. Numeric
coding is also efficient for file size and thus another factor for processing speed: to be
unambiguous and clear, the required length of a field containing a text value for a categorical
field is often more than 1, while with numeric coding it can commonly be just 1 (allowing up
to 10 strata).
In the following, we will convert all categorical text fields to fields with numeric coding with
unambiguous metadata for the labels.

course_b_ex04_task
Page 8 of 13

Starting with the variable SEX, we can use the EpiData function to convert all text values (m
and M, and f and F) to lower case to get more swiftly from the current 5 to the desired 3
required values:
cls
freq sex
define sexn #
sexn=9
if lower(sex)="f" then sexn=1
if lower(sex)="m" then sexn=2
tables sexn sex

The function is LOWER(variablename). To do this systematically, we start with a
frequency of the current variable, and end with a cross-tabulation of the new against the old
variable to check that all assignments are correct. We could then drop the two respective
commands, but we prefer to leave them with a preceding asterisk denoting it as a comment.
This is a comment in the script to assure ourselves that we had checked. Then we drop the
old variable and label the new one properly, followed by a final frequency of the new variable
to assure ourselves that all is in order:
cls
* freq sex
define sexn #
sexn=9
if lower(sex)="f" then sexn=1
if lower(sex)="m" then sexn=2
* tables sexn sex
drop sex
rename sexn to sex
label sex "Patient's sex"
labelvalue sex /1="Female"
labelvalue sex /2="Male"
labelvalue sex /9="Not recorded"
* freq sex

The output is now neat and clean without ambiguity:

The variable DOB only needs a proper variable label:
label dob "Date of birth"

The variable LIVING has obviously been made free text with the resulting short-comings:

course_b_ex04_task
Page 9 of 13

We have 7 values in 8 records. Such coding could be very tedious and is obviously pretty
useless for analysis as such. There is no other way than actually going through the actual
original values one by one and trying to put them into reasonable categories. We could be
forgetting one or the other value as it is so tedious. To have an alert for omissions, we make a
default value (choosing here “8”) that should not remain if all re-assignments are proper. We
also make use of the function SUBSTR(variablename, beginning position,
ending position) to avoid copying all of it. The latter is unfortunately often required,
but not in the relatively simple case here:
cls
* freq living
define livingn #
livingn=8
if living="xxx" then livingn=9
if substr(living,1,4) ="apar" then livingn=1
if substr(living,1,4) ="appa" then livingn=1
if substr(living,12,4)="apar" then livingn=1
if substr(living,1,4) ="hous" then livingn=2
if substr(living,5,4) ="hous" then livingn=2
if substr(living,13,4)="pare" then livingn=3
if substr(living,8,4) ="alon" then livingn=4
* tables livingn living
drop living
rename livingn to living
label living "Housing arrangements"
labelvalue living /1="Apartment"
labelvalue living /2="House"
labelvalue living /3="Parents"
labelvalue living /4="Other"
labelvalue living /9="Not recorded"

The recoded field has somewhat more appeal than the original:

course_b_ex04_task
Page 10 of 13

We finalize recoding with the field MARITAL analogously and provide the field SQMETER
with just a variable label so that in the end we have a neatly recoded dataset:

Exporting the spreadsheet to a delimited text file and importing that file into EpiData
We mentioned above that copying the data in the spreadsheet to clipboard and exporting the
data to a delimited text file is essentially the same approach. We showed that the copying to
the clipboard is copying a tab-delimited file to the clipboard that EpiData Analysis
understands to be of this format with the option /cb. EpiData Analysis also allows importing
text files that are physically on disk and have a name and an extension that identifies them as
a text file. Text files have the extension *.txt, but this extension does not define the nature
of the delimiter, i.e. the separator between the values for separate variables. In EpiData Entry
3.1 we can import files with the extension *.txt and tell the software which delimiter the
file actually has (i.e. Tab, comma, semi-colon). The issue is of importance because the choice
of the delimiter must always be something that is not used in the data: for instance, a tab will
not be used between words of the value in a text field, as we use a space character to separate
words. In the US and many other countries, the decimal separator is the full stop. In many
other countries, the decimal separator is a comma. In our Windows® software we make in
our set-up the definitions and our spreadsheet software will then adhere to these rules. Not
everybody actually makes the effort to properly set up the display rules for the display of
numbers. As a result, we must be very careful to check whether what we demand is then
actually what we get.
A point in case is the most commonly used delimited text file format, the comma-separated
values, with the extension *.csv. Fortunately, it seems, the issue is solved correctly by
spreadsheet software such as Excel® or LibreOffice Calc:

- If the Windows set-up is to use a full stop as the decimal separator, then the delimiter
between variables will be a comma when exporting to *.csv.

- If the Windows set-up is to use a comma as the decimal separator, then the delimiter
between variables will be a semicolon when exporting to *.csv.

EpiData Analysis will be able to correctly identify the delimiter either way (but always
check!). We will thus export to *.csv. Once you have exported, examine it in the text
editor.

course_b_ex04_task
Page 11 of 13

When using a full stop as decimal separator, we get:

When using a comma as decimal separator, we get:

We note that this works correctly even if – like in our case – there is not even a real number
(float variable) in the data set. Important is here to note again that the two approaches are the
same, except that one is tab-limited, the other comma (or semicolon) delimited. Neither will
work if the content is not properly formatted!

More complexity: two specimens with a discordant result taken at the same time
In the workbook “b_ex04_2_original.xlsx” we have a bit added complexity. The unit of
observation here is not one patient but one specimen. Specimens are taken at different visits
of individual patients. Furthermore, it is possible that more than one specimen is taken at one
given visit. We added the case where two different specimens yield a different result at one
given visit. What we wish to do is to 1) import the data from the spreadsheet and then 2)
manipulate the EpiData file so that each observation time per patient has a single
hierarchically dominant result and that the way to go about it would not be limited to just two
specimens as in our example.
We proceed as before by creating a second sheet “epidata” in the workbook that contains the
EpiData-compatible reformatted data from the “original” sheet. It is easiest to open the
“b_ex04_1.pgm” program in EpiData Analysis and save it right away as “b_ex04_2.pgm”.
The rectangular file is then copied to clipboard and read and saved in EpiData Analysis as
before. All the variable manipulations that exist are retained with perhaps minor
modifications, and the additional ones are added.
Special consideration is given to the recoding of the specimen result. We have more that one
specimen in a given month per patient and they may be discordant such as in:
PATID MM SPECSEQ RESULT
A 1 1 negative
A 1 2 positive
A 1 3 no result

course_b_ex04_task
Page 12 of 13

What we want to have is a single RESULT per patient-month. We also want this to be
hierarchical, i.e. that any result overrides no result, and a positive result overrides a negative
result, and that at the end of our procedure the hierarchically highest result is written into the
first of the sequences, i.e. that the above becomes:
PATID MM SPECSEQ RESULTN
A 1 1 positive
A 1 2 positive
A 1 3 no result

Then we can retain only the first record in the sequence, i.e. SPECSEQ=1 to have only one
result per patient-month. There are of course different approaches to solving this, but we
propose hierarchical numeric recoding, i.e.:
Result Value
No result 0
Negative 1
Positive 2

We make first a variable that combines patient identifier and month to a new identifier (e.g.
PATMMID):
gen s(3) patmmid=patid+“-”+mm
label patmmid "Patient-month identifier"

We then sort by this new identifier and within it by month, and number the sequence similar
as we did before, i.e.:
sort patmmid mm
gen i seq=1
if patmmid[_n-1]=patmmid then seq=seq[_n-1]+1

Thus, we should get something of the type:
PATMMID SEQ MM SPECID RESULT
A-1 1 1 X123 negative
A-1 2 1 Y321 positive
A-1 3 1 A412 no result
A-2 1 2 B123 negative
B-0 1 0 C123 positive

The sequence of the RESULT is irrelevant as the hierarchical coding suffices to get things
right in the next step. In this next step we reshuffle the hierarchically highest to the first in the
sequence:
define resultn #
resultn=result
if result[_n+1]>result then resultn=result[_n+1]
drop result
rename resultn to result
label result "DST result"
labelvalue result /0="No result"
labelvalue result /1="Susceptible"
labelvalue result /2="Resistant"

and we will get something of the type:

course_b_ex04_task
Page 13 of 13

PATMMID SEQ MM SPECID RESULT
A-1 1 1 X123 positive
A-1 2 1 Y321 positive
A-1 3 1 A412 no result
A-2 1 2 B123 negative
B-0 1 0 C123 positive

After this the specimen identifier is incorrectly paired with the result and can be dropped
together with the sequence counter and we have a data set in which PATMMID is a unique
identifier for patient-month (which we must check).

Tasks:
o The B_EX04_TASK.XLSX is a real data set from a study on laboratory drug

susceptibility test results from several countries / jurisdictions. Create a sheet satisfying
EpiData format requirements. Copy the rectangular selection to the clipboard and read
it into EpiData Analysis and save it to an EpiData *.REC file. Note that it might be tricky
to deal properly with some variables that may prevent correct reading of the rectangular
file!

o The data set has a patient identifier, IDCODE. This identifier is unique for the patient
in a given jurisdiction, but it is not unique for the data set. Specimens might be taken
at the start of treatment or at any month on treatment. One patient in the data set thus
may have several results. Make a variable IDCODE2 by adding the month to IDCODE.
This will make it unique for a given patient in a given month. Actually – not quite: there
may be more than one specimen in a given month, but only one result should count.
The IDCODE2 could also come from two different patients if they are from a different
jurisdiction. Make a third identifier so that you get in total three: 1) taking jurisdiction,
patient and month of treatment, 2) taking jurisdiction and patient and 3) taking patient
into account.

o Sort the data set so that all specimens for a given patient-month are next to each other,
then recode all variable pertaining to isoniazid in a hierarchical manner, so that it
becomes easy to assign the value that will be retained to the first specimen for that
patient-month. Hierarchy: high-level resistance>low-level resistance>susceptible>no
result. Then select to retain only the first specimen per patient-month.

o Recode the various variables for isoniazid drug susceptibility test results (phenotypic
and genotypic results). Recode to a single variable for the isoniazid result. Discuss the
hierarchy that you wish to assign to this end.

course_b_ex04_solution
Page 1 of 13

Task:
o The B_EX04_TASK.XLSX is a real data set from a study on laboratory drug

susceptibility test results from several countries / jurisdictions. Create a sheet satisfying
EpiData format requirements. Copy the rectangular selection to the clipboard and read
it into EpiData Analysis and save it to an EpiData *.REC file. Note that it might be tricky
to deal properly with some variables that may prevent correct reading of the rectangular
file!

Solution:
The tricky part was perhaps to deal with the original sheet variable IDCODE. If the values were
left unchanged, EpiData may misread it as a date variable with erroneous dates that did not exist
and in consequence the import failed. We solved it by unambiguously making it to a text field.
The value:
2014-01-006

was made to be:
x-2014-01-006

by the following code:
=IF(original!G2<>"",CONCATENATE("x-", original!G2),"xxx")

The preceding “x-” identified the value unambiguously to a string field for EpiData Analysis.
The extraneous “x-” was then easily stripped in EpiData Analysis with:
gen s(11) idcode0=substr(idcode2,3,11)

Task:
o The data set has a patient identifier, IDCODE. This identifier is unique for the patient

in a given jurisdiction, but it is not unique for the data set. Specimens might be taken
at the start of treatment or at any month on treatment. One patient in the data set thus
may have several results. Make a variable IDCODE2 by adding the month to IDCODE.
This will make it unique for a given patient in a given month. Actually – not quite: there
may be more than one specimen in a given month, but only one result should count.

Solution to Exercise 4: From a spreadsheet to an EpiData file

At the end of this exercise you should be able to:
a. Master the import of spreadsheet content into an EpiData file
b. Recode the imported content to an analyzable file

course_b_ex04_task
Page 2 of 13

The IDCODE2 could also come from two different patients if they are from a different
jurisdiction. Make a third identifier so that you get in total three: 1) taking jurisdiction,
patient and month of treatment, 2) taking jurisdiction and patient and 3) taking patient
into account.

Solution:
This is relatively simple to accomplish. We chose this approach:
cls
* freq country
define countryn #
if country="A" then countryn=1
if country="B" then countryn=2
if country="C" then countryn=3
if country="D" then countryn=4
if country="E" then countryn=5
if country="F" then countryn=6
if country="G" then countryn=7
if country="H" then countryn=8
drop country
rename countryn to country
label country "Name of country / jurisdiction"
labelvalue country /1="Jurisdiction A"
labelvalue country /2="Jurisdiction B"
labelvalue country /3="Jurisdiction C"
labelvalue country /4="Jurisdiction D"
labelvalue country /5="Jurisdiction E"
labelvalue country /6="Jurisdiction F"
labelvalue country /7="Jurisdiction G"
labelvalue country /8="Jurisdiction H"

cls
* Create derived identifiers
gen s(16) idcoden=country+substr(idcode,2,12)+"-"+mmtxt
drop idcode2 idcode
rename idcoden to idcode2
label idcode2 "Country-patient-month identifier"
cls
gen s(13) idcode=substr(idcode2,1,13)
label idcode "Country-patient identifier"
cls
gen s(11) idcode0=substr(idcode2,3,11)
label idcode0 "Patient identifier"

Task:
o Sort the data set so that all specimens for a given patient-month are next to each other,

then recode all variable pertaining to isoniazid in a hierarchical manner, so that it
becomes easy to assign the value that will be retained to the first specimen for that
patient-month. Hierarchy: high-level resistance>low-level resistance>susceptible>no
result. Then select to retain only the first specimen per patient-month.

course_b_ex04_task
Page 3 of 13

Solution:
First, we determined the frequency of the number of specimens per patient-month, using a
standard approach which you will be using very often as this question arises very frequently:
cls
* Identify multiple specimens per patient-month
sort idcode2 mm
gen i specseq=1
if idcode2=idcode2[_n-1] then specseq=specseq[_n-1]+1
* freq specseq
* =>
* N
* 1 582
* 2 26
* 3 5
* 4 4
* 5 2
* 6 2
* Total 621
* => Up to 6 specimens for 1 patient in 1 month

It is not necessary to know in this specific situation that at most 6 specimens are available per
patient months, but it will be of key importance to know it for the next step. We show this here
for isoniazid phenotypic result at 0.2 mg/L, i.e. the variable H02. Currently, these are the
original (spreadsheet-coded) results:
NT 490
R 126
S 5
Total 621

As we recommended a hierarchical numerical coding, we create a new numeric variable H02N
and then “reshuffle the values” hierarchically to the first record within IDCODE2:
cls
define h02n #
h02n=0
if h02="S" then h02n=1
if h02="R" then h02n=2
if idcode2[_n+1]=idcode2 and h02n[_n+1]>h02n then h02n=h02n[_n+1]
if idcode2[_n+2]=idcode2 and h02n[_n+2]>h02n then h02n=h02n[_n+2]
if idcode2[_n+3]=idcode2 and h02n[_n+3]>h02n then h02n=h02n[_n+3]
if idcode2[_n+4]=idcode2 and h02n[_n+4]>h02n then h02n=h02n[_n+4]
if idcode2[_n+5]=idcode2 and h02n[_n+5]>h02n then h02n=h02n[_n+5]
drop h02
rename h02n to h02
label h02 "INH result at 0.2 mg/L"

Before we drop h02 we browse to see all relevant variables, picking the case with 6 specimens
in a given patient-month:

course_b_ex04_task
Page 4 of 13

Note that the importance is that the first line of data (that is the record with SPECSEQ=1) must
be correct in that it takes the hierarchically highest among all results from the total of specimens
for the given patient-month. The highest value for H02 is R which translates numerically to 2
and this is correctly appearing in the first record of the sequence. It is thereby irrelevant that
the last value is 0 (it is logical that it retains the default because there is no other record
afterwards with the same IDCODE2) because after completing this approach for each variable
(on isoniazid, then other drugs), all that is retained are the records in which SPECSEQ=1:
select specseq=1

Task:
o Recode the various variables for isoniazid drug susceptibility test results (phenotypic

and genotypic results). Recode to a single variable for the isoniazid result. Discuss the
hierarchy that you wish to assign to this end.

Solution:
This might be a somewhat arbitrary classification and will surely required expert input. We
chose here the following hierarchy (this is specific for isoniazid, but must be defined for each
individual drug, and for other drugs this may differ):
Phenotypic result > genotypic result
In the absence of a phenotypic result, the genotypic result counts
If there are genotypically mutations in both the katG and inhA promoter gene, then the
resistance is high-level, whatever the result of phenotypic testing may be. Thus, we coded:
define inh #
inh=9
if inhlevel=0 then inh=inhmolsum
if inhlevel=1 then inh=1
if inhlevel=2 then inh=2
if inhlevel=3 then inh=2
if inhlevel=4 then inh=3
if inhmolsum=3 then inh=3
if inha=2 and katg=2 then inh=3 // already done, but make sure
label inh "Resistance to INH"

course_b_ex04_task
Page 5 of 13

labelvalue inh /0="No result"
labelvalue inh /1="Susceptible"
labelvalue inh /2="Low-level resistance"
labelvalue inh /3="High-level resistance"

course_b_ex04_task
Page 6 of 13

The entire b_ex04_solution.pgm reads as:
* Part B, Exercise 4
* Import spreadsheet data and create identifiers
* EpiData course
* Author: Hans L Rieder
* First version: 05 Feb 2018
* Current version: 02 Mar 2018

* 1) Read data from spreadsheet and save to EpiData file
cls
close
logclose

* read /cb
* savedata "b_ex04_task_in.rec" /replace

* 2) Read EpiData file, make basic checks and create new
* identifiers:
* idcode : idcode [original, derived]
* idcode0: country-idcode [original extended]
* idcode2: country-idcode-month [original extended]
cls
close
logclose

read "b_ex04_task_in.rec"

cls
* Manually inspect for typing errors and correct
if substr(idcode,1,4)="x- 2" then \
 idcode=substr(idcode,1,2)+substr(idcode,4,11)
if substr(idcode,7,1)<>"-" then \
 idcode=substr(idcode,1,6)+"-"+substr(idcode,7,6)

cls
* Exclude records without valid identifier
* <= they cannot be used
gen i hasid=1
if lower(substr(idcode, 1,3))="xxx" then hasid=0
if lower(substr(idcode,11,3))="xxx" then hasid=0
select hasid=1
drop hasid

cls
* freq mm /m
define mmn ##
mmn=99
mmn=integer(mm) if mm<>"Unknown"
drop mm
rename mmn to mm
label mm "Month of treatment"

course_b_ex04_task
Page 7 of 13

cls
* Create text month with leading zero
* to allow correct alphabetical sorting
gen s(2) mmtxt=mm
if mm<10 then mmtxt="0"+mm
select mm<>99

cls
* freq country
define countryn #
if country="A" then countryn=1
if country="B" then countryn=2
if country="C" then countryn=3
if country="D" then countryn=4
if country="E" then countryn=5
if country="F" then countryn=6
if country="G" then countryn=7
if country="H" then countryn=8
drop country
rename countryn to country
label country "Name of country / jurisdiction"
labelvalue country /1="Jurisdiction A"
labelvalue country /2="Jurisdiction B"
labelvalue country /3="Jurisdiction C"
labelvalue country /4="Jurisdiction D"
labelvalue country /5="Jurisdiction E"
labelvalue country /6="Jurisdiction F"
labelvalue country /7="Jurisdiction G"
labelvalue country /8="Jurisdiction H"

cls
* Create derived identifiers
gen s(16) idcoden=country+substr(idcode,2,12)+"-"+mmtxt
drop idcode2 idcode
rename idcoden to idcode2
label idcode2 "Country-patient-month identifier"
cls
gen s(13) idcode=substr(idcode2,1,13)
label idcode "Country-patient identifier"
cls
gen s(11) idcode0=substr(idcode2,3,11)
label idcode0 "Patient identifier"

label spnr "Specimen number"

cls
* Reduce dataset size for faster processing
keep idcode0 idcode idcode2 country mm spnr \
 h02 h10 h50 inhlevel katg inha inhmol inhmolsum

cls
* Identify multiple specimens per patient-month
sort idcode2 mm
gen i specseq=1
if idcode2=idcode2[_n-1] then specseq=specseq[_n-1]+1

course_b_ex04_task
Page 8 of 13

* freq specseq
* =>
* N
* 1 582
* 2 26
* 3 5
* 4 4
* 5 2
* 6 2
* Total 621
* => Up to 6 specimens for 1 patient in 1 month

savedata "temp_01.rec" /replace

* 3) Recode to priority on first of multiple specimens
* => Isoniazid

* Hierarchy (code numerically from 0 to highest):
* High level resistance > low level resistance
* Resistant > Susceptible
* Susceptible > No result

cls
close
logclose

read "temp_01.rec"

cls
define h02n #
h02n=0
if h02="S" then h02n=1
if h02="R" then h02n=2
if idcode2[_n+1]=idcode2 and h02n[_n+1]>h02n then h02n=h02n[_n+1]
if idcode2[_n+2]=idcode2 and h02n[_n+2]>h02n then h02n=h02n[_n+2]
if idcode2[_n+3]=idcode2 and h02n[_n+3]>h02n then h02n=h02n[_n+3]
if idcode2[_n+4]=idcode2 and h02n[_n+4]>h02n then h02n=h02n[_n+4]
if idcode2[_n+5]=idcode2 and h02n[_n+5]>h02n then h02n=h02n[_n+5]
drop h02
rename h02n to h02
label h02 "INH result at 0.2 mg/L"

cls
define h10n #
h10n=0
if h10="S" then h10n=1
if h10="R" then h10n=2
if idcode2[_n+1]=idcode2 and h10n[_n+1]>h10n then h10n=h10n[_n+1]
if idcode2[_n+2]=idcode2 and h10n[_n+2]>h10n then h10n=h10n[_n+2]
if idcode2[_n+3]=idcode2 and h10n[_n+3]>h10n then h10n=h10n[_n+3]
if idcode2[_n+4]=idcode2 and h10n[_n+4]>h10n then h10n=h10n[_n+4]
if idcode2[_n+5]=idcode2 and h10n[_n+5]>h10n then h10n=h10n[_n+5]
drop h10
rename h10n to h10

course_b_ex04_task
Page 9 of 13

label h10 "INH result at 1.0 mg/L"

cls
define h50n #
h50n=0
if h50="S" then h50n=1
if h50="R" then h50n=2
if idcode2[_n+1]=idcode2 and h50n[_n+1]>h50n then h50n=h50n[_n+1]
if idcode2[_n+2]=idcode2 and h50n[_n+2]>h50n then h50n=h50n[_n+2]
if idcode2[_n+3]=idcode2 and h50n[_n+3]>h50n then h50n=h50n[_n+3]
if idcode2[_n+4]=idcode2 and h50n[_n+4]>h50n then h50n=h50n[_n+4]
if idcode2[_n+5]=idcode2 and h50n[_n+5]>h50n then h50n=h50n[_n+5]
drop h50
rename h50n to h50
label h50 "INH result at 5.0 mg/L"

labelvalue h02-h50 /0="No result"
labelvalue h02-h50 /1="Susceptible"
labelvalue h02-h50 /2="Resistant"

cls
define inhleveln #
inhleveln=0
if inhlevel="-" then inhleveln=1 // Susceptible!
if inhlevel="S" then inhleveln=1 // Susceptible!
if inhlevel="H0,2" then inhleveln=2
if inhlevel="H1" then inhleveln=3
if inhlevel="H5" then inhleveln=4
if idcode2[_n+1]=idcode2 and inhleveln[_n+1]>inhleveln then
inhleveln=inhleveln[_n+1]
if idcode2[_n+2]=idcode2 and inhleveln[_n+2]>inhleveln then
inhleveln=inhleveln[_n+2]
if idcode2[_n+3]=idcode2 and inhleveln[_n+3]>inhleveln then
inhleveln=inhleveln[_n+3]
if idcode2[_n+4]=idcode2 and inhleveln[_n+4]>inhleveln then
inhleveln=inhleveln[_n+4]
if idcode2[_n+5]=idcode2 and inhleveln[_n+5]>inhleveln then
inhleveln=inhleveln[_n+5]
drop inhlevel
rename inhleveln to inhlevel
label inhlevel "INH result summary level"
labelvalue inhlevel /0="No result"
labelvalue inhlevel /1="Susceptible"
labelvalue inhlevel /2="Resistant at 0.2 mg/L"
labelvalue inhlevel /3="Resistant at 1.0 mg/L"
labelvalue inhlevel /4="Resistant at 5.0 mg/L"

cls
define katgn #
katgn=0
if katg="-" then katgn=1
if lower(substr(katg,1,4))="wild" then katgn=1
if lower(substr(katg,1,3))="del" then katgn=2
if (substr(katg,1,3)) ="315" then katgn=2
if lower(substr(katg,1,3))="mix" then katgn=2
if lower(substr(katg,1,3))="mut" then katgn=2

course_b_ex04_task
Page 10 of 13

if idcode2[_n+1]=idcode2 and katgn[_n+1]>katgn then katgn=katgn[_n+1]
if idcode2[_n+2]=idcode2 and katgn[_n+2]>katgn then katgn=katgn[_n+2]
if idcode2[_n+3]=idcode2 and katgn[_n+3]>katgn then katgn=katgn[_n+3]
if idcode2[_n+4]=idcode2 and katgn[_n+4]>katgn then katgn=katgn[_n+4]
if idcode2[_n+5]=idcode2 and katgn[_n+5]>katgn then katgn=katgn[_n+5]
drop katg
rename katgn to katg
label katg "INH katG result"
labelvalue katg /0="No result"
labelvalue katg /1="No mutation"
labelvalue katg /2="Mutation"

cls
define inhan #
inhan=0
if lower(substr(inha,11,4))="wild" then inhan=1
if lower(substr(inha,15,4))="wild" then inhan=1
if lower(substr(inha, 1,1))="c" then inhan=2
if lower(substr(inha, 1,1))="g" then inhan=2
if lower(substr(inha, 1,3))="del" then inhan=2
if lower(substr(inha, 1,3))="mut" then inhan=2
if lower(substr(inha,11,3))="mut" then inhan=2
if idcode2[_n+1]=idcode2 and inhan[_n+1]>inhan then inhan=inhan[_n+1]
if idcode2[_n+2]=idcode2 and inhan[_n+2]>inhan then inhan=inhan[_n+2]
if idcode2[_n+3]=idcode2 and inhan[_n+3]>inhan then inhan=inhan[_n+3]
if idcode2[_n+4]=idcode2 and inhan[_n+4]>inhan then inhan=inhan[_n+4]
if idcode2[_n+5]=idcode2 and inhan[_n+5]>inhan then inhan=inhan[_n+5]
drop inha
rename inhan to inha
label inha "INH inha result"
labelvalue inha /0="No result"
labelvalue inha /1="No mutation"
labelvalue inha /2="Mutation"

cls
define inhmoln #
inhmoln=0
if lower(substr(inhmol,1,1))="s" then inhmoln=1
if lower(substr(inhmol,1,1))="s?" then inhmoln=0
if lower(substr(inhmol,1,2))="rb" then inhmoln=2
if lower(substr(inhmol,1,2))="rh" then inhmoln=3
if idcode2[_n+1]=idcode2 and inhmoln[_n+1]>inhmoln then
inhmoln=inhmoln[_n+1]
if idcode2[_n+2]=idcode2 and inhmoln[_n+2]>inhmoln then
inhmoln=inhmoln[_n+2]
if idcode2[_n+3]=idcode2 and inhmoln[_n+3]>inhmoln then
inhmoln=inhmoln[_n+3]
if idcode2[_n+4]=idcode2 and inhmoln[_n+4]>inhmoln then
inhmoln=inhmoln[_n+4]
if idcode2[_n+5]=idcode2 and inhmoln[_n+5]>inhmoln then
inhmoln=inhmoln[_n+5]
drop inhmol
rename inhmoln to inhmol
label inhmol "INH inhmol result"
labelvalue inhmol /0="No result"
labelvalue inhmol /1="Susceptible"

course_b_ex04_task
Page 11 of 13

labelvalue inhmol /2="Low level resistance"
labelvalue inhmol /3="High level resistance"

cls
define inhmolsumn #
inhmolsumn=0
if lower(substr(inhmolsum,1,1))="-" then inhmolsumn=1
if lower(substr(inhmolsum,1,2))="hb" then inhmolsumn=2
if lower(substr(inhmolsum,1,2))="hh" then inhmolsumn=3
if idcode2[_n+1]=idcode2 and inhmolsumn[_n+1]>inhmolsumn then
inhmolsumn=inhmolsumn[_n+1]
if idcode2[_n+2]=idcode2 and inhmolsumn[_n+2]>inhmolsumn then
inhmolsumn=inhmolsumn[_n+2]
if idcode2[_n+3]=idcode2 and inhmolsumn[_n+3]>inhmolsumn then
inhmolsumn=inhmolsumn[_n+3]
if idcode2[_n+4]=idcode2 and inhmolsumn[_n+4]>inhmolsumn then
inhmolsumn=inhmolsumn[_n+4]
if idcode2[_n+5]=idcode2 and inhmolsumn[_n+5]>inhmolsumn then
inhmolsumn=inhmolsumn[_n+5]
drop inhmolsum
rename inhmolsumn to inhmolsum
label inhmolsum "INH inhmolsum result"
labelvalue inhmolsum /0="No result"
labelvalue inhmolsum /1="Susceptible"
labelvalue inhmolsum /2="Low level resistance"
labelvalue inhmolsum /3="High level resistance"

savedata "temp_02.rec" /replace

* 4) Recode to priority on first of multiple specimens
* => Next drug

cls
close
logclose
read "temp_02.rec"

* Do this for each drug
* At the end of the process, the hierarchically
* highest value will be in the sequentially
* first SPNR if there are multiple SPNRs
* => keeping only the first SPNR suffices:

select specseq=1

* Create a single result for isoniazid

define inh #
inh=9
if inhlevel=0 then inh=inhmolsum
if inhlevel=1 then inh=1
if inhlevel=2 then inh=2
if inhlevel=3 then inh=2
if inhlevel=4 then inh=3

course_b_ex04_task
Page 12 of 13

if inhmolsum=3 then inh=3
if inha=2 and katg=2 then inh=3 // already done, but make sure
label inh "Resistance to INH"
labelvalue inh /0="No result"
labelvalue inh /1="Susceptible"
labelvalue inh /2="Low-level resistance"
labelvalue inh /3="High-level resistance"

savedata "temp_03.rec" /replace

* 5) Any other recoding

cls
close
logclose
read "temp_03.rec"

* xxx

drop spnr specseq idcode0 idcode2
drop h02 h10 h50 inhlevel
drop katg inha inhmol inhmolsum

sort country idcode mm

savedata "b_ex04_task_out.rec" /replace

* Clean up and erase temporary session files

set echo=off
close
define yesno # global
yesno=?Delete all temporary files: 1=yes 0=no?
imif yesno=1 then
cls
type "Be patient ... you will be alerted upon completion" /h2
 erase "temp_01.chk"
 erase "temp_01.rec"
 erase "temp_02.chk"
 erase "temp_02.rec"
 erase "temp_03.chk"
 erase "temp_03.rec"
 cls
 type "All temporary files erased" /h2
 else
 type "All temporary files retained" /h2
endif
set echo=on

cls

course_b_ex04_task
Page 13 of 13

close
read "b_ex04_task_out.rec"

Part C. Operations Research

Part C: Operations research
Exercise 1: Creating a working dataset
Exercise 2: Variability in serial smears
Exercise 3: Incremental yield from serial smears
Exercise 4: Confirmatory results in serial smears

course_c_ex01_task
Page 2 of 6

Introductory note
In this Part C three operationally relevant research questions will be answered:

• Does the dataset tell us something about how diligent the work was performed in the
tuberculosis microscopy laboratory?

• Is the third serial smear examination associated with an excessive amount of work for
little gain?

• Is it necessary to confirm a positive smear result?
These and related questions were asked by graduates from The Union’s operations research
courses in fulfillment of the field component of the course. The data were collected in
Moldova (Dr Dumitru Laticevschi, fifth course, Paris, 2003), Mongolia (Dr Nymadawaa
Naranabat, seventh course, Paris, 2004), Uganda (Dr Achilles Katamba, fifth course, Paris,
2003), and Zimbabwe (Dr Biggie Mabaera, seventh course, Paris, 2004). Six publications
have resulted from this study:

Mabaera B, Naranbat N, Dhliwayo P, Rieder H L. Efficiency of serial smear examinations
in excluding sputum smear-positive tuberculosis. Int J Tuberc Lung Dis 2006;10:1030-
5.

Katamba A, Laticevschi D, Rieder H L. Efficiency of a third serial sputum smear
examination in the diagnosis of tuberculosis in Moldova and Uganda. Int J Tuberc
Lung Dis 2007;11:659-64.

Mabaera B, Lauritsen J M, Katamba A, Laticevschi D, Naranbat N, Rieder H L. Sputum
smear-positive tuberculosis: empiric evidence challenges the need for confirmatory
smears. Int J Tuberc Lung Dis 2007;11:959-64.

Mabaera B, Lauritsen J M, Katamba A, Laticevschi D, Naranbat N, Rieder H L. Making
pragmatic sense of data in the tuberculosis laboratory register. Int J Tuberc Lung Dis
2008;12:294-300.

Mabaera B, Naranbat N, Katamba A, Laticevschi D, Lauritsen J M, Rieder H L. Seasonal
variation among tuberculosis suspects in four countries. International Health
2009;1:53-60.

Rieder H L, Lauritsen J M, Naranbat N, Katamba A, Laticevschi D, Mabaera B.
Quantitative differences in sputum smear microscopy results for acid-fast bacilli by age
and sex in four countries. Int J Tuberc Lung Dis 2009;13:1393-8.

With permission of the investigators, the datasets have been made publicly accessible for use
in this course exactly as they have been collected.

course_c_ex01_task
Page 3 of 6

Moldova and Uganda worked together using the same data entry forms. You obtained
MOL_25.ZIP and UGA_30.ZIP. These two files contain respectively the data files
obtained from the 25 laboratories in Moldova and the data files obtained from the 30
laboratories in Uganda. In addition, each of the zip files contains the base pair of QES and
CHK files (which are identical for both countries, except for the field name for the laboratory).

Mongolia and Zimbabwe worked together using the same data entry forms. You obtained
MON_31.ZIP and ZIM_23.ZIP. These two files contain respectively the data files
obtained from the 31 laboratories in Mongolia and the data files obtained from the 23
laboratories in Zimbabwe. In addition, each of the zip files contains the base pair of QES and
CHK files (which are identical for both countries).

The two pairs of countries collected exactly the same information from the laboratory register,
but their data collection forms (the QES files, and thus REC files) and CHK files had small
differences. You can find these by inspecting the respective files. However, as you come in
here as an outsider, we summarize these in the following table, and also give you the field
names that the final data set combining all files should have.

Field label Field name Moldova

/ Uganda
Field name Mongolia /

Zimbabwe
Final Field name

Study country -- -- country

Laboratory code labcode / labno laboratory laboratory

Laboratory serial number serno serno --

Registration date labdate regdate regdate

Year of registration -- -- regyear

Created unique identifier unique id --

Sex of examinee sex sex sex

Age (in years) of examinee age age age

Reason for examination reason reason reason

Result of first examination res1 res1 result1

Result of second examination res2 res2 result2

Result of third examination res3 res3 result3

Omissions and commissions
In contrast to what you learned in Part A, the data entry form used only field names but had
no field labels.

Exercise 1: Creating a working dataset

At the end of this exercise you should be able to:
a. Combine different datasets into one combined dataset
b. Recode ‘text variables’ to ‘numeric variables’
c. Remove ‘undesirable’ records from a dataset
d. Correct obvious gross errors from the datasets
e. Create a ‘cleaned’ final working dataset from available datasets

course_c_ex01_task
Page 4 of 6

In both studies SEX and REASON were coded as text fields rather than numerically (but label
blocks were used). The fields RES1, RES2, and RES3 also differed slightly: a value of 4.0
did not exist in Moldova / Uganda, but denoted “Positive, not quantified” in Mongolia /
Zimbabwe, while “Positive, not quantified” was coded as 8.0 in the latter but did not exist in
the former. “Scanty, not quantified” was coded as 5.0 in Mongolia / Zimbabwe, but was
forgotten as a possible value in Moldova / Uganda.

You could obtain the information from the CHK files, but the summary of the coding for the
fields of relevance with the differences is as follows:
Field name Field value

Moldova /
Uganda

Field value
Mongolia /
Zimbabwe

Value label

Sex F F Female
 M M Male
 9 9 Unknown sex

Reason D D Diagnosis
 F F Follow-up, month not stated
 9 9 Reason not stated
 -- 1 Follow-up at 1 month
 -- 2 Follow-up at 2 months
 -- 3 Follow-up at 3 months
 -- 4 Follow-up at 4 months
 -- 5 Follow-up at 5 months
 -- 6 Follow-up at 6 months
 -- 7 Follow-up at 7 months
 -- 8 Follow-up at 8 months or later

res1 (also res2, res3) 0.0 0.0 Negative
 0.1 0.1 Scanty, 1 AFB / 100 fields
 0.2 0.2 Scanty, 2 AFB / 100 fields
 0.3 0.3 Scanty, 3 AFB / 100 fields
 0.4 0.4 Scanty, 4 AFB / 100 fields
 0.5 0.5 Scanty, 5 AFB / 100 fields
 0.6 0.6 Scanty, 6 AFB / 100 fields
 0.7 0.7 Scanty, 7 AFB / 100 fields
 0.8 0.8 Scanty, 8 AFB / 100 fields
 0.9 0.9 Scanty, 9 AFB / 100 fields
 1.0 1.0 1+ positive
 2.0 2.0 2+ positive
 3.0 3.0 3+ positive
 -- 4.0 Positive, not quantified
 -- 5.0 Scanty, not quantified
 8.0 -- Positive, not quantified
 9.0 9.0 No result recorded

Tasks:
o Create a combined dataset C_EX01_COMBINE.REC from all 107 files with a program

C_EX01_COMBINE.PGM.

Notes to the first task:
From the dataset from Moldova, drop the data for the laboratory “BND” (containing data
from only 1 week) and remove one empty record.
From the dataset from Mongolia, remove the empty records
In Zimbabwe, one record has no laboratory value, but it has an ID (this is most likely
attributable to some manipulation with the mouse after ID creation). You can retain this
record by giving the laboratory the correct code that we know from the ID.

course_c_ex01_task
Page 5 of 6

If you have removed all empty records (plus the one laboratory from Moldova) and you make
a frequency of COUNTRY you should get:

o Create a “cleaned” final working dataset C_EX01.REC with a program
C_EX01_2_RESTRUCTURE.PGM which excludes non-sensically coded result
sequences, and with all fields codes numerically (including COUNTRY and
LABORATORY).

Notes to the second task:

For the numeric coding of the COUNTRY follow the alphabet: 1 for Moldova, 2 for Mongolia,
…, 4 for Zimbabwe.
For the numeric coding of the laboratories, make a frequency for each country, and then code
numerically following the country notation:
Moldova laboratories:
if laboratory="ANR" then lab0=101
if laboratory="BLM" then lab0=102
if laboratory="BRL" then lab0=103
if laboratory="BSR" then lab0=104
if laboratory="CCE" then lab0=105
…etc
Mongolia laboratories:
if laboratory="AR_B" then lab0=201
if laboratory="BG_B" then lab0=202
if laboratory="BN_B" then lab0=203
…etc
Uganda laboratories:
if trim(laboratory)="1" then lab0=301
if trim(laboratory)="2" then lab0=302
if trim(laboratory)="3" then lab0=303
…etc
Zimbabwe laboratories:
if laboratory="BY_A" then lab0=401
if laboratory="MC_A" then lab0=402
if laboratory="MC_B" then lab0=403
if laboratory="MC_C" then lab0=404
…etc
We also propose to correct some obvious gross errors (which are obvious from the sequence
in recording what they should have been) in the registration date. In order to get a common
ground, we point these out here and provide the program file commands for these (note that
we made a date variable just for this manipulation here):

course_c_ex01_task
Page 6 of 6

define regyear0 ####
regyear0=year(regdate)
define regyear ####
regyear=regyear0
* correct errors in year of recording
if regyear0=1990 and laboratory=301 then regyear=1999
if regyear0=1990 and laboratory=306 then regyear=1999
if regyear0=1990 and laboratory=319 then regyear=1999
if regyear0=1990 and laboratory=320 then regyear=2000
if regyear0=1990 and laboratory=410 then regyear=2002

if regyear0=2000 and laboratory=408 then regyear=2002
if regyear0=2000 and laboratory=416 then regyear=2002
if regyear0=2000 and laboratory=419 then regyear=2002

if regyear0=2004 and laboratory=211 then regyear=2003
if regyear0=2004 and laboratory=223 then regyear=2003
if regyear0=2004 and laboratory=401 then regyear=2002
if regyear0=2004 and laboratory=408 then regyear=2002
if regyear0=2004 and laboratory=412 then regyear=2003
if regyear0=2004 and laboratory=413 then regyear=2002

if regyear0=2005 and laboratory=207 then regyear=2003
if regyear0=2033 and laboratory=207 then regyear=2003

If you have cleaned the dataset and you make a table of COUNTRY by REGYEAR you should
get:

Note the following on the CHK and QES files:

If you start with a REC file that is accompanied by its CHK file and then create new variables
with Field values and Value labels using the LABELVALUE, EpiData Analysis takes the
original CHK file and appends it with the new Field values and their Value labels when you
create a new REC file. You can also define a Field label (command LABEL newvar “X”).

course_c_ex01_solution
Page 1 of 11

Task:
Create a combined dataset C_EX01_COMBINE.REC from all 107 files with a program
C_EX01_1_COMBINE.PGM.

Solution
This is the dataset by country and year that should result from your program:

A possible solution is the following C_EX01_1_COMBINE.PGM:
* Part C, Exercise 1, first program

* Produce combined dataset for
* Moldova, Mongolia, Uganda, Zimbabwe
* and remove empty records

* Data courtesy:
* Moldowa: Dumitru Laticevschi, OR Paris 2003
* Mongolia: Nymadawa Naranbat, OR Paris 2004
* Uganda: Achilles Katamba, OR Paris 2003
* Zimbabwe: Biggie Mabaera, OR Paris 2004

* Written by: Hans L Rieder
* First version: 17 Jan 2010
* Last revision: 03 Jun 2013

cls
close
logclose

**
* Combine original final Moldova datasets
* Create mol_1.rec

cls
logclose

Solution to Exercise 1: Creating a working dataset

Key Learning Points
a. You should clean the final dataset so as to remove ‘undesirable records’

and correct obvious gross errors. Records removed from the dataset
should be documented as well as the reason.

b. The ‘cleaned’ working dataset will then be used for data analysis.

course_c_ex01_solution
Page 2 of 11

close

read "mol_01.rec"
append /file="mol_02.rec"
append /file="mol_03.rec"
append /file="mol_04.rec"
append /file="mol_05.rec"
append /file="mol_06.rec"
append /file="mol_07.rec"
append /file="mol_08.rec"
append /file="mol_09.rec"
append /file="mol_10.rec"
append /file="mol_11.rec"
append /file="mol_12.rec"
append /file="mol_13.rec"
append /file="mol_14.rec"
append /file="mol_15.rec"
append /file="mol_16.rec"
append /file="mol_17.rec"
append /file="mol_18.rec"
append /file="mol_19.rec"
append /file="mol_20.rec"
append /file="mol_21.rec"
append /file="mol_22.rec"
append /file="mol_23.rec"
append /file="mol_24.rec"
append /file="mol_25.rec"
savedata "mol_0.rec" /replace

cls
logclose
close
read "mol_0.rec"
define country #
country=1
label country "Study country"
* Exlclude laboratory BND with 13 records
* collected during 1 week only
select labcode<>"BND"
* remove 1 empty record
select serno<>.
var drop unique serno
savedata "mol_1.rec" /replace

close
**
* Combine original final Mongolia datasets
* Create mon_1.rec

cls
logclose
close

read "mon_01.rec"
append /file="mon_02.rec"
append /file="mon_03.rec"
append /file="mon_04.rec"
append /file="mon_05.rec"
append /file="mon_06.rec"
append /file="mon_07.rec"
append /file="mon_08.rec"
* Note: 1 record in MON_09.REC had a corrupted
* date which prevented appending. This record
* was manually changed in EpiData from "203" to "2003"
append /file="mon_09.rec"
append /file="mon_10.rec"
append /file="mon_11.rec"
append /file="mon_12.rec"

course_c_ex01_solution
Page 3 of 11

append /file="mon_13.rec"
append /file="mon_14.rec"
append /file="mon_15.rec"
append /file="mon_16.rec"
append /file="mon_17.rec"
append /file="mon_18.rec"
append /file="mon_19.rec"
append /file="mon_20.rec"
append /file="mon_21.rec"
append /file="mon_22.rec"
append /file="mon_23.rec"
append /file="mon_24.rec"
append /file="mon_25.rec"
append /file="mon_26.rec"
append /file="mon_27.rec"
append /file="mon_28.rec"
append /file="mon_29.rec"
append /file="mon_30.rec"
append /file="mon_31.rec"
savedata "mon_0.rec" /replace
close

read "mon_0.rec"
define country #
country=2
label country "Study country"
* The following removes 10 empty records
select serno<>.
savedata "mon_1.rec" /replace

close
**
* Combine original final Uganda datasets
* Create uga_1.rec

cls
close
logclose

read "uga_01.rec"
append /file="uga_02.rec"
append /file="uga_03.rec"
append /file="uga_04.rec"
append /file="uga_05.rec"
append /file="uga_06.rec"
append /file="uga_07.rec"
append /file="uga_08.rec"
append /file="uga_09.rec"
append /file="uga_10.rec"
append /file="uga_11.rec"
append /file="uga_12.rec"
append /file="uga_13.rec"
append /file="uga_14.rec"
append /file="uga_15.rec"
append /file="uga_16.rec"
append /file="uga_17.rec"
append /file="uga_18.rec"
append /file="uga_19.rec"
append /file="uga_20.rec"
append /file="uga_21.rec"
append /file="uga_22.rec"
append /file="uga_23.rec"
append /file="uga_24.rec"
append /file="uga_25.rec"
append /file="uga_26.rec"
append /file="uga_27.rec"
append /file="uga_28.rec"
append /file="uga_29.rec"

course_c_ex01_solution
Page 4 of 11

append /file="uga_30.rec"
savedata "uga_0.rec" /replace

cls
logclose
close
read "uga_0.rec"
define country #
let country=3
label country "Study country"
define labcode _______
let labcode=labno
var drop labno serno
savedata "uga_1.rec" /replace

close
**
* Combine original final Zimbabwe datasets
* Create zim_1.rec

cls
logclose
close

read "zim_01.rec"
append /file="zim_02.rec"
append /file="zim_03.rec"
append /file="zim_04.rec"
append /file="zim_05.rec"
append /file="zim_06.rec"
append /file="zim_07.rec"
append /file="zim_08.rec"
append /file="zim_09.rec"
append /file="zim_10.rec"
append /file="zim_11.rec"
append /file="zim_12.rec"
append /file="zim_13.rec"
append /file="zim_14.rec"
append /file="zim_15.rec"
append /file="zim_16.rec"
append /file="zim_17.rec"
append /file="zim_18.rec"
append /file="zim_19.rec"
append /file="zim_20.rec"
append /file="zim_21.rec"
append /file="zim_22.rec"
append /file="zim_23.rec"
savedata "zim_0.rec" /replace
close

read "zim_0.rec"
define country #
country=4
label country "Study country"
* Note: if you freq on laboratory then
* you have a lab without a code. When you sort
* on laboratory, then you see it on the top with
* 4 dots. Curiously, an ID was created nevertheless
* it is laboratory "MW_L"
* Thus, from the following recoding, we get
* an appropriate laboratory and can retain the record
if ID="MW_L-2002-554" then laboratory="MW_L"
* Laboratory coded as "G867" is actually "ML_L"
* Thus, from the following recoding, we get
* an appropriate laboratory and can retain the record
if laboratory="G867" then laboratory="ML_L"
savedata "zim_1.rec" /replace

course_c_ex01_solution
Page 5 of 11

close
**
* Combine 4 country sets

cls
close
logclose

cls
read "mon_1.rec"
drop serno id result pattern
savedata "montemp.rec" /replace
close

read "mol_1.rec"
define laboratory ____
laboratory=labcode
define regdate <dd/mm/yyyy>
regdate=labdate
drop labcode labdate
savedata "moltemp.rec" /replace
close

read "uga_1.rec"
define laboratory ____
laboratory=labcode
define regdate <dd/mm/yyyy>
regdate=labdate
drop labcode labdate
savedata "ugatemp.rec" /replace
close

cls
read "zim_1.rec"
drop serno id result pattern
savedata "zimtemp.rec" /replace
close

read "moltemp.rec"
append /file="montemp.rec"
append /file="ugatemp.rec"
append /file="zimtemp.rec"
labelvalue country /1="Moldova"
labelvalue country /2="Mongolia"
labelvalue country /3="Uganda"
labelvalue country /4="Zimbabwe"
savedata "c_ex01_combine.rec" /replace
close

read "c_ex01_combine.rec"
freq country

* Clean up and erase temporary session files

set echo=off
close
define yesno # global
yesno=?Delete all temporary files: 1=yes 0=no?
imif yesno=1 then
 cls
 type "Be patient, you will be alerted to completion" /h2
 erase "mon_0.chk "
 erase "mon_0.rec "
 erase "mon_1.chk "
 erase "mon_1.rec "
 erase "mol_0.chk "
 erase "mol_0.rec "

course_c_ex01_solution
Page 6 of 11

 erase "mol_1.chk "
 erase "mol_1.rec "
 erase "uga_0.chk "
 erase "uga_0.rec "
 erase "uga_1.chk "
 erase "uga_1.rec "
 erase "zim_0.chk "
 erase "zim_0.rec "
 erase "zim_1.chk "
 erase "zim_1.rec "
 erase "moltemp.chk"
 erase "moltemp.rec"
 erase "montemp.chk"
 erase "montemp.rec"
 erase "ugatemp.chk"
 erase "ugatemp.rec"
 erase "zimtemp.chk"
 erase "zimtemp.rec"
 cls
 type "All temporary files erased" /h2
 else
 type "All temporary files retained" /h2
endif
set echo=on

Task:
o Create a “cleaned” final working dataset C_EX01.REC with a program

C_EX01_2_RESTRUCTURE.PGM which excludes non-sensically coded result
sequences, and with all fields codes numerically (including COUNTRY and
LABORATORY).

Solution

A possible solution is the following C_EX01_2_RESTRUCTURE.PGM:
* Part C, Exercise 1, second program

* Produce cleaned dataset for
* Moldova, Mongolia, Uganda, Zimbabwe
* Removing results with nonsensical sequence

* Data courtesy:
* Moldowa: Dumitru Laticevschi, OR Paris 2003
* Mongolia: Nymadawa Naranbat, OR Paris 2004
* Uganda: Achilles Katamba, OR Paris 2003
* Zimbabwe: Biggie Mabaera, OR Paris 2004

* Written by: Hans L Rieder
* First version: 17 Jan 2010
* Last revision: 03 Jun 2013

cls
close
logclose

read "c_ex01_combine.rec"

 define res1b _
 if res1=0 then res1b="N"
if res1>0 and res1<9 then res1b="P"
 if res1=9 then res1b="9"

course_c_ex01_solution
Page 7 of 11

 define res2b _
 if res2=0 then res2b="N"
if res2>0 and res2<9 then res2b="P"
 if res2=9 then res2b="9"

 define res3b _
 if res3=0 then res3b="N"
if res3>0 and res3<9 then res3b="P"
 if res3=9 then res3b="9"

define sequence _____
label sequence "Sequence of serial results"
let sequence=res1b+"-"+res2b+"-"+res3b

* The following removes records with an impossible
* sequence of results
cls
select sequence<>"9-9-9"
select sequence<>"9-9-N"
select sequence<>"9-9-P"
select sequence<>"9-N-9"
select sequence<>"9-N-N"
select sequence<>"9-P-P"
select sequence<>"N-9-N"
select sequence<>"N-9-P"
select sequence<>"P-9-P"
select sequence<>"9-P-9"
select sequence<>"9-P-N"
select sequence<>"P-9-N"
select sequence<>"9-N-P"

cls
define result1 #.#
label result1 "Result of 1st examination"
let result1=res1
if res1=8.0 then result1=4.0

define result2 #.#
label result2 "Result of 2nd examination"
let result2=res2
if res2=8.0 then result2=4.0

define result3 #.#
label result3 "Result of 3rd examination"
let result3=res3
if res3=8.0 then result3=4.0

cls
define reason0 ##
if reason="D" then reason0=00
if reason="F" then reason0=10
if reason="9" then reason0=99
if reason="1" then reason0=01
if reason="2" then reason0=02
if reason="3" then reason0=03
if reason="4" then reason0=04
if reason="5" then reason0=05
if reason="6" then reason0=06
if reason="7" then reason0=07
if reason="8" then reason0=08

cls
define sex0 #
if sex="F" then sex0=1
if sex="M" then sex0=2
if sex="9" then sex0=9

course_c_ex01_solution
Page 8 of 11

cls
define lab0 ###
* Moldova laboratories
if laboratory="ANR" then lab0=101
if laboratory="BLM" then lab0=102
if laboratory="BRL" then lab0=103
if laboratory="BSR" then lab0=104
if laboratory="CCE" then lab0=105
if laboratory="CDR" then lab0=106
if laboratory="CHR" then lab0=107
if laboratory="CLR" then lab0=108
if laboratory="CMN" then lab0=109
if laboratory="CMR" then lab0=110
if laboratory="CNR" then lab0=111
if laboratory="CRR" then lab0=112
if laboratory="CTR" then lab0=113
if laboratory="DNR" then lab0=114
if laboratory="EDR" then lab0=115
if laboratory="FLR" then lab0=116
if laboratory="FRR" then lab0=117
if laboratory="HNR" then lab0=118
if laboratory="LVR" then lab0=119
if laboratory="PRB" then lab0=120
if laboratory="RZR" then lab0=121
if laboratory="SRR" then lab0=122
if laboratory="STR" then lab0=123
if laboratory="VLR" then lab0=124

cls
* Mongolia laboratories
if laboratory="AR_B" then lab0=201
if laboratory="BG_B" then lab0=202
if laboratory="BN_B" then lab0=203
if laboratory="BU_B" then lab0=204
if laboratory="BZ_B" then lab0=205
if laboratory="CH_B" then lab0=206
if laboratory="DA_B" then lab0=207
if laboratory="DD_B" then lab0=208
if laboratory="DG_B" then lab0=209
if laboratory="DU_B" then lab0=210
if laboratory="GA_B" then lab0=211
if laboratory="GS_B" then lab0=212
if laboratory="KE_B" then lab0=213
if laboratory="KH_B" then lab0=214
if laboratory="KO_B" then lab0=215
if laboratory="KU_B" then lab0=216
if laboratory="NA_B" then lab0=217
if laboratory="OR_B" then lab0=218
if laboratory="PR_B" then lab0=219
if laboratory="RE_B" then lab0=220
if laboratory="SB_B" then lab0=221
if laboratory="SK_B" then lab0=222
if laboratory="SU_B" then lab0=223
if laboratory="TU_B" then lab0=224
if laboratory="UM_B" then lab0=225
if laboratory="US_B" then lab0=226
if laboratory="UV_B" then lab0=227
if laboratory="ZA_B" then lab0=228
if laboratory="SE_B" then lab0=229
if laboratory="BK_B" then lab0=230
if laboratory="B-UB" then lab0=231

cls
* Uganda laboratories
if trim(laboratory)="1" then lab0=301
if trim(laboratory)="2" then lab0=302
if trim(laboratory)="3" then lab0=303
if trim(laboratory)="4" then lab0=304

course_c_ex01_solution
Page 9 of 11

if trim(laboratory)="5" then lab0=305
if trim(laboratory)="6" then lab0=306
if trim(laboratory)="7" then lab0=307
if trim(laboratory)="8" then lab0=308
if trim(laboratory)="9" then lab0=309
if trim(laboratory)="10" then lab0=310
if trim(laboratory)="11" then lab0=311
if trim(laboratory)="12" then lab0=312
if trim(laboratory)="13" then lab0=313
if trim(laboratory)="14" then lab0=314
if trim(laboratory)="15" then lab0=315
if trim(laboratory)="16" then lab0=316
if trim(laboratory)="17" then lab0=317
if trim(laboratory)="18" then lab0=318
if trim(laboratory)="19" then lab0=319
if trim(laboratory)="20" then lab0=320
if trim(laboratory)="21" then lab0=321
if trim(laboratory)="22" then lab0=322
if trim(laboratory)="23" then lab0=323
if trim(laboratory)="24" then lab0=324
if trim(laboratory)="25" then lab0=325
if trim(laboratory)="26" then lab0=326
if trim(laboratory)="27" then lab0=327
if trim(laboratory)="28" then lab0=328
if trim(laboratory)="29" then lab0=329
if trim(laboratory)="30" then lab0=330

cls
* Zimbabwe laboratories
if laboratory="BY_A" then lab0=401
if laboratory="MC_A" then lab0=402
if laboratory="MC_B" then lab0=403
if laboratory="MC_C" then lab0=404
if laboratory="MC_G" then lab0=405
if laboratory="MC_I" then lab0=406
if laboratory="MC_J" then lab0=407
if laboratory="MD_G" then lab0=408
if laboratory="ME_A" then lab0=409
if laboratory="ME_C" then lab0=410
if laboratory="ME_L" then lab0=411
if laboratory="ME_O" then lab0=412
if laboratory="ML_E" then lab0=413
if laboratory="ML_G" then lab0=414
if laboratory="ML_I" then lab0=415
if laboratory="ML_L" then lab0=416
if laboratory="MN_G" then lab0=417
if laboratory="MV_A" then lab0=418
if laboratory="MV_C" then lab0=419
if laboratory="MV_E" then lab0=420
if laboratory="MW_B" then lab0=421
if laboratory="MW_E" then lab0=422
if laboratory="MW_L" then lab0=423

drop sequence
drop res1 res2 res3
drop reason
drop sex
drop laboratory

rename reason0 to reason
rename sex0 to sex
rename lab0 to laboratory

savedata "temp0.rec" /replace

cls
close

course_c_ex01_solution
Page 10 of 11

read "temp0.rec"

define regyear0 ####
regyear0=year(regdate)

define regyear ####
regyear=regyear0

* correct errors in year of recording
if regyear0=1990 and laboratory=301 then regyear=1999
if regyear0=1990 and laboratory=306 then regyear=1999
if regyear0=1990 and laboratory=319 then regyear=1999
if regyear0=1990 and laboratory=320 then regyear=2000
if regyear0=1990 and laboratory=410 then regyear=2002

if regyear0=2000 and laboratory=408 then regyear=2002
if regyear0=2000 and laboratory=416 then regyear=2002
if regyear0=2000 and laboratory=419 then regyear=2002

if regyear0=2004 and laboratory=211 then regyear=2003
if regyear0=2004 and laboratory=223 then regyear=2003
if regyear0=2004 and laboratory=401 then regyear=2002
if regyear0=2004 and laboratory=408 then regyear=2002
if regyear0=2004 and laboratory=412 then regyear=2003
if regyear0=2004 and laboratory=413 then regyear=2002

if regyear0=2005 and laboratory=207 then regyear=2003
if regyear0=2033 and laboratory=207 then regyear=2003

label regyear "Year of registration"
labelvalue sex /1="Female" /2="Male" /9="Missing"
label sex "Sex of examinee"
labelvalue reason /0="Diagnosis"
labelvalue reason /1="Follow-up at 1 month"
labelvalue reason /2="Follow-up at 2 months"
labelvalue reason /3="Follow-up at 3 months"
labelvalue reason /4="Follow-up at 4 months"
labelvalue reason /5="Follow-up at 5 months"
labelvalue reason /6="Follow-up at 6 months"
labelvalue reason /7="Follow-up at 7 months"
labelvalue reason /8="Follow-up at 8 months or later"
labelvalue reason /10="Follow-up, month not stated"
labelvalue reason /99="Reason not stated"
label reason "Reason for examination"

labelvalue result1 /0.0="Negative"
labelvalue result1 /4.0="Positive, not quantified"
labelvalue result1 /5.0="Scanty, not quantified"
labelvalue result1 /0.1="Scanty, 1 AFB per 100 fields"
labelvalue result1 /0.2="Scanty, 2 AFB per 100 fields"
labelvalue result1 /0.3="Scanty, 3 AFB per 100 fields"
labelvalue result1 /0.4="Scanty, 4 AFB per 100 fields"
labelvalue result1 /0.5="Scanty, 5 AFB per 100 fields"
labelvalue result1 /0.6="Scanty, 6 AFB per 100 fields"
labelvalue result1 /0.7="Scanty, 7 AFB per 100 fields"
labelvalue result1 /0.8="Scanty, 8 AFB per 100 fields"
labelvalue result1 /0.9="Scanty, 9 AFB per 100 fields"
labelvalue result1 /1.0="1+ positive"
labelvalue result1 /2.0="2+ positive"
labelvalue result1 /3.0="3+ positive"
labelvalue result1 /9.0="No result recorded"
label result1 "Result of 1st examination"

labelvalue result2 /0.0="Negative"
labelvalue result2 /4.0="Positive, not quantified"
labelvalue result2 /5.0="Scanty, not quantified"
labelvalue result2 /0.1="Scanty, 1 AFB per 100 fields"

course_c_ex01_solution
Page 11 of 11

labelvalue result2 /0.2="Scanty, 2 AFB per 100 fields"
labelvalue result2 /0.3="Scanty, 3 AFB per 100 fields"
labelvalue result2 /0.4="Scanty, 4 AFB per 100 fields"
labelvalue result2 /0.5="Scanty, 5 AFB per 100 fields"
labelvalue result2 /0.6="Scanty, 6 AFB per 100 fields"
labelvalue result2 /0.7="Scanty, 7 AFB per 100 fields"
labelvalue result2 /0.8="Scanty, 8 AFB per 100 fields"
labelvalue result2 /0.9="Scanty, 9 AFB per 100 fields"
labelvalue result2 /1.0="1+ positive"
labelvalue result2 /2.0="2+ positive"
labelvalue result2 /3.0="3+ positive"
labelvalue result2 /9.0="No result recorded"
label result2 "Result of 2nd examination"

labelvalue result3 /0.0="Negative"
labelvalue result3 /4.0="Positive, not quantified"
labelvalue result3 /5.0="Scanty, not quantified"
labelvalue result3 /0.1="Scanty, 1 AFB per 100 fields"
labelvalue result3 /0.2="Scanty, 2 AFB per 100 fields"
labelvalue result3 /0.3="Scanty, 3 AFB per 100 fields"
labelvalue result3 /0.4="Scanty, 4 AFB per 100 fields"
labelvalue result3 /0.5="Scanty, 5 AFB per 100 fields"
labelvalue result3 /0.6="Scanty, 6 AFB per 100 fields"
labelvalue result3 /0.7="Scanty, 7 AFB per 100 fields"
labelvalue result3 /0.8="Scanty, 8 AFB per 100 fields"
labelvalue result3 /0.9="Scanty, 9 AFB per 100 fields"
labelvalue result3 /1.0="1+ positive"
labelvalue result3 /2.0="2+ positive"
labelvalue result3 /3.0="3+ positive"
labelvalue result3 /9.0="No result recorded"
label result3 "Result of 3rd examination"
label regdate "Date of registration"
label laboratory "Laboratory code"
keep country laboratory regdate regyear age sex reason result1 result2 result3
savedata "c_ex01.rec" /replace

* Test labels, sorting, and count

cls
close
read "c_ex01.rec"

tables country result1 /SLA /vl
tables country regyear

* Clean up and erase temporary session files

set echo=off
close
define yesno # global
yesno=?Delete all temporary files: 1=yes 0=no?
imif yesno=1 then
 cls
 erase "temp0.rec"
 erase "temp0.chk"
 cls
 type "All temporary files erased" /h2
 else
 type "All temporary files retained" /h2
endif
set echo=on

course_c_ex02_task
Page 1 of 2

The diligence of technicians may suffer if they are over-burdened with work. Decreasing
diligence in sputum smear examinations may result in copying a first result.
This exercise examines a bit more closely the variability of serial smear grading among those
with at least one positive result (it cannot be ascertained among the majority without any
positive result).
In a given laboratory A we might find among suspects the following patterns:

Laboratory A Register
Examinee Other variables Res 1 Res 2 Res 3
Examinee 1 1+ 1+ 1+
Examinee 2 neg neg neg
Examinee 3 2+ 2+
Examinee 4 neg neg neg
Examinee 5 2+ 2+
Examinee 6 neg 1+ 1+
Examinee 7 3+ 3+
Examinee 8 neg neg neg
Etc

In a given laboratory B we might find among suspects the following patterns:

Laboratory B Register
Examinee Other variables Res 1 Res 2 Res 3
Examinee 1 1+ neg 1+
Examinee 2 neg
Examinee 3 2+ 1+
Examinee 4 neg neg neg
Examinee 5 2+ 3+
Examinee 6 neg 1+ 1+
Examinee 7 3+ 1+ 2+
Examinee 8 neg
Etc

Exercise 2: Variability in serial smear results

At the end of this exercise you should be able to:
a. Create a subset of ‘suspects’ from the working dataset
b. Create a string variable that combines the three results for each examinee
c. Test the given hypothesis on variation in the serial pattern of the results
d. Reject or accept a study hypothesis for each country

course_c_ex02_task
Page 2 of 2

If we compare the patterns found in laboratory A with those in laboratory B, we notice that
there is much more variation in laboratory B than in laboratory A. In fact, there is virtually no
variation in laboratory A for the series of smears for a given suspect.
The amount of tubercle bacilli is, however, not constant in a series of specimens. Most
conspicuously, we see this phenomenon when we compare the number of bacilli found in an
early morning specimen with an on-the-spot specimen from the same patient. But even if we
took a series of 5 on-the-spot specimens from a patient, e.g., in two-hour intervals (as done in
“front-loading”), it is likely that the grading of each of the smears made from these specimens
will vary to some extent. This may be because the number of bacilli in the secretions varies
and / or because the quality of the produced specimen varies and / or the laboratory technician
takes by chance particles that differ in content: fresh sputum is not homogenous.
It is thus highly unlikely that all the results from a given examinee recorded in laboratory A
reflect the true content of the series of smears. One becomes suspicious that once the
technician in laboratory A found a slide to be positive with grade 2+, the subsequent specimen
was not properly examined or perhaps even not examined at all, and the result of the first
positive specimen was simply copied into the next column. Such observations can be made in
seriously overworked laboratories which are forced to examine three smears until they can
declare an examinee not to be a case, and if one specimen is positive, to examine additional
specimens until the first positive is confirmed by a second positive smear.
By definition, we cannot examine variation among suspects with a series of three negative
smears, which is regrettable because this is precisely the group in which this type of problem
is most likely to occur. To assess the quality of examination among negative slides, a system
of external quality assessment is required. Nevertheless, the results among suspects with at
least one positive result may show the extent of variability between such results that might
nevertheless be a useful indicator.
We do not know how much variation there must be to make the results look credible (and
even if they vary, the technician could in fact have recorded a fictitious variation). What we
can do, however, is to compare the extent of variation between laboratories, or in the data set
available here, between the four countries, but we can only assess variations among suspects
who are cases in the definition of this course.
In other words, the differences in variation are a crude tool to identify laboratories which pay
more and which pay less attention to careful and recommended procedures for the
examination of serial smears. This exercise should accomplish this.

Tasks:

• Determine with a program C_EX02.PGM the proportions of smears with and

without variation in serial smears by country
• Interpret the findings

Exercise hypothesis:
H0: In each study country, at least 60% of cases found among suspects with a

complete diagnostic series show a variation in the serial pattern

course_c_ex02_solution
Page 1 of 3

Tasks:

• Determine with a program C_EX02.PGM the proportions of smears with and

without variation in serial smears by country
• Interpret the findings

Solution
Determine with a program C_EX02.PGM the proportions of smears with and without
variation in serial smears by country
The following summary output was created:

Interpret the findings
Conclusion: Except for Moldova, the hypothesis has to be refuted for each country. Of
course, there is no accepted standard what constitutes an “acceptable” minimum level of
variation that should be found. Nevertheless, it would appear that the level of variation
particularly in Mongolia and Zimbabwe is unexpectedly low, that is the serial results raise
some questions on the diligence of reading and reporting sputum smear examination results.

The program C_EX02.PGM that produced the above output is the following:
* Part C, Exercise 2

* Identifying patterns of serial smear results with identical individual results

Solution to Exercise 2: Variability in serial smear results

Exercise hypothesis:
H0: In each study country, at least 60% of cases found among suspects with a

complete diagnostic series show a variation in the serial pattern

Key Learning Points
When you have a hypothesis to test, remember that it may be logical to:

a. Create and use a subset of the working dataset
b. Create new variable(s)

course_c_ex02_solution
Page 2 of 3

* Objective of the exercise
* Identify series of identical result patterns in the four countries
* The reason for this exercise is that we hypothesize
* that too regular patterns indicate that the laboratory
* simply copies a positive result once found to (a) subsequent
* result(s) rather than properly examining the individual smear
* Thus, this is analysis may be an indirect quality assurance program

* First decision: denominator:
* Define the denominator with the choice of the appropriate dataset
* Data set must be suspects
* Assessing variability among persons with only negative results
* is biased as the proportion of these varies widely, thus excluding
* such examinees
* Assessing variability among patients with only two results provides
* too little insight in variability, selecting thus those with three
* results of which at least one is positive
* Furthermore, those with unquantified positive results will also
* bias the result

* Data courtesy:
* Moldowa: Dumitru Laticevschi, OR Paris 2003
* Mongolia: Nymadawa Naranbat, OR Paris 2004
* Uganda: Achilles Katamba, OR Paris 2003
* Zimbabwe: Biggie Mabaera, OR Paris 2004

* Written by: Hans L Rieder
* First version: 17 Jan 2010
* Last revision: 28 Apr 2013

cls
close
logclose

**
* Selection process

cls
close

read "c_ex01.rec"

* All records in dataset:
* 128,808 records

* Include only suspects for analysis
select reason=0
* 89,362 records retained

* Select only examinees with three quantified smear results
select result1<4
select result2<4
select result3<4
* 61,064 records retained

define include #
 include=0
if result1>0 then include=1
if result2>0 then include=1
if result3>0 then include=1
select include=1
* 7,900 records retained

savedata "temp_01.rec" /replace

**
* Variable definition for analysis

course_c_ex02_solution
Page 3 of 3

cls
close

read "temp_01.rec"

define variation #
variation=1
if (result1=result2) and (result1=result3) then variation=0
label variation "Grading variation"
labelvalue variation /0="No variation"
labelvalue variation /1="With variation"

**
* Analysis: Hypothesis testing that
* at least 60% have variation

cls
ciplot variation country /ng

**
* Clean up

define yesno # global
yesno=?Delete all temporary files: 1=yes 0=no?
imif yesno=1 then
 cls
 close
 erasepng /all /noconfirm
 erase "temp_01.chk"
 erase "temp_01.rec"
 cls
 type "All temporary files erased" /h2
 else
 type "All temporary files retained" /h2
endif
set echo=on

course_c_ex03_task
Page 1 of 4

The diminishing return of serial smears is known from studies that have examined multiple
serial specimens, as for example the following study from the 1930s:

This study suggests that each serial smear adds an additional increment in case yield, but the
incremental yield gets smaller with each additional examination. Program managers must
thus arrive at some optimum that requires the least amount of work (number of smear
examinations) to yield a large proportion of cases. The “three smear policy” is such a
compromise that has been reached internationally and became reflected in the above
mentioned guidelines.
The Union and WHO recommended in the past that each suspect should have three sputum
smear examinations before being declared to be “sputum smear-negative”. Some countries
recommended only two examinations. The reason for this difference is that The Union and
the WHO thought that making a third examination after two smears are negative would offer a
sufficiently rewarding incremental yield (how much is rewarding – has anybody ever defined
it?) from this third smear as to justify the additional work load for laboratories. Some
microscopy laboratories are, however, so burdened with work (particularly in Africa) that a
reduction in the required number of examinations would come as a great relief. It is also very
possible that over-burdened laboratories may become less meticulous in the examination of a
third smear after a first and second smear have been negative, which may reduce the potential
incremental gain. Most of the studies determining the incremental yield from the third
examination were done under relatively controlled conditions, but there was not much
information around on the yield under routine conditions in low- and middle-income

Cumulative Yield of Sputum Smear Examination Among
825 Smear-Positive Patients, United Kingdom, 1930s

C
um

 p
er

ce
nt

ag
e

po
s

70

75

80

85

90

95

100

Hunter RA. Tubercle 1940;21:341-59

1
Serial smear

2 3 4 5 6 7 8 9 10 11 12 13 14

Exercise 3: Incremental yield from serial smears

At the end of this exercise you should be able to:
a. Create a subset of ‘suspects’ from the working dataset
b. Create a string variable that combines the three results for each examinee
c. Make calculations using a spreadsheet
d. Test the given hypothesis on the incremental yield from the third smear
e. Reject or accept a study hypothesis for each country

course_c_ex03_task
Page 2 of 4

countries. The primary hypothesis for the operations research study of the course cohorts of
2003 and 2004 was precisely to test the effectiveness under routine conditions from a
representative sample of laboratories in four countries. As these were the only studies of this
extent and representativeness, the published findings of these studies greatly contributed to
the change in policy of WHO in June 2008 to recommend that routine screening of
tuberculosis suspects should be limited to two serial examinations to exclude sputum smear-
positive tuberculosis. This demonstrates how powerful a relatively simple study design can
be in public health policy shaping, if carried out in a representative manner with diligent
adherence to quality assurance.
In this exercise, the approach to this issue will be reproduced. We will analyze the data in
two parts:

Part 1: incremental yield: we ask what proportion of all cases (being a case in any of up to
three serial examinations) is found already on the first smear, which proportion is found on
the second smear if the first is negative, and which proportion is found on the third smear
after the first two have been negative.
Part 2: program efficiency of the third smear: in addition to the fraction of all ultimately
positives, we also take the proportion of cases among all diagnostic examinees into account.
The product of these two fractions is the proportion of cases found only with a third
examination out of the total number of examinees with a diagnostic examination. We can
express the efficiency by taking the reciprocal of this product and obtain the number of
smears that need to be examined with a third smear to find one additional case among
diagnostic examinees solely when doing a third serial smear (negative on the first two
smears).

For Part 1 we look only at cases and just determine frequencies of “essential patterns” if at
least one of the three smears is positive. EpiData provides the possibility to display the point
estimate and the 95% confidence interval around the three proportions.
For Part 2 we go a bit more into detail because we also need to know the total of all
examinees who came for a diagnostic examination. We do thus not only need the three
essential patterns among those positive on at least one of the three, but all six essential
patterns. With our case definition that a suspect becomes a case once acid-fast bacilli are
found implies that an additional third examination has to be done only if the two preceding
examinations have been negative:
NNP / (NNP + NNN)
This is a fraction, but the hypothesis was about the number of smears. In analogy, you may
consider the situation where you know that 20 out of 100 people have a characteristic and you
now ask how many you have to examine to find the characteristic.

Confidence intervals
Our fraction might be very small despite the large number of suspects in the database. As the
implication of refuting the hypothesis has serious programmatic consequences it is advisable
to calculate confidence intervals around the number of smears and decide only to refute if the
lower interval is in excess of the hypothesis number X.

course_c_ex03_task
Page 3 of 4

The classic approach to estimating 95% confidence intervals is used when the population
from which the cases arise is defined (observable) and a subset of this population is examined.
We define P as the proportion of cases found on the third smear only among those with three
examinations:
P = (NNP/(NNN+NNP)
The standard error of P [(SE(P)] is calculated from the square root of a function derived from
P:
SE(P) = SQRT(P*(1-P)/(NNN+NNP))
And the 95% confidence intervals are:
95%low = P – 1.96*SE(P)
95%upper = P + 1.96*SE(P)
However, for the number of slides we will need the reciprocals of these values.

Tasks:
• Determine with a program C_EX03.PGM the incremental yield of cases with serial

smears with the denominator being all cases (Part 1)
• Determine in the same program for Part 2 the number of suspects with the six essential

patterns listed in the table below. Use the following hypothesis to guide you in this part:

• Create a table in spreadsheet by country as follows:

 Moldova Mongolia Uganda Zimbabwe Total

Total

Pattern
 N99
 NN9
 NNN
 NNP
 Npx
 Px

Prop positive

Yield
 First
 Second
 Third

Exercise hypothesis:
H0: Not more than 125 third smear examinations have to be made to find one

additional case of tuberculosis in each of the four study countries

course_c_ex03_task
Page 4 of 4

 X

 P
 SE(P)
 95% low
 95% high

Smears
 95% low
 95% high

Hypothesis:

• Interpret the findings

course_c_ex03_solution
Page 1 of 6

Tasks:
• Determine with a program C_EX03.PGM the incremental yield of cases with serial

smears with the denominator being all cases (Part 1)
• Determine in the same program for Part 2 the number of suspects with the six essential

patterns listed in the table below. Use the following hypothesis to guide you in this part:

• Create a table in spreadsheet by country as follows:

 Moldova Mongolia Uganda Zimbabwe Total

Total

Pattern
 N99
 NN9
 NNN
 NNP
 Npx
 Px

Prop positive

Yield
 First
 Second
 Third

 X

 P
 SE(P)
 95% low

Solution to Exercise 3: Incremental yield from serial smears

Key Learning Points
When you have a hypothesis to test, remember that it may be logical to:

a. Create and use a subset of the working dataset
b. Create new variable(s)

Exercise hypothesis:
H0: Not more than 125 third smear examinations have to be made to find one

additional case of tuberculosis in each of the four study countries

course_c_ex03_solution
Page 2 of 6

 95% high

Smears
 95% low
 95% high

Hypothesis:

• Interpret the findings

Solution:
Part 1: After creating the essential patterns and selecting only the cases among examinees
with a diagnostic examination, we created the following output:

course_c_ex03_solution
Page 3 of 6

In Part 2, the following output was created in EpiData Analysis:

Interpretation:
The recorded results show that the number of smears that need to be examined to find one
additional case on a third serial smear examination that had not been found already on the first
two exceeded 125 (one week’s work) in Moldova and Mongolia, indicating the inefficiency of
the requirement for three smears before declaring a patient smear-negative at least in these
two countries.
We used the following program C_EX03.PGM to get these outputs:
* Part C, Exercise 3
* This is b_ex03 EpiData Analysis program
* to determine the incremental yield from serial smears

* Data courtesy:
* Moldowa: Dumitru Laticevschi, OR Paris 2003
* Mongolia: Nymadawa Naranbat, OR Paris 2004
* Uganda: Achilles Katamba, OR Paris 2003
* Zimbabwe: Biggie Mabaera, OR Paris 2004

* Written by: Hans L Rieder
* First version: 12 Feb 2009
* Last revision: 26 Apr 2018

cls
close
logclose

**
* Prepare data set

cls
close
logclose

read "c_ex01.rec"

* Definition positive: any AFB in any of three results
* Values: "P" (positive) or "N" (negative)
* or "9" (unknown)

cls

course_c_ex03_solution
Page 4 of 6

* Case definition
gen i case=0
if result1>0 and result1<9 then case=1
if result2>0 and result2<9 then case=1
if result3>0 and result3<9 then case=1
label case "Microscopy-defined case"

cls
* Define essential patterns from
* all possible patterns
gen s(3) pattern="NNN"
if result3=9 then pattern="NN9"
if result2=9 then pattern="N99"
if result3>0 and result3<9 then pattern="NNP"
if result2>0 and result2<9 then pattern="NPx"
if result1>0 and result1<9 then pattern="Px"
label pattern "Essential patterns"

keep pattern reason case country
savedata "temp_01.rec" /replace

* Analysis part 1
* Look for yield from 1st, 2nd, 3rd smear by country

cls
close
logclose

read "temp_01.rec"

cls
set echo=off
select reason=0 and case=1
cls
type "Incremental yield" /h2
type "Moldova" /h2
freq pattern /c /ci if country=1
type "Mongolia" /h2
freq pattern /c /ci if country=2
type "Uganda" /h2
freq pattern /c /ci if country=3
type "Zimbabwe" /h2
freq pattern /c /ci if country=4
select
set echo=on

* Analysis part 2
* Efficiency of the third smear in finding
* an additional case: number of smears that
* need to be examined among all diagnostic
* examinees to find one additional case

cls
close
logclose

read "temp_01.rec"

aggregate pattern country /save="yield.rec" /replace /close

* Note: a more efficient way to do the following will be shown \
* in Part D
cls
close
read "yield.rec"
select pattern="NNP"
gen i nnp=n
savedata "nnp.rec" /replace

cls
close
read "yield.rec"

course_c_ex03_solution
Page 5 of 6

select pattern="NPx"
gen i npx=n
savedata "npx.rec" /replace

cls
close
read "yield.rec"
select pattern="Px"
gen i px=n
savedata "px.rec" /replace

cls
close
read "yield.rec"
select pattern="NNN"
gen i nnn=n
savedata "nnn.rec" /replace

cls
close
read "yield.rec"
select pattern="NN9"
gen i nn9=n
savedata "nn9.rec" /replace

cls
close
read "yield.rec"
select pattern="N99"
gen i n99=n
savedata "n99.rec" /replace

cls
close
read "nnp.rec"
merge country /file="npx.rec"
merge country /file="px.rec"
merge country /file="nnn.rec"
merge country /file="nn9.rec"
merge country /file="n99.rec"

define tot #####
tot=nnp+npx++px+nnn+nn9+n99

define totpos #####
totpos=nnp+npx++px

drop n pattern mergevar
savedata "pattern.rec" /replace

cls
close
read "pattern.rec"

cls
define p #.#######
p=nnp/(nnp+nnn)

define sep #.#######
sep=sqrt(p*(1-p)/(nnp+nnn))

define cilow #.#######
cilow=p-1.96*sep

define cihigh #.#######
cihigh=p+1.96*sep

define smpoint ###.#
smpoint=1/p

define sm95low ###.#
sm95low=1/cihigh

define sm95high ###.#
sm95high=1/cilow

course_c_ex03_solution
Page 6 of 6

cls
 define hypothesis ______
 hypothesis="Accept"
if sm95low>125 then hypothesis="Refute"

cls
set display databrowser=on
browse country nnp npx px nnn nn9 n99 tot sm95low smpoint sm95high hypothesis
set display databrowser=off

* Clean up and erase temporary session files

set echo=off
define yesno # global
yesno=?Delete all temporary files: 1=yes 0=no?
imif yesno=1 then
 close
 cls
 type "Be patient, you will be alerted to completion" /h2
 erase "n99.chk "
 erase "n99.rec "
 erase "nn9.chk "
 erase "nn9.rec "
 erase "nnn.chk "
 erase "nnn.rec "
 erase "nnp.chk "
 erase "nnp.rec "
 erase "npx.chk "
 erase "npx.rec "
 erase "pattern.chk"
 erase "pattern.rec"
 erase "px.chk "
 erase "px.rec "
 erase "temp_01.chk"
 erase "temp_01.rec"
 erase "yield.chk "
 erase "yield.rec "
 cls
 type "All temporary files erased" /h2
 else
 type "All temporary files retained" /h2
endif
set echo=on

course_c_ex04_task
Page 1 of 2

The bacteriological definition by microscopy of a sputum smear-positive tuberculosis case
following WHO required that a positive smear examination had to be confirmed by a second
positive result.

This study:
Mabaera B, Lauritsen J M, Katamba A, Laticevschi D, Naranbat N, Rieder H L. Sputum smear-

positive tuberculosis: empiric evidence challenges the need for confirmatory smears. Int J
Tuberc Lung Dis 2007;11:959-64.

contributed to a policy change in WHO recommendations that were decided in June 2007
following the publication of these findings.

In this exercise, the approach to the problem is reproduced.

The dataset provided here allows the determination of how frequent a scanty positive or a
positive smear result is actually confirmed in daily practice in these four countries. It allows
further to determine how frequent such a confirmation can be made among suspects who
actually had a complete set of examinations.

Exercise 4: Confirmatory results in serial smears

Exercise hypotheses
H01: At least 80 per cent of suspects with at least one scanty or positive smear

result have a confirmatory scanty or positive result
H02: At least 90 per cent of suspects with three serial examination among which

there is at least one scanty or positive smear result have a confirmatory
scanty or positive result in another examination

At the end of this exercise you should be able to:
a. Create a subset of ‘suspects’ from the working dataset, with the required

number of examinations to test the hypotheses
b. Make a distinction between scanty and positive smear results
c. Create string variables that combines the three results for each examinee
d. Recode some string variables to numeric variables
e. Make calculations using a spreadsheet
f. Test the given hypotheses on confirmatory results in serial smears
g. Reject or accept a study hypothesis for each country
h. Interpret your findings

course_c_ex04_task
Page 2 of 2

Tasks:

• Write a program C_EX04.PGM that determines the proportion of suspects who have a
confirmatory examination, making a distinction between scanty and positive smears.
Produce a table by country.

• Produce a second table in the same program to determine the proportion of suspects
who have a confirmatory examination and who had a complete series of smears,
making a distinction between scanty and positive smears.

• Interpret the findings.

course_c_ex04_solution
Page 1 of 6

Tasks:

• Write a program C_EX04.PGM that determines the proportion of suspects who have a
confirmatory examination, making a distinction between scanty and positive smears.
Produce a table by country.

• Produce a second table in the same program to determine the proportion of suspects
who have a confirmatory examination and who had a complete series of smears,
making a distinction between scanty and positive smears.

• Interpret the findings.

Solution
Producing the required results requires multiple frequencies with different selection criteria.
The program C_EX04.PGM producing these is shown afterwards, followed by a summary
table that is best made in a spreadsheet C_EX04.XLS.

Interpretation:
Moldova had the highest frequency of confirmatory results, in fact more than 95 per cent. As
suggested in previous exercises, there might be considerable copying of results, thus it is
doubtful to what extent the recorded confirmations correspond to actual results. The opposite
is the case in Uganda, where fewer than 65 per cent had a confirmatory result (Table 1).

Solution to Exercise 4: Confirmatory results in serial smears

Exercise hypotheses
H01: At least 80 per cent of suspects with at least one scanty or positive smear

result have a confirmatory scanty or positive result
H02: At least 90 per cent of suspects with three serial examination among which

there is at least one scanty or positive smear result have a confirmatory
scanty or positive result in another examination

Key Learning Points
When you have a hypothesis to test, remember that it may be logical to:

a. Create and use a subset of the working dataset
b. Create new variable(s)
c. Produce multiple frequencies of results with different selection criteria

d. Make use of other software applications e.g. a spreadsheet to make
calculations.

course_c_ex04_solution
Page 2 of 6

As shown in table 2, the absence of confirmatory results is simply attributable to the fact that
once a smear is positive (or scanty), no further examination is being made. If such an
examination is being made, then a confirmation was obtained in 90 per cent of more, with the
exception of Zimbabwe, where it was just slightly below the critical proportion.

In summary, this exercise showed that confirmatory smears can generally be made, but in
some countries, they are simply not sought. The more general question then is whether it is
sensible to require such confirmatory smears, particular in the light that the treatment decision
is not greatly affected by it, only the surveillance definition.

The program C_EX04.PGM:
* Part C, Exercise 4
* This is b_ex04 EpiData Analysis program
* to determine the frequency of confirmatory smears

* Moldova, Mongolia, Uganda, Zimbabwe
* Data courtesy:
* Moldowa: Dumitru Laticevschi, OR Paris 2003
* Mongolia: Nymadawa Naranbat, OR Paris 2004
* Uganda: Achilles Katamba, OR Paris 2003
* Zimbabwe: Biggie Mabaera, OR Paris 2004

* Written by: Hans L Rieder
* First version: 17 Jan 2010
* Last revision: 29 Apr 2013

* Selection
cls
close
logclose

read "c_ex01.rec"

* Selection criteria:
* - At least 1 smear must be positive
* - Diagnostic examinees only

* Definitions:
* - Case: at least 1 AFB in at least 1 smear
* - Scanty: 1-9 AFB or "Scanty not quantified"
* - Positive: any non-scanty positive result
* - Scanty series: at least 1 smear is scanty
* - Positive series: at least 1 is positive, none is scanty

gen i case=0
if result1>0 and result1<9 then case=1
if result2>0 and result2<9 then case=1
if result3>0 and result3<9 then case=1

select case=1
select reason=0

keep country result1 result2 result3
savedata "temp_01.rec" /replace

* New variable definition
cls
close
logclose

read "temp_01.rec"

* code for scanty results in series
 define scanty1 <A>
if result1=0 then scanty1="N"
if result1>0 and result1<1 then scanty1="S"
if result1>=1 and result1<5 then scanty1="P"

course_c_ex04_solution
Page 3 of 6

if result1=5 then scanty1="S"
if result1=4 then scanty1="P"
if result1=9 then scanty1="9"

 define scanty2 <A>
if result2=0 then scanty2="N"
if result2>0 and result2<1 then scanty2="S"
if result2>=1 and result2<5 then scanty2="P"
if result2=5 then scanty2="S"
if result2=4 then scanty2="P"
if result2=9 then scanty2="9"

 define scanty3 <A>
if result3=0 then scanty3="N"
if result3>0 and result3<1 then scanty3="S"
if result3>=1 and result3<5 then scanty3="P"
if result3=5 then scanty3="S"
if result3=4 then scanty3="P"
if result3=9 then scanty3="9"

define scanty ___
scanty=scanty1+scanty2+scanty3

cls
gen i confirm=0
if substr(scanty,1,1)="N" and substr(scanty,2,1)="N" and substr(scanty,3,1)="P" then confirm=1
if substr(scanty,1,1)="N" and substr(scanty,2,1)="N" and substr(scanty,3,1)="S" then confirm=3
if substr(scanty,1,1)="N" and substr(scanty,2,1)="P" and substr(scanty,3,1)="9" then confirm=1
if substr(scanty,1,1)="N" and substr(scanty,2,1)="P" and substr(scanty,3,1)="N" then confirm=1
if substr(scanty,1,1)="N" and substr(scanty,2,1)="P" and substr(scanty,3,1)="P" then confirm=2
if substr(scanty,1,1)="N" and substr(scanty,2,1)="P" and substr(scanty,3,1)="S" then confirm=4
if substr(scanty,1,1)="N" and substr(scanty,2,1)="S" and substr(scanty,3,1)="9" then confirm=3
if substr(scanty,1,1)="N" and substr(scanty,2,1)="S" and substr(scanty,3,1)="N" then confirm=3
if substr(scanty,1,1)="N" and substr(scanty,2,1)="S" and substr(scanty,3,1)="P" then confirm=4
if substr(scanty,1,1)="N" and substr(scanty,2,1)="S" and substr(scanty,3,1)="S" then confirm=4

cls
if substr(scanty,1,1)="P" and substr(scanty,2,1)="N" and substr(scanty,3,1)="9" then confirm=1
if substr(scanty,1,1)="P" and substr(scanty,2,1)="N" and substr(scanty,3,1)="N" then confirm=1
if substr(scanty,1,1)="P" and substr(scanty,2,1)="N" and substr(scanty,3,1)="P" then confirm=2
if substr(scanty,1,1)="P" and substr(scanty,2,1)="N" and substr(scanty,3,1)="S" then confirm=4
if substr(scanty,1,1)="P" and substr(scanty,2,1)="P" and substr(scanty,3,1)="9" then confirm=2
if substr(scanty,1,1)="P" and substr(scanty,2,1)="P" and substr(scanty,3,1)="N" then confirm=2
if substr(scanty,1,1)="P" and substr(scanty,2,1)="P" and substr(scanty,3,1)="P" then confirm=2
if substr(scanty,1,1)="P" and substr(scanty,2,1)="P" and substr(scanty,3,1)="S" then confirm=4
if substr(scanty,1,1)="P" and substr(scanty,2,1)="S" and substr(scanty,3,1)="9" then confirm=4
if substr(scanty,1,1)="P" and substr(scanty,2,1)="S" and substr(scanty,3,1)="N" then confirm=4
if substr(scanty,1,1)="P" and substr(scanty,2,1)="S" and substr(scanty,3,1)="P" then confirm=4
if substr(scanty,1,1)="P" and substr(scanty,2,1)="S" and substr(scanty,3,1)="S" then confirm=4
if substr(scanty,1,1)="P" and substr(scanty,2,1)="9" and substr(scanty,3,1)="9" then confirm=1

cls
if substr(scanty,1,1)="S" and substr(scanty,2,1)="N" and substr(scanty,3,1)="9" then confirm=3
if substr(scanty,1,1)="S" and substr(scanty,2,1)="N" and substr(scanty,3,1)="N" then confirm=3
if substr(scanty,1,1)="S" and substr(scanty,2,1)="N" and substr(scanty,3,1)="P" then confirm=4
if substr(scanty,1,1)="S" and substr(scanty,2,1)="N" and substr(scanty,3,1)="S" then confirm=4
if substr(scanty,1,1)="S" and substr(scanty,2,1)="P" and substr(scanty,3,1)="9" then confirm=4
if substr(scanty,1,1)="S" and substr(scanty,2,1)="P" and substr(scanty,3,1)="N" then confirm=4
if substr(scanty,1,1)="S" and substr(scanty,2,1)="P" and substr(scanty,3,1)="P" then confirm=4
if substr(scanty,1,1)="S" and substr(scanty,2,1)="P" and substr(scanty,3,1)="S" then confirm=4
if substr(scanty,1,1)="S" and substr(scanty,2,1)="S" and substr(scanty,3,1)="9" then confirm=4
if substr(scanty,1,1)="S" and substr(scanty,2,1)="S" and substr(scanty,3,1)="N" then confirm=4
if substr(scanty,1,1)="S" and substr(scanty,2,1)="S" and substr(scanty,3,1)="P" then confirm=4
if substr(scanty,1,1)="S" and substr(scanty,2,1)="S" and substr(scanty,3,1)="S" then confirm=4
if substr(scanty,1,1)="S" and substr(scanty,2,1)="9" and substr(scanty,3,1)="9" then confirm=3

cls
label confirm "Confirmed by another positive"
labelvalue confirm /0="All negative"
labelvalue confirm /1="Pos not confirmed"
labelvalue confirm /2="Pos confirmed"
labelvalue confirm /3="Scanty not confirmed"
labelvalue confirm /4="Scanty confirmed"

cls
gen i scantpos=0

course_c_ex04_solution
Page 4 of 6

* Scanty, not confirmed
if scanty="NNS" then scantpos=1
if scanty="NS9" then scantpos=1
if scanty="NSN" then scantpos=1
if scanty="S99" then scantpos=1
if scanty="SN9" then scantpos=1
if scanty="SNN" then scantpos=1

cls
* Positive not confirmed
if scanty="NNP" then scantpos=2
if scanty="NP9" then scantpos=2
if scanty="NPN" then scantpos=2
if scanty="P99" then scantpos=2
if scanty="PN9" then scantpos=2
if scanty="PNN" then scantpos=2

cls
* Positive, confirmed, no Scanty in series
if scanty="NPP" then scantpos=3
if scanty="PNP" then scantpos=3
if scanty="PP9" then scantpos=3
if scanty="PPN" then scantpos=3
if scanty="PPP" then scantpos=3

cls
* Scanty, confirmed, no Positive in series
if scanty="NSS" then scantpos=4
if scanty="SNS" then scantpos=4
if scanty="SSN" then scantpos=4
if scanty="SS9" then scantpos=4
if scanty="SSS" then scantpos=4

cls
* Scanty-Positive, mixed scanty and positive in series
if scanty="NPS" then scantpos=5
if scanty="NSP" then scantpos=5
if scanty="PNS" then scantpos=5
if scanty="PPS" then scantpos=5
if scanty="PS9" then scantpos=5
if scanty="PSN" then scantpos=5
if scanty="PSP" then scantpos=5
if scanty="PSS" then scantpos=5
if scanty="SNP" then scantpos=5
if scanty="SP9" then scantpos=5
if scanty="SPN" then scantpos=5
if scanty="SPP" then scantpos=5
if scanty="SPS" then scantpos=5
if scanty="SSP" then scantpos=5

cls
label scantpos "Confirmation of smears"
labelvalue scantpos /1="Single Scanty"
labelvalue scantpos /2="Single Positive"
labelvalue scantpos /3="Positive confirmed by Positive"
labelvalue scantpos /4="Scanty confirmed by Scanty"
labelvalue scantpos /5="Scanty confirmed by Positive"

cls
define confres #
if confirm=1 or confirm=3 then confres=0
if confirm=2 or confirm=4 then confres=1
label confres "Confirmed by another positive"
labelvalue confres /0="Not confirmed"
labelvalue confres /1="Confirmed"

savedata "temp_02.rec" /replace

* Output for C_EX04

cls
close

read "temp_02.rec"

course_c_ex04_solution
Page 5 of 6

* Table 1. Confirmatory smears among all cases
cls
logclose
set echo=off
logopen "c_ex04_1.txt" /replace
ciplot confres country /ng if confirm<>0
ciplot scantpos country /ng if confirm<>0

title "Confirmation in all countries"
freq confres /c /ci if confirm<>0
freq scantpos /c /ci if confirm<>0

title "Confirmation in Moldova"
freq confres /c /ci if confirm<>0 and country=1
freq scantpos /c /ci if confirm<>0 and country=1

title "Confirmation in Mongolia"
freq confres /c /ci if confirm<>0 and country=2
freq scantpos /c /ci if confirm<>0 and country=2

title "Confirmation in Uganda"
freq confres /c /ci if confirm<>0 and country=3
freq scantpos /c /ci if confirm<>0 and country=3

title "Confirmation in Zimbabwe"
freq confres /c /ci if confirm<>0 and country=4
freq scantpos /c /ci if confirm<>0 and country=4
logclose
set echo=on

* Table 2. Confirmatory smears among all cases with three examinations
cls
logclose
logopen "c_ex04_2.txt" /replace
select
select confirm<>0
select substr(scanty,2,1)<>"9"
select substr(scanty,3,1)<>"9"

set echo=off
cls

title "Confirmation in all countries"
freq confres /c /ci
freq scantpos /c /ci

title "Confirmation in Moldova"
freq confres /c /ci if country=1
freq scantpos /c /ci if country=1

title "Confirmation in Mongolia"
freq confres /c /ci if country=2
freq scantpos /c /ci if country=2

title "Confirmation in Uganda"
freq confres /c /ci if country=3
freq scantpos /c /ci if country=3

title "Confirmation in Zimbabwe"
freq confres /c /ci if country=4
freq scantpos /c /ci if country=4
logclose

course_c_ex04_solution
Page 6 of 6

course_d_ex01_task
Page 1 of 11

Part D. More on EpiData software

Part D: More on EpiData software
Exercise 1: Relational database and aggregating vs from “Long-to-wide”
Exercise 2: A statistical process control chart
Exercise 3: A simplified survival analysis
Exercise 4: Creating a menu for standard reports
Exercise 5: Formatting standardized analysis output in a spreadsheet

Introductory note
Part D will address operationally relevant concepts in data collection and data analysis:

• How do we deal with a situation, where each individual has a varying number of
observations?

• How do we determine statistically relevant deviations from a proportion over an
observation period when the denominator varies with each time unit over the observation
period?

• What is survival analysis and how to deal with it in EpiData Analysis?

• How to make a menu-driven, HTML-based EpiData Analysis interface to run standard
reports?

course_d_ex01_task
Page 2 of 11

Not all laboratories keep their registers as The Union and WHO recommend for the
Tuberculosis Laboratory Register, where 1 line corresponds to 1 examinee rather than to 1
examination. In fact, many laboratories enter the results for each examination on one line. If
such an approach is chosen, we may find a register as follows:

Patient Date of exam Sex Marital status Blood sugar Sputum Result
A 24-Mar-2007 Male Married 6.3 Mucoid 1+
B 24-Mar-2007 Male Divorced 4.9 Muco-purulent Neg
C 24-Mar-2007 Female Single 5.2 Purulent Neg
D 24-Mar-2007 Female Widowed 7.3 Blood-tinged 2 per 100
A 25-Mar-2007 Male 7.3 Salivary Neg
D 25-Mar-2007 Female 7.4 Mucoid 2+
A 26-Mar-2007 7.2 Purulent 1+
C 26-Mar-2007 Female 4.8 Muco-purulent Neg
E 27-Mar-2007 Male Married 8.2 1+
F 27-Mar-2007 Female Annulled 7.4 Purulent Neg
G 27-Mar-2007 Male Cohabitating 6.9 Salivary Neg
G 28-Mar-2007 Male 7.2 Mucoid 2+
E 28-Mar-2007 Male 7.9 Purulent 2+
F 31-Mar-2007 Female 7.2 Muco-purulent 3+
H 31-Mar-2007 Married 6.6 Mucoid Neg
I 31-Mar-2007 Male Separated 8.3 Salivary Neg
H 1-Apr-2007 Female 6.9 Muco-purulent 1+
F 1-Apr-2007 Female Engaged 7.7 Purulent 2+
I 1-Apr-2007 Male Single 8.0 Mucoid 8 per 100
G 1-Apr-2007 Male 7.6 Muco-purulent 1+
K 2-Apr-2007 Female Married 4.5 Purulent Neg
I 2-Apr-2007 Male 8.2 Muco-purulent
H 2-Apr-2007 Female 6.6 Mucoid 1+
I 3-Apr-2007 Male 8.1 Mucoid 1+

This type of a register requires a different approach to both data entry and data analysis than
we used before. Two important things need to be considered:

1) The same patient may appear again and again on sequential dates
2) Not every patient has the same number of visits

Exercise 1: A relational database and “Aggregating” vs from “long-to-
wide”

At the end of this exercise you should be able to:
a. Create a relational database for a varying number of observations
b. Merge a child file to the parent file
c. Recognizing when to use “Aggregate” and when to transpose data
d. Transpose multiple observations (columns) into a single record (row)

course_d_ex01_task
Page 3 of 11

Some patient characteristics do not change over time such as, in this example, the identity of
the patient, sex, and marital status (well, perhaps not during these short intervals). Others do
change, such as the date of examination, blood sugar, the aspect of the sputum and the sputum
smear examination result.
To capture such information in a single data entry form would be very inconvenient: 1) one
would have to anticipate the maximum of allowable visits, and 2) if one patient has a single
visit, one would still have to complete all fields with the codes for missing values up to the
maximum allotted if we insist that all fields must be MUSTENTER fields.

Building a relational database requires determining which information is static for an
individual and which changes over repeated observations.

EpiData Manager and EntryClient
You may refer to Exercise 7 “Relational database” in Part A on the principles of and how to
create a relational database.

The working example
You will create an EpiData file:
d_ex01.epx

To get uniform naming during design and entry, we propose the following:

The project is saved as “d_ex01.epx” and the two databases it consists of are the parent
dataset named “patient” and the child set “visit”. When exporting:

EpiData will automatically create the appropriate two files:

Rule: If an individual has a single observation for each variable or a fixed number of
observations for each variable, then a single EpiData entry form is the best solution. If an
individual has a variable number of observations for each variable, the choice is a
relational database.

course_d_ex01_task
Page 4 of 11

d_ex01_patient.epx
d_ex01_visit.epx

These files will be required in EpiData Analysis for merging.

EpiData Analysis
The final result of the analysis will be to obtain the following EpiData Analysis output:

Part 1 with AGGREGATE

Part 2 with transposing values

It doesn’t really look like much. Nevertheless, quite a few steps are needed to get from the
source files D_EX01_PATIENT.EPX and D_EX01_VISIT.EPX to this point. We will
elaborate on some considerations you have to make and offer hints for the sequential
components in EpiData Analysis.

Merging the files
In EpiData Manager you made a relation through a unique identifier from the parent to the
child file. In EpiData Analysis you must now merge these to files to get the following
dataset.
We start by reading the child file:
read "childfile.epx"
merge parentidentifier /file="parentfile.epx" /table

course_d_ex01_task
Page 5 of 11

To each record from the child file, information from the parent file is added repetitively for
each observation for the same individual. In other words, you start from the other way around
than in EpiData EntryClient, starting in EpiData Analysis with the child file and using the
parent as a lookup table.
As a result we get (first 13 records only shown):

A variable MERGEVAR has been created by EpiData Analysis. It can take 3 values:
1 Only in memory (original)
2 Only in external file
3 In both
A frequency helps to identify quickly whether there are for instance any “orphans”, that is
child records which do not find the same identifier in a parent record and are thus useless.

We note in the above that the visit dates are not temporally sequential within each parent
identifier, we need thus sorting, first by parent identifier, then within them by date, thus:
sort idpat visitdate

However, this may not be correct in all circumstances.
Note: We commonly suggested to code unknown dates as “01/01/1800”. With sorting, the
unknown date will thus come first (sorting is ascending by default) and this might not be
desirable. In this dataset we don’t have unknown dates. But only because the small dataset
allows us to see that, you would have to anticipate that possibility with a larger dataset and
thus first make a new date variable where the unknowns take a value for a date in the future,
so they appear with sorting at the end of the information on an individual.
Following the sorting, it might be advantageous to number the visits in order to be able to
make a frequency on them to see what the maximum number of visits is (here we can see that
it is a maximum of 4 visits, but in a large database, it would be more difficult).

To create a new variable EXAM and set its default initially to 1 (each record takes first the
value 1), we have so far used the following grammar:
define exam #
exam=1

course_d_ex01_task
Page 6 of 11

or alternatively the one-line alternative approach which accomplishes exactly the same thing:
gen i exam=1

The command GEN replaces DEFINE and “i” stands for an integer field.

There are other similar commands (see an earlier Exercise):
gen f doorheight=1.85
gen d birthdate=dmy(31,12,1899)
gen s firstname=”john”

for date fields (d) float (real number) fields (f), and string (text) fields (s). Look it up in the
help file (type gen+F1 in the command line).

Now that you have a new variable EXAM, how can you tell EpiData that it should look at the
person (identified by an ID) and number each visit, starting with 1 until the next individual
comes, when it must start again with 1. The command is:
if id=id[_n-1] then visit=visit[_n-1]+1

This looks admittedly complex. Let’s thus take it apart. [_n] identifies the current record
and accordingly [_n-1] the immediately preceding record. Let’s say, EpiData Analysis has
proceeded to record 547 and looks at the ID of this record. It looks whether record 546 had
the same ID as record number 547: if id=id[_n-1]. If that is the case, then it should
take the VISIT number of record 546 and add 1 to it for record 547: visit=visit[_n-
1]+1. If it is not the case, then the default stays (which we defined as 1) and it moves on to
the next record.
As a result, you should get:

the first variable column showing the identifier, the second the date of the examination, and
the third the number of the examination for that individual.

Note: the command GEN will produce integer of length of 9. If you need a shorter and
fixed field length integer, you must utilize DEFINE.

course_d_ex01_task
Page 7 of 11

Aggregating data

If we look at the sex (given the field name SEX), date of visit (given the field name
VISITDATE), and blood sugar (given the field name BS):

SEX remains obviously the same (and is thus from the parent file), and is a categorical
variable unique to the examined person, while BS varies by examination date and is a
continuous variable. If we want to examine blood sugar by sex, there is no need to transpose
the blood sugar values from the vertical to the horizontal as EpiData Analysis has inbuilt a
tool to aggregate the data. For the individual and its sex we would write:
aggregate idpat sex /close

and get with BROWSE the ten individuals and their SEX:

We can expand this command using an option to calculate the MEAN of blood sugar for each
individual:
aggregate idpat sex /mean="bs" /close

and get:

where MEAbs is the calculated mean value of blood sugar for an individual from all the
individual’s measurements. To save the aggregate data in a file, we add another option:
aggregate patid sex /mean="bs" /close /save="d_ex01_aggregate.rec" /replace

course_d_ex01_task
Page 8 of 11

Having accomplished this, it is now straight forward to write:
cls
close
read "d_ex01_aggregate.rec"
boxplot meabs /by=sex

and get:

Default (shown above) Using additional options (see Help file)

From long-to-wide
For showing means, there is thus no need to transpose data from the vertical to the horizontal.
But it is different for the macroscopic aspect of sputum the examination results. We do not
want (nor would we get a sensible result) aggregate sputum smear results. We wish to know
each result from each individual.
The first thing before starting copying results from the vertical to the horizontal, we need to
know the maximum number of examinations an individual had in the data set. We can get
this with a frequency on the VISIT:
freq visit

This shows that the maximum number of examinations an individual had in this dataset was 4.
We need thus to prepare 4 new variables for each field that are in the sequence of the
examination in the vertical but should also become part of each record.

Let’s say we have a variable VAR1 with different values for each visit:
ID VISIT VAR1
B1 1 1
B1 2 3
B1 3 2
B1 4 2
C1 1 3
D1 1 2

course_d_ex01_task
Page 9 of 11

What we need is:
ID VISIT VAR1 VAR11 VAR12 VAR13 VAR14
B1 1 1
B1 2 3
B1 3 6
B1 4 2
C1 1 3
D1 1 2

First, we make these 4 variables and give them all the default value of -1 (the minus one is a
good way to see missing data and helps later in the selection):
gen i var11=-1
gen i var12=-1
gen i var13=-1
gen i var14=-1

After these four command lines, our above dataset becomes:
ID VISIT VAR1 VAR11 VAR12 VAR13 VAR14
B1 1 1 -1 -1 -1 -1
B1 2 3 -1 -1 -1 -1
B1 3 6 -1 -1 -1 -1
B1 4 2 -1 -1 -1 -1
C1 1 3 -1 -1 -1 -1
D1 1 2 -1 -1 -1 -1

and we are ready to copy the values from the vertical to the horizontal by respecting that the
value of VAR1 from VISIT 1 goes to VAR11, the value from VISIT 2 to VAR12, etc.

For VISIT 1, the value for VAR11 is equal to the value of VAR1 and we make it thus the
default:
VAR11=VAR1

Then we use the same approach as above to identify the record:
if id[_n]=id[_n+1) then var12=var1[_n+1]

This means that if the current record [_n] has the same ID as the next record [_n+1], then
VAR12 in the current record should take the value of VAR1 from the next record [_n+1].
Now we do this for all possible 4 records (the maximum of VISITs):
if id[_n]=id[_n+2] then var13=var1[_n+2]
if id[_n]=id[_n+3] then var14=var1[_n+3]

All the lines to be written for this original field VAR1 are thus:
gen i var11=-1
gen i var12=-1
gen i var13=-1
gen i var14=-1
VAR11=VAR1
if id[_n]=id[_n+1] then var12=var1[_n+1]
if id[_n]=id[_n+2] then var13=var1[_n+2]
if id[_n]=id[_n+3] then var14=var1[_n+3]

and we get (assuming that the last patient D1 had only 1 VISIT):

course_d_ex01_task
Page 10 of 11

ID VISIT VAR1 VAR11 VAR12 VAR13 VAR14
B1 1 1 1 3 6 2
B1 2 3 1 3 6 -1
B1 3 6 1 3 -1 -1
B1 4 2 1 -1 -1 -1
C1 1 3 3 -1 -1 -1
D1 1 2 2 -1 -1 -1

You may note that only for VISIT 1 for patient B1 with four visits all new 4 variables have
all respective 4 values from the 4 VISITs.

Now we can safely get rid of the records of VISITs 2, 3, and 4 and we end up just with
individuals who have all information from each VISIT:
select visit=1

and we get:
ID VISIT VAR1 VAR11 VAR12 VAR13 VAR14
B1 1 1 1 3 6 2
C1 1 3 3 -1 -1 -1
D1 1 2 2 -1 -1 -1

The conversion from “Long-to-wide” is thus successfully completed, well, for this variable.
Of course, before you make this selection, you have to repeat the same approach for each
field, so that in the end you get something like:

You have now ten patients and you are at the point where you can continue to work in the
same way as you used to work before. While it is much more complex to get to here from 1
line per examination than from 1 line per examinee, it is also obvious that in the end this is
much more informative.
For each examination we have the date and for each specimen we have the quality of the
sputum. In the Union / WHO approach you have only one date (the date of collection of the
first specimen) for a series of three, and the quality of sputum in the Tuberculosis Laboratory
is not that informative as it is very possible that every day the quality of the specimen is
different, but there is no space allocated to write 3 different ones.

Tasks:
• Prepare a data documentation sheet
• Prepare the EpiData Manager form for the relational database
• Enter the data from the following sample data set:

course_d_ex01_task
Page 11 of 11

Patient Date of exam Sex Marital status Blood sugar Sputum Result
A 24-Mar-2007 Male Married 6.3 Mucoid 1+
B 24-Mar-2007 Male Divorced 4.9 Muco-purulent Neg
C 24-Mar-2007 Female Single 5.2 Purulent Neg
D 24-Mar-2007 Female Widowed 7.3 Blood-tinged 2 per 100
A 25-Mar-2007 Male 7.3 Salivary Neg
D 25-Mar-2007 Female 7.4 Mucoid 2+
A 26-Mar-2007 7.2 Purulent 1+
C 26-Mar-2007 Female 4.8 Muco-purulent Neg
E 27-Mar-2007 Male Married 8.2 1+
F 27-Mar-2007 Female Annulled 7.4 Purulent Neg
G 27-Mar-2007 Male Cohabitating 6.9 Salivary Neg
G 28-Mar-2007 Male 7.2 Mucoid 2+
E 28-Mar-2007 Male 7.9 Purulent 2+
F 31-Mar-2007 Female 7.2 Muco-purulent 3+
H 31-Mar-2007 Married 6.6 Mucoid Neg
I 31-Mar-2007 Male Separated 8.3 Salivary Neg
H 1-Apr-2007 Female 6.9 Muco-purulent 1+
F 1-Apr-2007 Female Engaged 7.7 Purulent 2+
I 1-Apr-2007 Male Single 8.0 Mucoid 8 per 100
G 1-Apr-2007 Male 7.6 Muco-purulent 1+
K 2-Apr-2007 Female Married 4.5 Purulent Neg
I 2-Apr-2007 Male 8.2 Muco-purulent
H 2-Apr-2007 Female 6.6 Mucoid 1+
I 3-Apr-2007 Male 8.1 Mucoid 1+

• Write a program D_EX01.PGM that merges the two files, then prepare sets for the
aggregated data and for the “long-to-wide” transformation to produce the following
output respectively:

From aggregating the data: From transformation “long-to-wide”:

course_d_ex01_solution
Page 1 of 8

Frequently in medicine you have information from multiple visits by one patient to a health
care provider who collects similar information on every visit.

Task
• Prepare a data documentation sheet
The documentation sheet is shown on the next page.

Task
• Prepare the EpiData Manager form for the relational database
The data entry forms may be made as follows:

D_EX01_PATIENT.EPX D_EX01_VISIT.EPX

Solution to Exercise 1: A relational database and “Aggregating” vs
from “long-to-wide”

Key points:
• A relational database is the solution to a varying number of observations per

individual
• The child file is merged with the parent file to give a dataset of all

observations
• To obtain means for an individual from continuous variables, aggregating the

data is the strategy of choice
• To reduce the dataset to individuals with information on each examination,

one must copy the information from observations in the vertical to newly
created fields in the first observation of each individual before selecting that
record from the individual (“long-to-wide”)

course_d_ex01_solution
Page 2 of 8

The data documentation sheet:

 Data documentation sheet

Field
name Field label Field type

Field
length Field values Value label Field comment

Pa
tie

nt
 fi

le

idpat Unique patient identifier U 1 A,…,Z Any given unique ID

sex Patient's sex I 1 1 Female
 2 Male
 3 Unknown
marital Patient's marital status I 1 1 Single
 2 Married
 3 Cohabitating
 4 Annulled
 5 Divorced
 6 Widowed
 7 Separated
 8 Engaged
 9 Not recorded

 NOTE: If SEX is given during an earlier examination and left empty in a subsequent examination, update the information to known
 If SEX is different in different examinations, record as UNKNOWN
 If MARITAL is given during an earlier examination and left empty in a subsequent examination, keep the initial information from earlier
 If MARITAL is different in different examinations, update to most recent information

Ex
am

in
at

io
n

fil
e

idvisit Unique examination identifier S 12 A-2007-01-31,… Automatically calculated
visitdate Date of visit dd/mm/yyyy 10 01/01/2007,…,31/12/2007 Legal visit date recordings
 01/01/1800 Enter if visit date is missing
bs Fasting plasma blood glucose (mMol) F 4 2.5,…,19.9 Legal valid value

 99.9
Enter if blood sugar is
missing

sputum Macroscopic sputum aspect I 1 1 Mucoid
 2 Purulent

course_d_ex01_solution
Page 3 of 8

 3 Muco-purulent
 4 Blood-tinged
 5 Salivary
 9 Not recorded
micres Microscopy result I 1 0 Negative
 1 "1+ positive"
 2 "2+ positive"
 3 "3+ positive"
 4 "Scanty positive"
 9 "Not recorded"

course_d_ex01_solution
Page 4 of 8

Task:
• Write a program D_EX01.PGM that merges the two files, then prepare sets for the

aggregated data and for the “long-to-wide” transformation to produce the following
output respectively:

From aggregating the data: From transformation “long-to-wide”:

The D_EX01.PGM reads:
* Part D, Exercise 1
* Merging files and aggregating files
* Copying and transposing data from "Long-to-wide"

* Written by: Hans L Rieder
* First version: 17 Jan 2010
* Last revision: 11 Nov 2016

cls
close
logclose

**
* Merge child and parent files

cls
close

read "d_ex01_visit.epx"
merge idpat /file="d_ex01_patient.epx" /table

sort idpat visitdate
gen i visit=1
if idpat=idpat[_n-1] then visit=visit[_n-1]+1
label visit "Visit number"

savedata "temp_01.rec" /replace

* Create an aggregate data set
* to determine means

cls
close
read "temp_01.rec"

course_d_ex01_solution
Page 5 of 8

aggregate idpat sex /mean="bs" /close /save="d_ex01_aggregate.rec" /replace

cls
close
read "d_ex01_aggregate.rec"

* set display databrowser=on
* browse
* tables sex meabs //Testing here only, will be done in Analysis
* boxplot meabs /by=sex //Testing here only, will be done in Analysis

* Transpose , copy "long-to-wide"

cls
close
read "temp_01.rec"

* freq exam
* => Maximum is 4 visits

cls
gen d visitdate1
gen d visitdate2
gen d visitdate3
gen d visitdate4
 visitdate1=visitdate
if (idpat[_n])=(idpat[_n+1]) then visitdate2=visitdate[_n+1]
if (idpat[_n])=(idpat[_n+2]) then visitdate3=visitdate[_n+2]
if (idpat[_n])=(idpat[_n+3]) then visitdate4=visitdate[_n+3]

cls
define bs1 ##.#
define bs2 ##.#
define bs3 ##.#
define bs4 ##.#
 bs1=bs
if (idpat[_n])=(idpat[_n+1]) then bs2=bs[_n+1]
if (idpat[_n])=(idpat[_n+2]) then bs3=bs[_n+2]
if (idpat[_n])=(idpat[_n+3]) then bs4=bs[_n+3]

cls
gen i sputum1
gen i sputum2
gen i sputum3
gen i sputum4
 sputum1=sputum
if (idpat[_n])=(idpat[_n+1]) then sputum2=sputum[_n+1]
if (idpat[_n])=(idpat[_n+2]) then sputum3=sputum[_n+2]
if (idpat[_n])=(idpat[_n+3]) then sputum4=sputum[_n+3]

cls
gen i micres1
gen i micres2
gen i micres3
gen i micres4
 micres1=micres
if (idpat[_n])=(idpat[_n+1]) then micres2=micres[_n+1]
if (idpat[_n])=(idpat[_n+2]) then micres3=micres[_n+2]
if (idpat[_n])=(idpat[_n+3]) then micres4=micres[_n+3]

cls
label visitdate1 "Date of 1st visit"
label visitdate2 "Date of 2nd visit"
label visitdate3 "Date of 3rd visit"

course_d_ex01_solution
Page 6 of 8

label visitdate4 "Date of 4th visit"
cls
label bs1 "Plasma glucose at 1st visit"
label bs2 "Plasma glucose at 2nd visit"
label bs3 "Plasma glucose at 3rd visit"
label bs4 "Plasma glucose at 4th visit"
cls
label sputum1 "Macroscopic sputum of 1st visit"
label sputum2 "Macroscopic sputum of 2nd visit"
label sputum3 "Macroscopic sputum of 3rd visit"
label sputum4 "Macroscopic sputum of 4th visit"
labelvalue sputum1-sputum4 /1="Mucoid"
labelvalue sputum1-sputum4 /2="Purulent"
labelvalue sputum1-sputum4 /3="Muco-purulent"
labelvalue sputum1-sputum4 /4="Blood-tinged"
labelvalue sputum1-sputum4 /5="Salivary"
labelvalue sputum1-sputum4 /9="Not recorded"
cls
label micres1 "Microscopy result of 1st visit"
label micres2 "Microscopy result of 2nd visit"
label micres3 "Microscopy result of 3rd visit"
label micres4 "Microscopy result of 4th visit"
labelvalue micres1-micres4 /0="Negative"
labelvalue micres1-micres4 /1="1+ positive"
labelvalue micres1-micres4 /2="1+ positive"
labelvalue micres1-micres4 /3="1+ positive"
labelvalue micres1-micres4 /4="Scanty positive"
labelvalue micres1-micres4 /9="Not recorded"
cls
label marital "Civil status"

select visit=1
drop visitid mergevar visit

savedata "temp_02.rec" /replace

cls
close
read "temp_02.rec"

define restxt1 _
define restxt2 _
define restxt3 _
define restxt4 _

cls
restxt1="-"
if micres1>0 and micres1<9 then restxt1="P"
if micres1=0 then restxt1="N"
if micres1=9 then restxt1="9"
cls
restxt2="-"
if micres2>0 and micres2<9 then restxt2="P"
if micres2=0 then restxt2="N"
if micres2=9 then restxt2="9"
cls
restxt3="-"
if micres3>0 and micres3<9 then restxt3="P"
if micres3=0 then restxt3="N"
if micres3=9 then restxt3="9"
cls
restxt4="-"
if micres4>0 and micres4<9 then restxt4="P"
if micres4=0 then restxt4="N"
if micres4=9 then restxt4="9"

course_d_ex01_solution
Page 7 of 8

cls
define pattern ____
pattern=restxt1+restxt2+restxt3+restxt4
label pattern "Pattern of 4 serial smears"

* freq pattern

cls
define case #
 case=0
if substr(pattern,1,1)="P" then case=1
if substr(pattern,2,1)="P" then case=1
if substr(pattern,3,1)="P" then case=1
if substr(pattern,4,1)="P" then case=1

label case "Definition of case by microscopy"
labelvalue case /0="Negative"
labelvalue case /1="Positive"

define yield ___
if substr(pattern,1,3)="N--" then yield="N99"
if substr(pattern,1,3)="NN-" then yield="NN9"
if substr(pattern,1,3)="NP9" then yield="NPx"
if substr(pattern,1,3)="NPP" then yield="NPx"
if substr(pattern,1,3)="PNP" then yield="Px "
if substr(pattern,1,3)="PP-" then yield="Px"
label yield "Incremental yield of first 3 smears"

keep idpat sex marital \
 visitdate1 visitdate2 visitdate3 visitdate4 \
 sputum1 sputum2 sputum3 sputum4 \
 micres1 micres2 micres3 micres4 \
 case pattern yield
savedata "d_ex01.rec" /replace

* Produce tables on smear pattern and incremental yield

cls
close
read "d_ex01_aggregate.rec"

set option graph /sizex=400
set graph footnote="d_ex01_aggregate"

set echo=off
cls
boxplot meabs /by=sex /bw /sub=" Female Male"

cls
close
read "d_ex01.rec"

title "Table 1. Pattern of serial smear results"
tables case pattern
select case=1
title "Table 2. Incremental yield among positive results"
tables sex yield /c /PCT
set echo=on

* Clean up

set echo=off
define yesno # global
cls

course_d_ex01_solution
Page 8 of 8

yesno=?Delete temporary files: 1=yes 0=no?
imif yesno=1 then
 erasepng /all /noconfirm
 erase "temp_01.rec"
 erase "temp_01.chk"
 erase "temp_02.rec"
 erase "temp_02.chk"
 erase "d_ex01_aggregate.chk"
 erase "d_ex01_aggregate.rec"
 select
 cls
 type "All temporary files erased" /h2
 else
 select
 type "File D_EX01_EXAMINEE.REC remains open" /h2
endif
set echo=on

course_d_ex02_task
Page 1 of 3

EpiData Analysis offers a variety of statistical process control (SPC) graphs. In this exercise
we will deal with the determination of a proportion that changes over a period of time, and to
what extent this variation deviates significantly from the expectation.

Let’s assume that you have 1,200 observations during one year in a laboratory. Among these,
10 per cent (120) have positive result. We could determine the standard deviation and a
confidence interval around the positive result or go one step further and take the average we
expect for one month (12 of 100) with some measurement of uncertainty around this monthly
estimate and then chart the actually observed monthly proportion. This would be a correct
procedure if the expected monthly denominator is exactly one twelfth of the annual
observation. However, this is rarely the case if ever and more likely is the scenario that the
denominator varies in each month.

An SPC graph takes these fluctuations in the denominator into account and calculates the
uncertainty as a function of the denominator in the element that is of interest (in this example
the month). While there are some discussions on what is best to use, it has become customary
to use 3 standard deviations as the upper and lower, so-called control limits. In the chart
below, the proportion of scanty positive sputum smear microscopy results among all positive
results is shown for Mongolia from the large laboratory register study over a one-year period:

Statistical Process Chart for Scanty Positive Results
Among all Positive Results, Mongolia, 2003

Month (2003)

Pr
op

or
tio

n
sc

an
ty

 p
os

iti
ve

am
on

g
al

l p
os

iti
ve

 re
su

lts
 (%

)

0

2

4

6

8

10

DAJJMMFJ NOA S

Mongolia

UCL

Mean

LCL

Because the denominator differs in every month, the upper and lower control limits also differ
from month to month.

We will be looking at examinations (not at examinees) and determine five different
proportions (see below).

Exercise 2: A statistical process control chart

At the end of this exercise you should be able to:
a. Aggregate data into the format required for a binomial outcome
b. Create a statistical process control chart for a proportion

course_d_ex02_task
Page 2 of 3

The dataset for the exercise
The dataset to be used in this exercise is the cleaned dataset of the four-country laboratory
study which was provided in the solution to Part C, Exercise 1, dataset C_EX01.REC which
is included as a “supplementary required file” with the current exercise with the name
MMUZ.REC. MMUZ.REC is slightly different from C_EX01.REC in that the coding for the
registration date has been corrected in a few records with an apparent error and the field
REGYEAR has been removed.

To simplify the task (see specifics at the end), you will limit the analysis to the laboratories in
Uganda and to tuberculosis suspects presenting for a diagnostic examination.

The time periods
The Uganda dataset contains information on three years and the unit of measurement of time
will be the month. Because each month will thus appear three times (in each year), a new
variable must be created that gives a sequential number for each month over the three-year
period.

The outcome
The outcome is the monthly proportion of some type of positive results among either all
smears or among positive smears.

There are five different proportions we might be interested in: 1) positive smears of any grade
among all smears, 2) scanty positive smears among all smears, 3) low-positive smears
(defined as either scanty positive or 1+ positive) among all smears, 4) scanty positive smears
among all positive smears, and 5) low-positive smears among all positive smears.

Aggregating the data into the correct format
What is thus needed are counts of examinations with the characteristic (a scanty, a low-
positive, or any positive result) among all examinations or among all positive examinations.
To this end, we aggregate the data as detailed in Part B, Exercise 3.

Making a statistical process control (SPC) chart for proportions over time
The above aggregate file is all we need to get an SPC chart, the general command for which
is:
pchart numerator denominator [time unit]

Proposed procedure in writing the program
It is proposed to split up the program into five distinct sequential procedures:

1) Make the basic dataset

2) Count all smears, all positive, all low-positive smears, and all scanty positive smears

3) Aggregate the months and sum up the smears in question

4) Make the SPC charts

course_d_ex02_task
Page 3 of 3

1) Make the basic dataset
In the basic dataset we need to create the years and the months as separate variables and make
the appropriate selections:

Month and year of recording: the registers were collected reporting laboratory results during
one year up to three years between January 1999 and December 2003. When making a cross-
tabulation of country versus registration year (create a field for registration year from
REGDATE), we see that:

It is thus best to sequentially number all the 60 months from beginning to the end, even if at
the end we will require only the three years covered by Uganda.

Select for diagnostic examinations, country, and range of months.

Save the dataset with a new name.

2) Count all smears, all positive, all low-positive smears, and all scanty positive smears
Create four new variables that count for each record respectively all smears, all positive
smears, all low-positive smears and all scanty positive smears

3) Aggregate the months and sum up the smears in question and save them to four different
files
The element to be aggregated is the month and for each month one must have the relevant
smears (all, all positive, all scanty positive, all low-positive).

4) Make the SPC charts
The appropriate chart type for this binomial outcome is a PChart which has the format:
pchart numerator denominator time

Task
• Produce five PCharts to display the proportion of 1) positive smears among all smears,

2) low-positive smears among all smears, 3) scanty positive smears among all smears, 4)
low-positive smears among all positive smears, and 5) scanty positive smears among all
positive smears.

course_d_ex02_solution
Page 1 of 4

Task
• Produce five PCharts to display the proportion of 1) positive smears among all smears,

2) low-positive smears among all smears, 3) scanty positive smears among all smears, 4)
low-positive smears among all positive smears, and 5) scanty positive smears among all
positive smears.

These are the five PCharts:

Solution to Exercise 2: A statistical process control chart

Key points:
• You must determine on how to aggregate data to obtain the numerator and

denominator and, where necessary, the time components over the
observation period

• For a binomial outcome, a PChart is the appropriate SPC chart

course_d_ex02_solution
Page 2 of 4

This is the program d_ex02.pgm that produced them:
* Part D, Exercise 2

* 1) Determine the proportion of positive
* smears among all smears
* 2) Determine the proportion of low-postive
* smears among all positive smears
* 3) Determine the proportion of scanty positive
* semars among all positive smears
* Definition of positive: any quantified positive
* or any scanty (quantified scanty or unquantified scanty)
* Definition low-positive: any smear which is 1+ positive or scanty positive

* Written by: Hans L Rieder
* First version: 26 Jun 2011
* Last revision: 29 Apr 2013

cls
close
logclose

* Procedural steps
* 1) Make basic dataset
* 2) Start selection process
* 3) Aggregate data
* 4) Make SPC charts

* 1) Prepare basic dataset

cls
close

read "mmuz.rec"

define regyear ####
regyear=year(regdate)
label regyear "Registration year"

cls
tables country regyear

gen i mmseq=0
if year(regdate)=1999 then mmseq=month(regdate)
if year(regdate)=2000 then mmseq=month(regdate)+12
if year(regdate)=2001 then mmseq=month(regdate)+24
if year(regdate)=2002 then mmseq=month(regdate)+36
if year(regdate)=2003 then mmseq=month(regdate)+48
label mmseq "Sequential month"

select reason=0
select country=3
select mmseq>0 and mmseq<37
* The selection above is not necessary for Uganda alone
* as there are no examinees in 2003

keep result1 result2 result3 regyear mmseq
savedata "temp_01.rec" /replace

course_d_ex02_solution
Page 3 of 4

* 2) Count all smears, all positive, all scanty positive,
* all low positive smears

cls
close
read "temp_01.rec"

cls
* Count all smears
* Note: non-sensical sequences removed, thus simply:
gen i allsmears=1
if result2<>9 then allsmears=2
if result3<>9 then allsmears=3
label allsmears "Number of smears"

cls
* Count all positive quantified smears
* (include scanty not quantified)
gen i allpos1=0
if result1>0 and result1<4 then allpos1=1
if result1=5 then allpos1=1
gen i allpos2=0
if result2>0 and result2<4 then allpos2=1
if result2=5 then allpos2=1
gen i allpos3=0
if result3>0 and result3<4 then allpos3=1
if result3=5 then allpos3=1
gen i allpos=allpos1+allpos2+allpos3
label allpos "Number of positive smears"

cls
* Count all scanty smears
* (include scanty not quantified)
gen i scantpos1=0
* (include scanty not quantified)
if result1>0 and result1<1 then scantpos1=1
if result1=5 then scantpos1=1
gen i scantpos2=0
if result2>0 and result2<1 then scantpos2=1
if result2=5 then scantpos2=1
gen i scantpos3=0
if result3>0 and result3<1 then scantpos3=1
if result3=5 then scantpos3=1
gen i scantypos=scantpos1+scantpos2+scantpos3
label scantypos "Number of scanty positive smears"

cls
* Count all low positive smears
* (include scanty not quantified)
gen i lowpos1=0
if result1>0 and result1<2 then lowpos1=1
if result1=5 then lowpos1=1
gen i lowpos2=0
if result2>0 and result2<2 then lowpos2=1
if result2=5 then lowpos2=1
gen i lowpos3=0
if result3>0 and result3<2 then lowpos3=1
if result3=5 then lowpos3=1
gen i lowpos=lowpos1+lowpos2+lowpos3
label lowpos "Number of low positive smears"

keep regyear mmseq allsmears allpos scantypos lowpos
savedata "temp_02.rec" /replace

* 3) Aggregate data

cls
close
read "temp_02.rec"

agg mmseq /sum=allsmears /sum=allpos /sum=scantypos /sum=lowpos /close
drop n nallsm1 nallpos nscantpos nlowpos
rename sumallsm1 to allsmears
rename sumallpos to allpos
rename sumscant1 to scantpos
rename sumlowpos to lowpos

course_d_ex02_solution
Page 4 of 4

drop n nallsm1 nallpos nscant1 nlowpos
savedata "temp_03.rec" /replace

* 4) Make SPC charts

set option spc= /sizex=500 /sizey=350
set graph font size=9

cls
close
logclose

read "temp_03.rec"

set echo=off
pchart allpos allsmears mmseq /xtext="Month of observation" /bw \
 /ytext="Per cent low positive" \
 /ti="Proportion positive smears among all smears" \
 /sub="Uganda, 1999-2001" \
 /fn="Course Part D, Exercise D_EX02, in EpiData Analysis" \
 /b=12 /b=24 \
 /xlined=12.5 /xlined=24.5 \
 /t1 \
 /text="120,60,1999,0" \
 /text="260,60,2000,0" \
 /text="400,60,2001,0"

pchart scantpos allsmears mmseq /xtext="Month of observation" /bw \
 /ytext="Per cent scanty positive" \
 /ti="Proportion scanty pos smears among all smears" \
 /sub="Uganda, 1999-2001" \
 /fn="Course Part D, Exercise D_EX02, in EpiData Analysis" \
 /b=12 /b=24 \
 /xlined=12.5 /xlined=24.5 \
 /t1 \
 /text="120,60,1999,0" \
 /text="250,60,2000,0" \
 /text="400,60,2001,0"

pchart lowpos allsmears mmseq /xtext="Month of observation" /bw \
 /ytext="Per cent scanty positive" \
 /ti="Proportion low positive smears among all smears" \
 /sub="Uganda, 1999-2001" \
 /fn="Course Part D, Exercise D_EX02, in EpiData Analysis" \
 /b=12 /b=24 \
 /xlined=12.5 /xlined=24.5 \
 /t1 \
 /text="120,60,1999,0" \
 /text="260,60,2000,0" \
 /text="400,60,2001,0"

pchart lowpos allpos mmseq /xtext="Month of observation" /bw \
 /ytext="Per cent low positive" \
 /ti="Proportion low-pos smears among all positive smears" \
 /sub="Uganda, 1999-2001" \
 /fn="Course Part D, Exercise D_EX02, in EpiData Analysis" \
 /b=12 /b=24 \
 /xlined=12.5 /xlined=24.5 \
 /t1 \
 /text="130,60,1999,0" \
 /text="260,60,2000,0" \
 /text="400,60,2001,0"

pchart scantpos allpos mmseq /xtext="Month of observation" /bw \
 /ytext="Per cent scanty positive" \
 /ti="Proportion scanty pos smears among all positive smears" \
 /sub="Uganda, 1999-2001" \
 /fn="Course Part D, Exercise D_EX02, in EpiData Analysis" \
 /b=12 /b=24 \
 /xlined=12.5 /xlined=24.5 \
 /t1 \
 /text="120,60,1999,0" \
 /text="250,60,2000,0" \
 /text="400,60,2001,0"

set echo=on

course_d_ex03_task
Page 1 of 5

An example of a survival analysis using the Kaplan-Meier method
We observe people over time, starting in 2007 into 2009 and note whether or not they develop
an event (whatever it may be) during the observation time as shown for 26 individuals in the
following graph:

We can think of this setting like of an institution, such as a prison, where inmates enter the
prison and are discharged at some time. During incarceration some may develop tuberculosis.
If our interest is focused on the year 2008, we have two measures of the magnitude of the
problem.

We might calculate the incidence rate in the year 2008. The numerator is 4 cases. The
denominator is person-time of observation. As the following table shows, we know the date
of entry and exit from the institution, and the date the event occurs among those who had and
event:

ID Entry date Exit date Event Event date Obs start Obs end Obs days

A 20-01-2007 04-03-2008 No

01-01-2008 04-03-2008 63

B 24-02-2007 23-02-2009 Yes 11-04-2008 01-01-2008 11-04-2008 101

C 18-03-2007 07-08-2008 No

01-01-2008 07-08-2008 219

Year of observation

2007 20092008

Exercise 3: Survival analysis

At the end of this exercise you should be able to:
a. Understand the indications for survival analysis
b. Be able to do a simple survival analysis in EpiData Analysis

course_d_ex03_task
Page 2 of 5

D 07-04-2007 18-02-2008 No

01-01-2008 18-02-2008 48

E 11-05-2007 24-09-2008 No

01-01-2008 24-09-2008 267

F 18-06-2007 24-11-2008 Yes 23-03-2008 -- --
 G 03-07-2007 02-01-2009 No

01-01-2008 31-12-2008 365

H 12-08-2007 03-02-2009 Yes 11-12-2007 01-01-2008 31-12-2008 365

I 02-09-2007 24-11-2008 No

01-01-2008 24-11-2008 328

J 10-10-2007 02-03-2009 No

01-01-2008 31-12-2008 365

K 18-11-2007 23-06-2008 No

01-01-2008 23-06-2008 174

L 01-12-2007 03-06-2009 No

01-01-2008 31-12-2008 365

M 02-01-2008 10-01-2009 Yes 11-12-2008 02-01-2008 11-12-2008 344

N 31-01-2008 06-08-2008 No

31-01-2008 06-08-2008 188

O 03-04-2008 30-11-2009 No

03-04-2008 31-12-2008 272

P 28-04-2008 05-07-2009 Yes 30-06-2009 28-04-2008 31-12-2008 247

Q 25-05-2008 02-03-2009 No

25-05-2008 31-12-2008 220

R 12-06-2008 12-12-2008 No

12-06-2008 12-12-2008 183

S 15-07-2008 02-03-2009 Yes 22-02-2009 15-07-2008 31-12-2008 169

T 23-07-2008 20-10-2008 No

23-07-2008 20-10-2008 89

U 10-08-2008 04-06-2009 No

10-08-2008 31-12-2008 143

V 02-09-2008 02-01-2009 No

02-09-2008 31-12-2008 120

W 27-09-2008 23-04-2009 No

27-09-2008 31-12-2008 95

X 13-10-2008 11-08-2009 No

13-10-2008 31-12-2008 79

Y 14-11-2008 23-09-2009 Yes 03-12-2008 14-11-2008 03-12-2008 19

Z 26-12-2008 15-07-2009 No

26-12-2008 31-12-2008 5

Days

4833

Cases

4

Cases/1000 person-days 0.828

Cases/100 person-years 30.2

Each person contributes person-time of observation, starting earliest from the beginning of the
year 2008 or later if entry into the system was later. Person-time is contributed until exit from
the institution or up to the point of the event if either happened in the year 2008. If the event
happens later, observation time ends at the right-censoring point of 31 December 2008.
Individual F developed the event in 2007 and although still in the system in 2008 does not
contribute any person-time of observation in 2008. Individuals P and S developed the event
only in 2009 and are thus not counted in 2008 and they contribute to person-time of
observation through the end of the year 2008. Thus summed up, the 25 of the 26 inmates
contributed 4,833 days of observation time which gives a case rate of 0.8 per 1,000 person-
days of observation, or annualized, 30.2 cases per 100 observation years.

Survival analysis
The second way to look at the size of the problem is to ask what the probability for an
individual is to “survive” the year 2008 without developing the event.

We exclude the person who had the event already in 2007 and sort the persons by the time of
event or censoring (discharge or latest end of 2008). We note the number at risk of the

course_d_ex03_task
Page 3 of 5

beginning of the interval, then the number who got censored, then how many were left after
censoring, and finally how many get an event during the interval:

At risk at beginning Censored At risk at end Event at end Proportion surviving Survival

25 1 24 0
 24 0 24 1 23/24 0.958

23 1 22 0

0.958

22 1 21 0

0.958

21 1 20 0

0.958

20 0 20 1 (19/20)*0.958 0.910

19 1 18 0

0.910

18 1 17 0

0.910

17 0 17 1 (16/17)*0.910 0.857

16 1 15 0

0.857

15 1 14 0

0.857

14 1 13 0

0.857

13 1 12 0

0.857

12 1 11 0

0.857

11 1 10 0

0.857

10 1 9 0

0.857

9 1 8 0

0.857

8 1 7 0

0.857

7 1 6 0

0.857

6 1 5 0

0.857

5 1 4 0

0.857

4 0 4 1 (3/4)*0.857 0.643

3 3 0 0

0.643

At each point where an event (not censoring) happens, we calculate the survival probability
by dividing the number “surviving” after the event by the number at risk at the beginning of
the interval when the event occurred.

You may note that censoring during an interval is assumed not to affect survival probability
during that interval, but censored individuals are also subtracted from those at risk for the next
interval. 1-3 This assumption is a simplification because censoring may, under certain
circumstances, indeed be affecting the survival probability during the remaining interval. In
any case, however, taking both the occurrence of the event and censoring into account for
each interval following an event is a much more appropriate way to calculate survival than the
proportion with an event among all who entered the cohort or by removing those censored
from the cohort.

Graphically, we summarize the Kaplan-Meier survival probability as a step graph, sometimes
showing the points when an individual was censored:

course_d_ex03_task
Page 4 of 5

Example Kaplan-Meier Survival Plot

Day of observation

0 20 40 60 80 100

Pe
r c

en
t w

ith
ou

t e
ve

nt

0

20

40

60

80

100

 1. Kaplan E L, Meier P. Nonparametric estimation from incomplete observations. J Am

Stat Ass 1958;53:457-81.

 2. Bland J M, Altman D G. Survival probabilities (the Kaplan-Meier method). (Statistics
notes). BMJ 1998;317:1572.

 3. Fink S A, Brown R S, Jr. Survival analysis. Gastroenterol Hepatol 2006;2:380-3.

Survival analysis in EpiData Analysis
The command for a Kaplan-Meier survival analysis in EpiData Analysis is:
lifetable outcome interval

or
lifetable outcome startdate enddate

There are a multitude of options available both lifetable-specific options and general graph
options. Use the Help file to test out various options until you have the survival plot that suits
your needs.

Tasks
The purpose of the exercise is to demonstrate quantitatively the probability of remaining
without an event.
We use to this end a real dataset from a tuberculosis program, although we have removed
any identifier and most variables, and retained to simplify your work only records of
patients who have an exact date of treatment start and an exact date of treatment end. The
dataset is provided as a supplementary file d_ex03_required.rec.

1) Define a binomial outcome, where “favorable” is cured or treatment completed and all
other outcomes are “unfavorable”

2) Do the lifetable analysis only for new sputum smear-positive cases and show the
survival probability stratified by sex

course_d_ex03_task
Page 5 of 5

Kaplan-Meier survival probability

EpiData course: Exercise D_EX03

Days since treatment start
350300250200150100500

Fa
vo

ra
bl

e
ou

tc
om

e
pr

ob
ab

ili
ty 1

0.9

Female

Male

course_d_ex03_solution
Page 1 of 2

Tasks
The purpose of the exercise is to demonstrate quantitatively the probability of remaining
without an event.
We use to this end a real dataset from a tuberculosis program, although we have removed
any identifier and most variables, and retained to simplify your work only records of
patients who have an exact date of treatment start and an exact date of treatment end. The
dataset is provided as a supplementary file d_ex03.rec_required.

1) Define a binomial outcome, where “favorable” is cured or treatment completed and all
other outcomes are “unfavorable”

2) Do the lifetable analysis only for new sputum smear-positive cases and show the
survival probability stratified by sex

The graphic output produced by the program D_EX03.PGM:

The program D_EX03.PGM to produce the above graphic output:
* Part D, Exercise 3
* Survival analysis
* Tuberculosis case register:
* Treatment outcome

* Written by: Hans L Rieder
* First version: 30 Oct 2010
* Last revision: 29 Apr 2013

Solution to Exercise 3: Survival analysis

Key points:

• In this simplified example, there was no censoring, people either had the
even or they didn’t

• Survival analysis requires two variables, the time when the event occurred
or the endpoint of observation, and whether there was an event or not

course_d_ex03_solution
Page 2 of 2

cls
close
logclose

* Create dataset

cls
close
read "d_ex03_required.rec"

define advout #
 advout=1 // adverse outcome
if outcome<=2 then advout=0 // favorable outcome
label advout "Treatment outcome"
labelvalue advout /0="Favorable"
labelvalue advout /1="Adverse"

gen i case=0
if sm00>0 and sm00<9 then case=1
select case=1
select sex<>9
select category=1

keep sex advout interval
savedata "temp_01.rec" /replace

* Analysis

cls
close

read "temp_01.rec"

cls
set option graph=/sizex=600 /sizey=350
set graph font size=9
lifetable advout interval \
 /by=sex \
 /i=b30 /adj \
 /noci \
 /ymin=0.85 \
 /ymax=1 \
 /t \
 /ti="Kaplan-Meier survival probability" \
 /fn="EpiData course: Exercise D_EX03" \
 /xtext="Days since treatment start" \
 /ytext="Favorable outcome probability" \
 /text="335,90,Female,0" \
 /text="335,155,Male,0"

course_d_ex04_task
Page 1 of 25

This exercise involves working with HTML to make a user-friendly menu-based interface
allowing data entry and running EpiData Analysis programs on clicking which produce
standard reports with interactive prompting for choices.
The end product interface will appear as follows:

We will structure the exercise as follows:
Preparatory work
 Installing EpiData Entry and EpiData Analysis
 Delete an obsolete sub-folder and create new sub-folders
 Unzip the required files from the course website into the relevant sub-folder
Background how EpiData Analysis starts and how to shape its looks when opening
Making the interface in HTML
 Using an HTML editor to make the skeleton of the interface
 Editing the HTML file
Making the EpiData Analysis programs
 The program to produce the quarterly report on case finding
 Make the basic dataset
 Make the interactive selection process
 Make the charts side by side
The program to produce the quarterly report on treatment outcome
 Make the basic dataset
 Make the interactive selection process

Exercise 4: Creating a menu for standard reports

At the end of this exercise you should be able to:
a. Write an HTML-based interface for a menu
b. Writing programs with interactive prompting

course_d_ex04_task
Page 2 of 25

Preparatory work

Installing EpiData Entry and EpiData Analysis
First make sure your “Normal EpiData Analysis” is updated to the newest version. The
recommended location for both EpiData Entry and EpiData Analysis is C:\EPIDATA.

In addition, we will install EpiData Entry and EpiData Analysis into a separate folder (make it
user-defined to keep control over what’s going to happen). You could also just copy the files
and sub-folders in your C:\EPIDATA to C:\EPIDATA_REPORT. We simulate here what
happens if you start from scratch. When prompted for the path, put it into:
c:\epidata_report

You will get in this folder three sub-folders and 25 files:
languages\
samples\
temp\
English.ea.lang.txt
Epdintro.pdf
EPIDATA.CNT
EpiData.exe
EPIDATA.HLP
epidata.ini
EpiData.lbl
epidatastat.10
epidatastat.12
epidatastat.15
epidatastat.20
EpiDataStat.exe
epidatastat.ini
epiout.css
epiout_b.css
epiout_w.css
epiprint.css
Francais.ea.lang.txt
license.txt
preventdouble.ea
readme.rtf
unins000.dat
unins000.exe
unins001.dat
unins001.exe

Delete unnecessary sub-folders and create new sub-folders

The samples sub-folder is superfluous for this exercise and can be deleted. Instead create
four new sub-folders, so that you have a total of six sub-folders:
images\
languages\
originals
pgm\
required\
temp\

English.ea.lang.txt
…

course_d_ex04_task
Page 3 of 25

In the sub-folder “languages” delete:
cn\
en\
fr\
images\

In the sub-folder “temp” you have (and can delete both):
docs\
examples\

Of the 25 files in the root you can delete all that are marked below:
English.ea.lang.txt
Epdintro.pdf
EPIDATA.CNT
EpiData.exe
EPIDATA.HLP
epidata.ini
EpiData.lbl
epidatastat.10
epidatastat.12
epidatastat.15
epidatastat.20
EpiDataStat.exe
epidatastat.ini
epiout.css
epiout_b.css
epiout_w.css
epiprint.css
Francais.ea.lang.txt
license.txt
preventdouble.ea
readme.rtf
unins000.dat
unins000.exe
unins001.dat
unins001.exe

It is of course not necessary to delete all these files but it reduces package size (notably the
uninstall files).

Unzip the required files from the course website into the relevant sub-folder
The course website contains a zip file with 23 required files:
epidata.ini
epidata.png
epidata_wikiL.png
epidatastat.png
eraser.png
next.gif
quit.jpg
sample_2004.chk
sample_2004.eix
sample_2004.qes
sample_2004.rec

course_d_ex04_task
Page 4 of 25

sample_2005.chk
sample_2005.eix
sample_2005.qes
sample_2005.rec
sample_2006.chk
sample_2006.qes
sample_2006.rec
side_by_side_graphs.html
start_template.htm
uganda.chk
uganda.rec
union.jpg

Unzip all these 23 files into the EPIDATA_REPORT\REQUIRED sub-folder. Then move and
over-write if necessary as follows:

Move the 7 image files from the EPIDATA_REPORT\REQUIRED sub-folder to the
EPIDATA_REPORT\IMAGES sub-folder:
epidata.png
epidata_wikiL.png
epidatastat.png
eraser.png
next.gif
quit.jpg
union.jpg

Move the 14 EpiData files (plus an *.HTML file) from the EPIDATA_REPORT\REQUIRED
sub-folder to the EPIDATA_REPORT\ORIGINALS sub-folder:
sample_2004.chk
sample_2004.eix
sample_2004.qes
sample_2004.rec
sample_2005.chk
sample_2005.eix
sample_2005.qes
sample_2005.rec
sample_2006.chk
sample_2006.qes
sample_2006.rec
side_by_side_graphs.html
uganda.chk
uganda.rec

Move from the EPIDATA_REPORT\REQUIRED sub-folder to the EPIDATA_REPORT
\LANGUAGES\EN sub-folder the file:
start_template.htm

Finally, move (and overwrite the existing) the:
epidata.ini

file to the root of the C:\EPIDATA_REPORT. And with that all “required” files should have
been moved. Your “REQUIRED” folder should be empty and you can delete it.

Open EpiData Analysis by double-clicking its EpiDataStat.exe executable file and
adjust and save font sizes when you see:

course_d_ex04_task
Page 5 of 25

so that you end up with an empty screen, save the Windows position and exit EpiData
Analysis.

Background how EpiData Analysis starts and how to shape its looks when opening
In any software you may use, there is an executable file that starts the process of opening the
program and displaying the standard interface. In EpiData Analysis, this file is in the root of
the folder in which you installed the program and its name is:
EpiDataStat.exe

This file contains all the essential code to direct EpiData Analysis to do what it is expected to
do. Publishing this code will make EpiData Analysis what we call “open-source” software.
While the designers and programmers of EpiData software are working on preparing this
source code with sufficiently detailed documentation to ultimately make it open-source, the
time is not yet quite mature to do so because the documentation must be un-ambiguous and
clear for any other developer to derive usefulness for further development from it. As we are
not software developer ourselves, we do not have any need to know the source code, the only
thing we need to know is some very basic things that this executable file does, and how we
can override certain things to meet our needs.

Among other files, the executable file looks first for an HTML file that is located in the
EPIDATA_REPORT\LANGUAGES\EN sub-folder:
start.htm

If we double-click this file it opens in out default browser and this is the display we get:

We can change this visualized part to our liking in the start.htm file which will be one of
our tasks.
When we open EpiData Analysis, we see in addition the version display, the menu bar, and
the process bar:

course_d_ex04_task
Page 6 of 25

The upper component:

is part of the default defined in the executable file. It is, however, possible to suppress part or
all of it by modifying the EpiDataStat.ini file.

With the opening of EpiData Analysis, a small program called EpiDataStat.ini is run.
You can access it from the Edit menu:

As we have exited EpiData Analysis, we will now look for this EpiDataStat.ini file in
the root of our folder and open it in our preferred text editor. Its initial default script is:
* EpiData Analysis default settings file
* Edit the next lines to change size or font
set echo=off

* Viewer font and size: (plus editor and help windows)
set browser font size =12
set graph font size =12
set viewer font size =12
set window font size =12
set editor font size =12
set viewer font name ="Verdana,Courier"

* uncomment next two lines to display Chinese Characters
*SET viewer font charset = "gb2312"
*set viewer font name="Arial Unicode MS"

**
* Set options defined during installation:
* To see other set: issue "set" command or look in help file (F1)
**
set display variables=OFF
set display databrowser=OFF
set output open=OFF
* Default folder defined as:
cd C:\EpiData_report\temp

course_d_ex04_task
Page 7 of 25

set output folder="C:\EpiData_report\temp"
set language=english
set echo=ON

If we strip it of all comments, what remains is:
set echo=off

set browser font size =12
set graph font size =12
set viewer font size =12
set window font size =12
set editor font size =12
set viewer font name ="Verdana,Courier"

set display variables=OFF
set display databrowser=OFF
set output open=OFF
cd C:\EpiData_report\temp
set output folder="C:\EpiData_report\temp"
set language=english

set echo=ON

a series of SET commands that tells EpiData Analysis some defaults that are operative until
we change. We asked you before to write over this file and that replacing file differs from the
above (comments that remain are not shown) is shown in red font:
1 set echo=off
2 cd temp
3 set display mainmenu =off
4 set display command prompt=off
5 set display worktoolbar =off
6 set viewer font size =12
7 set window font size =12
8 set editor font size =12
9 set viewer font name ="Verdana,Courier"

10 set display variables=OFF
11 set display databrowser=OFF
12 set output open=OFF
13 set output folder="..\temp"
14 set language=english
15 set echo=on
16 set start page ="..\languages\en\start_tb.htm"

If we rearrange a bit to put similar things together, we may summarize as:
set echo=off

cd temp

set start page ="..\languages\en\start_tb.htm"
set output folder="..\temp"

set viewer font size =12
set window font size =12
set editor font size =12
set viewer font name ="Verdana,Courier"
set language=english

course_d_ex04_task
Page 8 of 25

set display variables =off
set display databrowser =off
set display mainmenu =off
set display worktoolbar =off
set display command prompt=off
set output open =off

set echo=on
We turn the echo off and on respectively at the beginning and at the end, so that we don’t
notice that it is run.
We then direct EpiData Analysis to go to the (above created) sub-folder
EPIDATA_REPORT\TEMP. EpiData Analysis will be in this place when you start with an
analysis and if you need to access data files or a program file or any other file, you will need
to tell it where these are located relative to this location.

Relative locations
This might be an opportune time to introduce the concept of relative and absolute path. The
path:
C:\epidata_report\languages\en

is an absolute path. It defines the drive (“C:\”) and where within this drive one finds the
folder and its named sub-folders. If we were to write this into the EpiDataStat.ini file,
it would be alright as long as both is true, the drive and the path. If we would give the
“package” with the “epidata_report” to somebody else it would therefore only work if
that person were to copy it also into the root of his or her PC and if that main drive actually
had the name “c:\”. It wouldn’t work from a USB drive for instance. However, if we
would give the “package” to a colleague and inside the EpiDataStat.ini file all file
locations were given relative to the “container” “epidata_report”, then it would work
from any location on the PC or indeed from an external drive with another drive designation
than “c:\”. We could go one step further, and say that we don’t even want to name
“epidata_report” as “epidata_report”, so that a user is entirely free to give any
name to this container and it would still be working.

What we need is a folder separator, and this is the backslash (“\”) and the replacement
indicator for the parent folder (directory), which is the double period (“..”). If we thus
write:
“..\temp\sometext.txt”

we refer to a file “sometext.txt” which is located (absolute path) in a folder temp which
in itself is located in another folder that is not named. If we are in that other folder (whatever
its name might be) than we refer relatively to it here and have no need to name it. This is
precisely what we are doing here with this:
set start page ="..\languages\en\start_tb.htm"

We are in EpiData Analysis which is in the folder epidata_report. In this folder we
have a sub-folder “languages”, directly one level below the “epidata_report” and we
can thus replace the parent directory “epidata_report” with “..” and insert the “\” as
the folder separator followed by the designation of the “languages” sub-folder. This
approach allows us to give the parent directory any name we wish: all that must be guaranteed

course_d_ex04_task
Page 9 of 25

is that the sub-folder has a fixed position relative to the parent folder. Let’s evaluate how we
can move around within our “container” epidata_report. When we start EpiData
Analysis from the EpiDataStat.exe file, we have our 6 folders at the same level, one of them
being the temp folder. We get first into this folder with:
cd temp

To get back from within this folder to the root (epidata_report), we would type:
cd ..

indicating that with the two periods that we want to go to the parent folder. Being in the
parent folder now, we wish to go to the sub-folder en of the languages folder:
cd languages\en

Being now in the en sub-folder and wishing to go to the sub-folder originals of the
“container”, we can do it in 3 steps:
cd ..
cd ..
cd originals

The first line gets us to the parent of en, i.e. to languages, the second gets us to the parent
of languages, i.e. epidata_report, and the third line directs us to the sub-folder
originals of epidata_report. Simpler, we can write this in a single line:
cd ..\..\originals

We have entered a path to a non-existing file:
set start page ="..\languages\en\start_tb.htm"

While it is now clear why we use this designation for the path, we also note that the file
“start_tb.htm” does not exist in that folder. In the folder en we currently have:
start.htm
start_template.htm
start0.htm
startfont.htm

It is then in a next step that we will create the “start_tb.htm” file. EpiData Analysis will
open despite this error, simply by using the default file “start.htm” which is in this folder
and give us:

At the bottom, you see don’t see the command line anymore, and only the sub-folder in which
EpiData Analysis is after executing the first four lines:

course_d_ex04_task
Page 10 of 25

The default style sheet that EpiData Analysis uses is the output.css file, a cascading style
sheet. You could make the style in the start.htm file, but the recommendation of the
World Wide Web Consortium (W3C) is to refer in the main file to another specific (*.CSS)
file that defines the style. This recommendation is for good reasons: you can always change
the style sheet without changing the main HTML file.

You can make your own style sheets but this will require learning a bit more on how to make
one, and this not subject of this exercise.
EpiData Analysis writes log files and other stuff that are useful to review when something
goes wrong. These files are not usually used when all goes as expected and to get them out of
the way, the command line:
set output folder="..\temp"

redirects the output to be stored in the sub-folder TEMP.

With this brief and rather simplified introduction of how EpiData Analysis starts to work, you
should now have an understanding on what the EpiDataStat.ini file does and how you
can always access it and change it on the fly. In your “regular” EpiData Analysis program, it
will often prove useful to direct it with this file to a specific project folder on which you are
currently working with even a series of CD commands as long as the folders exist and you
know that the last CD command in a sequence overwrites all previous ones.

After we are now done with the role of the EpiDataStat.ini file, we have to deal with
the HTML file start_tb.htm, which gets us into learning some basics about the HTML
language.

Making the interface in HTML
Using an HTML editor to make the skeleton of the interface

HTML is the language of the Internet which is interpreted by a browser such as the proprietary
Internet Explorer™ or the open-source and free Firefox® to make it visually comprehensible
and appealing for the user. A simple text that looks like:

has the following underlying HTML code in the browser:

course_d_ex04_task
Page 11 of 25

This is complex at first look, but when we look at it carefully then we realize that it is a highly
logical language and sequence of instructions to the browser.
In Line 1, information is provided that the language conforms with W3C standards and the
version of HTML it is using and that you can find this confirmed at the W3C website.

Every component in an HTML document has the principle to define the beginning and the end
of the component and the system is the same for all. In the above example we have:
Begin End
<HTML> </HTML>
<head> </head>
<body> </body>

The structure indicates that everything between the opening and ending HTML tags is in fact
HTML. Embedded are two parts, the head and the body, each indicating where it starts and
where it ends. Every HTML page is build around these key parts, and within these you may
have other sub-components imbedded that follow the same principles such as here within the
body:
Begin End

For the time being, we will leave it at that but will come back later to these principles when
we work specifically on the start_tb.htm file.

Because of the complexity for the beginner, a multitude of software has been developed
allowing the user to write normally as in a word processor to see what one actually wants to
get. The software translates it into HTML and the page becomes interpretable by the browser.
The advantages of such software are obvious but the downside is that it is often very
expensive (hundreds of Euros perhaps), and not all is adhering strictly to W3C standards
which will make it difficult for some browsers that require strict adherence to interpret the
language properly.
You may have heard about the Mozilla Foundation which produces free and excellent open-
source software, such as the browser Firefox, the email client Thunderbird, the calendar
Sunbird and yes, the HTML editor Nvu. Nvu is still in its infancy and has some problems,
some of which have been resolved with the HTML editor KompoZer which you find on this
course web in the software section and that we will be using.
You do not need to install KompoZer, it is just a zip file. Unzip it into the root of your hard
drive and you get a folder:
KompoZer 0.7.10\

You may make a shortcut to its executable file:
KompoZer.exe

to your desktop and if desired to the quick launch bar to have it accessible at your fingertip
with one click away or simply look for it and double-click the KompoZer.exe file.

Access KompoZer and find the start_template.htm file in the
EPIDATA_REPORT\LANGUAGES\EN sub-folder of the project. It is an empty page with a
title:

course_d_ex04_task
Page 12 of 25

That it is not quite empty becomes clear if you tick at the bottom to “Source”:

In fact, we have taken the normal start.htm file that comes with the installation of
EpiData Analysis, have stripped it down and added a few essentials to prepare it for an
interactive menu (template courtesy, Jens M Lauritsen, April 2008) and saved is under this
start_template.htm file name.

The first thing is to save it as:
start_tb.htm

Remember that we direct the EpiDataStat.ini file to go to this file when initiating:
set start page="..\languages\en\start_tb.htm"

You will be working in the “Normal” tab and the first thing we do is to insert a table with 4
columns and 9 rows (you can count them in the screenshot of the final interface shown at the
beginning). Choose “Precisely”:

and set the Border to “0”. The default for “Border” is 1: a line around each cell is displayed
in the browser. Setting it to “0” allows entering the information into cells instead of using the
Tab key (which we cannot do properly in an HTML page), but the user does not see any line
and remains unaware that we used a table.
If the table cell background is not white, you may have to fiddle with the options for them to
render them white (non-transparent). The best way is to change the background as follows:

1. Put the cursor into the top left cell
2. Right-click, choose “Table select” | “All cells”
3. Right-click again, choose “Table or Cell Background Color”
4. Pick the color (in our case “white”)

In the most upper left cell we insert one of the provided EpiData logos (the
epidata_wikiL.png file from the \IMAGES sub-folder) using the “Insert” menu and also
supply a (required) alternate text for the name:

course_d_ex04_task
Page 13 of 25

Then go to the tab “Dimensions” and decrease the current size of the width to 120 pixels:

In the “Link” tab add the URL of the EpiData website:

Then accept and you get:

Never mind for now the distortion of the column width. Add the Union logo into the most
upper right cell and make a link to the Union website (http://www.theunion.org) in the same
manner.
Join the central two cells of the first row, add the text and format it (see beginning of this
Exercise) to get:

Continue adding text, formatting it, and add the appropriate icons into the appropriate places
until you have the complete lay-out:

http://www.theunion.org/

course_d_ex04_task
Page 14 of 25

Make sure to save the file. Perhaps you want to look at the source code and see that a lot has
been added. We will not further edit the source code here, we will do this in a text editor.
Thus exit KompoZer, this is all we are going to do with it.

If you now click the EpiDataStat.exe file, you will get:

Of course, there is no functionality yet (except the EpiData and Union web site icons if you
are on the internet). In the next step we add functionality to the other icons.

Editing the HTML file

Windows has an inbuilt text editor, NotePad™. There are several free text editors available
that are more flexible and powerful than this one. We have selected Crimson Editor® as our
choice for this course. This free text editor that has several powerful features such as showing
HTML code in colors and providing the very useful feature for rectangular selections.

course_d_ex04_task
Page 15 of 25

Open now in this text editor the start_tb.htm file. What you see may seem a bit
overwhelming and we will thus take it apart into manageable pieces to understand what we
find there and to edit it where appropriate.

You have seen before the first few lines:

They inform us that we deal with an HTML file and that the head starts. If we collapse (and
hide from view) lines 9 to 28, we see up to line 28:

You note here the beginning and end tags for HEAD and those for STYLE embedded inside
these:
<head><style>...</style></head>

Make two hard carriage returns after the closing </head> tag, so we see a bit better what we
have next. Make another hard carriage return after the end of:
<body class="bodywhite">

so that we separate for visibility the beginning of the table definition:

…..
Can you see where our first row begins and where it ends?
<tr><td style="background-color: white;"><img style="border:
0px solid ; width: 120px; height: 115px;" alt="epidata_logo"
src="../../images/epidata_wikiL.png"></td><td colspan="2" rowspan="1" style="background-
color: white; text-align: center; width: 957px;"><big><big><big><big>Quarterly Reports on Case
Finding and Treatment Results</big></big></big></big></td><td style="background-color:
white;"><img style="border: 0px solid ; width: 120px;
height: 119px;" alt="union_logo" src="../../images/union.jpg"></td></tr>

The row begins with the opening tag <tr> and its ending tag </tr>. Each cell embedded in
the row has its beginning and end tags <td …</td>:
 Begin tag End tag

Row <tr> </tr>

Cell <td> </td>
If we isolate the first cell with the logo of EpiData, we have thus:
<tr><td style="background-color: white;"><img style="border:
0px solid ; width: 120px; height: 115px;" alt="epidata_logo"
src="../../images/epidata_wikiL.png"></td>

<a href …

course_d_ex04_task
Page 16 of 25

is the opening about everything dealing with this logo: first the link to the web site, then
information about the cell style, the dimensions of the logo, the alternate text, and finally the
reference to the name of the image and the place where it is relative to the current position:
src="../../images/epidata_wikiL.png"

Thus, in summary:
The definition of the image is defined as:
src=

and the image itself is given with its name relative to the location it had when you inserted it:
“../../images/epidata.png”

You may note here the use of forward slashes (“/”) instead of the backward slashes (“\”) that
we have go used to on the PC. HTML as a web language uses forward slashes to indicate
path.

We have no links to any of the programs that should be run when the user clicks on the
EpiData Entry image defined as:
src="../../images/epidata.png"

because there is not yet any instruction on what to do here. We are going to do that in the
next step.

Opening EpiData Entry from within EpiData Analysis
The task is to open EpiData Entry from within EpiData Analysis. To this end, we write HTML
code associated with the icon for EpiData Entry:

and add the code in the correct place. Locate the HTML code that gives information about the
embedding of this icon:
<img src="../../images/epidata.png" alt="" border="0" style="width: 32px;
height: 32px;">

(You may not have border=“0”, this removes the blue lines around the icon that designates
it as a hyperlink).
Actually, the above information about the icon is located in one single cell, within the tags
<td> … </td>:
<td style="background-color: white;"></td><td style="background-color:
white; width: 42px;"><img src="../../images/epidata.png" alt="" border="0"
style="width: 32px; height: 32px;"></td>

However, in everything we are going to write in this start_tb.htm file, we can do
with the backward slash that we are accustomed to as there are situations where both are
valid. We have here no reason to change what we know that it works. On the other hand,
we are also not going to change any forward slash to a backward slash if a forward slash
had been inserted into the document in KompoZer or had already been present in the
initial template.

course_d_ex04_task
Page 17 of 25

The instruction to access EpiData Entry and, once there, to open a specific REC file is placed
immediately before the definition of the icon <img. The following text is placed there:

The href is a hyperlink to a reference, here to “epidata.exe”, the executable file that
opens EpiData Entry. Why the “..\..”? The start_tb.htm is located two levels down
(\languages\en), therefore the instruction must be to go two levels up to be in the root of
the “epidata_report” as the epidata.exe file is in the root. Note that after the
\epidata.exe there is a space before ..\originals. The reason is that the first part
refers to starting the software, while the second is to open a specific file that is located in
epidata_report\originals and to keep it independent of the name of the container
name we replace “epidata_report\” with “..\”. The file we are requesting to be
opened, sample_2006.rec, is located one level down in the
EPIDATA_REPORT\originals folder.

After we insert the above code, we must also place an ending tag to close the opening
<a href before the cell closes with </td>:
<img src=
"../../images/epidata.png" alt="" border="0" style="width: 32px; height:
32px;"></td>

Test functionality after saving.

Writing HTML code to invoke an EpiData Analysis program when clicking on the icon

Quite similar to the above, we locate now the HTML code for the EpiData Analysis icon:
<img src="../../images/epidatastat.png" alt="" border="0" style="width:
32px; height: 32px;">

Again as above, we need to insert HTML code immediately preceding the <img src=….
What is different is that we are already in EpiData Analysis, so it is not necessary to execute it
(it would actually give an error if the default is set to run only one copy of EpiData Analysis
at a time). All we need to do is to make a hyperlink to an EpiData Analysis program,
specifically here to the program that should produce the first quarterly report on case finding.
We will call the program “quarterly_report_1.pgm”and it will be located in the
folder PGM. The command to run a program is “run”. We would thus think that:
href=run “..\pgm\quarterly_report_1.pgm”

should do it. It is, however, not quite sufficient as the interplay between HTML and EpiData
Analysis requires two additional things:

1) an opening command “epi:” to give the indicate that EpiData Analysis instructions will
follow

2) everything related to EpiData Analysis must be placed between single quotes.

Accordingly, the above becomes:

course_d_ex04_task
Page 18 of 25

href=‘epi: run “..\pgm\quarterly_report_1.pgm”’

We will add more EpiData Analysis commands, each separated by a semi-colon, like:
href=‘epi: CLS; set echo=off; run “..\pgm\quarterly_report_1.pgm”’

Once the program has run and produced the output, the user should get an instruction to press
F8 which refreshes the start_tb.htm file (thus gets the user back to the main menu
interface):
href=‘epi: CLS; set echo=off; run “..\pgm\quarterly_report_1.pgm” type "F8:
Go back to menu"’

Including the opening <a href and the closing tag and showing the entire content of
the cell, we then get:
<td style="background-color: white;"></td></tr><tr><td style="background-
color: white;"></td><td style="background-color: white; width: 42px;"><a
href='epi:CLS; set echo=off; run "..\pgm\quarterly_report_1.pgm"; type "F8:
Go back to menu"'><img src="../../images/epidatastat.png" alt="" border="0"
style="width: 32px; height: 32px;"></td>

Summarizing some of the specific EpiData Analysis commands that we may use in HTML:

Action EpiData Analysis command
Clear the screen and memory epi:CLS

Show only output, not the running of the
program

set echo=off

Do not display the main menu set display mainmenu=off

Do not show the process bar set display worktoolbar=off

Do not show the command line set display command prompt=off

Run the program run “..\pgm\run_entry.pgm”

Tell the user how to return to the main menu
after the program has completed

type “F8: go back to the main menu”

This summarizes the principles we use to connect (making a link to) the execution of an
EpiData Analysis program to an icon. While the HTML code is now correct, nothing will
happen yet because the program file does not yet exist.

Preparing the EpiData Analysis program
We cannot work with the version of EpiData Analysis that we have in our
epidata_report because we have turned off everything that is essential to work, the
menu and the command line. What we do instead is to simulate the structure of the

course_d_ex04_task
Page 19 of 25

epidata_report in our “normal” version of EpiData Analysis. We need the following
folders in addition to what we have:
originals
pgm
temp

Copy all files from the epidata_report\originals folder into the originals
folder you just made in your “normal” version of your EpiData software folder.
Change also the EpiDataStat.ini file in your “normal” version so that it ends up in the sub-
folder \temp.

This way everything is set up in a way that will allow us once we have written all the program
files to simply copy them over to the \epidata_report\pgm folder and everything will
work out.

Reading the data file

We remember that the starting default folder is the \epidata_report\temp folder.
After the standard closing of any open file, the path must thus be changed to the folder in
which the data files are located, the \epidata_report\originals folder:
cls
close
logclose

cd ..
cd originals

read “x.rec”

This is how we would usually do it. We propose here an alternative and that is to copy all
EpiData files that are currently in the \originals sub-folder into the \temp folder and to
actually work in the \temp folder. While this is not essential here (nor anywhere else
usually), it is a way that allows us manipulating our datasets in a temporary folder and leaving
the original files untouched. The commands are then as follows (assuming that we are in the
\temp sub-folder):
copyfile "..\originals\sample_2004.rec" "sample_2004.rec" /replace
copyfile "..\originals\sample_2004.chk" "sample_2004.chk" /replace
copyfile "..\originals\sample_2005.rec" "sample_2005.rec" /replace
copyfile "..\originals\sample_2005.chk" "sample_2005.chk" /replace
copyfile "..\originals\sample_2006.rec" "sample_2006.rec" /replace
copyfile "..\originals\sample_2006.chk" "sample_2006.chk" /replace

copyfile "..\originals\uganda.rec" "uganda.rec" /replace
copyfile "..\originals\uganda.chk" "uganda.chk" /replace

Note 1) that the path to the sub-folder \originals takes into account the current position in the
sub-folder \temp and 2) that there is no connecting “to” between the two file designations,
and 3) that we need to replace the files in the \temp sub-folder in case they exist.

In addition, copy manually (not here in the program file) the file
“side_by_side_graphs.html” into the \temp folder.

course_d_ex04_task
Page 20 of 25

Interactive prompting
During the running of a program in a menu, there should be options to choose from.
Depending on the selection the user makes, the program will then continue one or the other
way(s). The program is thus to stop at a certain point and prompt the user for input. This is
accomplished by typing something between two question marks. The following:
?We are in Paris – what a wonderful world?

gives you a pop-up box:

There is no option here, obviously, it is just a statement. To expand interactive prompting to
include an option, we make use of a constant (global “variable”). To illustrate it, we are using
the Uganda laboratory dataset (uganda.rec, included in the originals folder), collected
over three years with a variable REGDATE denoting the registration date. We want to give the
user the option to make a frequency of the field SEX for a selected year:
cls
close

read "uganda.rec"

gen i regyy=year(regdate)
define yr #### global
cls

freq regyy
 yr=?Enter the year for analysis?
set echo=off
 select if regyy=@yr
 cls
 freq sex

We first extract the registration year REGYY from the registration date. Then we create a
constant YR. Then we display the frequency (FREQ REGYY) of the registration year and get:

The user is then immediately prompted to enter the year:

course_d_ex04_task
Page 21 of 25

If, say, the year 2000 is entered, then the output is:

Note the:
 select if regyy=@yr

where we make use of the constant YR.

We can use the same principles, but expand it to provide an option to do either one thing or
another:
define yesno # global

yesno=?Do this or that: 1=Do this - 2=Do that?
 imif yesno=1 then
 (do something)
 else
 (do something else)
 endif

The user then enters a “1” or a “2” into the box.

We can use a nested sequence of events. If we take the Uganda dataset again and we want to
give the choice to first select the year, and then have the option of analyzing the entire
selected year or only a quarter of it, we write (this sample program imif_example.pgm is
available in your PGM folder):

set echo=off
gen i regyy=year(regdate)
label regyy "Registration year"
gen i quarter=month(regdate)
label quarter "Quarter of the year"
recode quarter 1-3=1 4-6=2 7-9=3 10-12=4
labelvalue quarter /1="Jan-Mar"
labelvalue quarter /2="Apr-Jun"
labelvalue quarter /3="Jul-Sep"
labelvalue quarter /4="Oct-Dec"

define yr #### global
define yesno # global
define q # global
cls

set echo=on
freq regyy
 yr=?Enter year for analysis?
set echo=off
 select if regyy=@yr
 cls

course_d_ex04_task
Page 22 of 25

 yesno=?Analyze: 1: Whole year; 2: One quarter only?
 imif yesno=1 then
 cls
 type "You selected: Registration year @yr" /h2
 freq sex
 else
 freq quarter /vl
 q=?Select quarter?
 select if quarter=@q
 cls
 type "You selected: Registration year @yr and Quarter @q" /h2
 freq sex
 endif
set echo=off

In the first block, we extract registration year and registration month and recode the latter into
quarters.
In the second block, we define the three constants.
In the third (last) block, we allow selection of the registration year:
freq regyy
 yr=?Enter year for analysis?
 select if regyy=@yr

Then based on the selected year, we ask to choose the quarter
 cls
 yesno=?Analyze: 1: Whole year; 2: One quarter only?

After choosing between “Whole year” and “One quarter only”, we make use of the imif
command which is closed with an endif command:
 imif yesno=1 then
 cls
 type "You selected: Registration year @yr" /h2
 freq sex
 else
 freq quarter /vl
 q=?Select quarter?
 select if quarter=@q
 cls
 type "You selected: Registration year @yr and Quarter @q" /h2
 freq sex
 endif

IMIF is used to divert course in a pgm file depending on parameters which can, as done here,
be acquired by "? … ?".

We use the type command to inform the user of the selection made. The /h2 is HTML
language for header size.

We will store all EpiData Analysis programs in the \epidata_report\pgm sub-folder.

Making the EpiData Analysis program to produce the quarterly report on case finding
You will make a total of three programs:
quarterly_report_1.pgm
quarterly_report_2.pgm

course_d_ex04_task
Page 23 of 25

cleanup.pgm
We have two actual datasets of a random selection of tuberculosis case registers from the
years 2004 and 2005 from Viet Nam. They were provided by courtesy of Dr Nguyen Binh
Hoa from the National Tuberculosis Program Viet Nam. They were slightly edited from the
original case registers in that the original identifier was removed and replaced by an artificial
one. The names of the 30 units were also changed to have non-reality units. Several variables
that were collected were also removed and some other minor modifications were made.
However, overall, these data are real.
There are three data files:
sample_2004.rec
sample_2005.rec
sample_2006.rec

The last file (sample_2006.rec) contains no records and is used for data entry only.

The task is to produce a quarterly report on case finding. We follow here the guidelines of
The Union for the quarterly report. It requires that all notifiable cases in the quarter are
reported. We will get back to this shortly.

Because we set echo=off in the start_tb.htm file, the screen will stay blank during
the running of the program. As this may confuse the reader, it will be useful to insert after
every CLS command a line that informs the user that despite the blank screen something is
happening, like:
cls
type "Be patient...files are identified and prepared" /h2

The following two parts are required for the quarterly report as recommended by The Union:

A note on the notifiable cases: Patient categories “Transfer in” and “Other” must not be
reported.
When you define your variables, note that not all registered cases may always have the
required information. For instance, you need three variables to determine “SMEAR-
NEGATIVE, <15 yrs”: The case must be pulmonary, you must know the case is smear-
negative, and you must know the age. Take this into account when deciding what you are
going to present the analysis.
If you want to produce a graphics output of two graphs and show them side by side, you must
first save the graphs, e.g.:

course_d_ex04_task
Page 24 of 25

bar repdef2 \
 /ti="All cases" \
 /save="all_cases_1.png" /replace
cls

select repdef2<>0
select repdef2<>9
bar repdef2 \
 /save="all_cases_2.png" /replace
cls

Among the required files was the HTML file “side_by_side_graphs.HTML”:
echo <table><tr><td colspan=2 border align=center >

Some title that crosses over both
graphs</td>

<tr><td></td><td>
</td></table>

Replace the example names with the actual names of your graph files and then the simple
command in EpiData Analysis:
show “side_by_side_graphs.html”

will show them side-by-side.

Other programs
The process is analogous for the quarterly report on treatment results. You can use the same
basic program up to the point where you produce the actual output. You may consider two
outputs, one for all cases, and one for sputum smear-positive cases only.
It might be useful to have a separate program to erase all files created during the session, so
that only the files remain that are needed to start anew.

Command to exit the program
To exit the program, you do not need a special program. The EpiData Analysis command for
the HTML file to quit the program without asking for conformation is:
 …

Opening the menu
To make things as simple as possible for the user, not requiring search for the
epidatastat.exe file, you may add a batch file (that might be named start.bat, the
*.bat extension being mandatory) at the same level as the \EPIDATA_REPORT folder.
This batch file follows simple conventions (see internet for more on writing batch files):
cd epidata_report
start epidatastat.exe

course_d_ex04_task
Page 25 of 25

Zip both the \EPIDATA_REPORT folder and the start.bat file into one single zip file
(any name like anyname.zip will do of course), send it by email to the user with the
instructions:

1) Unzip the anyname.zip file to any place on your computer
2) Double-click the start.bat file to open the menu
3) Start working

Task
Produce a single folder containing the EpiData Entry and Analysis programs, including
the database of with an interface that permits by simple clicking to enter data or to run two
standard reports, giving the user the option of choosing which country, year, laboratory, etc
to analyze and is transferable to any drive or folder, with a total zipped file size of just 3.81
MB.

A user will be able to unzip this file onto any drive or folder, double-click the start.bat
file, and be in the menu interface. Test it out by zipping it and then unzipping it onto a
flash USB stick.

course_d_ex04_solution
Page 1 of 2

Task
Produce a single folder containing the EpiData Entry and Analysis programs, including
the database of with an interface that permits by simple clicking to enter data or to run two
standard reports, giving the user the option of choosing which country, year, laboratory, etc
to analyze and is transferable to any drive or folder, with a total zipped file size of just 3.81
MB.

A user will be able to unzip this file onto any drive or folder, double-click the start.bat
file, and be in the menu interface. Test it out by zipping it and then unzipping it onto a
flash USB stick.

Solution
The entire folder is available on the course web site as a zip file.
The interface the user sees:

Solution to Exercise 4: Creating a menu for standard reports

Key points:
• The EpiData Analysis interface is largely based on HTML which gives the

user great flexibility in customizing it to the needs
• A menu can be written for a user that requires not skills in EpiData Analysis

and allows producing standard summary reports by simply clicking like on
any web site

course_d_ex04_solution
Page 2 of 2

In the following just select output graphs are shown.

The output graphs from the first program:

The output graph from the second program:

The following is a report describing tuberculosis patients by microscopic case definition and
four variables (age, sex, disease site, and patient category), summarized in one single nicely
formatted table:

We note that the dataset is so small (14 records) that for every variable some strata have no
cases. For instance, if we make a table in EpiData Analysis for case by category:
tables case category

we get:

In other words, the EpiData output shows only strata containing at least one case. This is not a
particularity of EpiData, this is quite generally so with any analysis program. In other words,
depending on the selection criteria, we get visualization of varying column-row combinations,
for instance:

Exercise 5: Formatting standardized analysis output in a spreadsheet

At the end of this exercise you should be able to:
a. Use a dummy file to produce a standardized aggregated EpiData file
b. Producing formatted EpiData output in a spreadsheet

course_d_ex05_task
Page 1 of 20

It is of course also not possible to have several tables condensed into a single one. For instance,
if we produce two cross-tabulations, we formulate it as:
tables case sex
tables case category
and we get two separate tables:

In this exercise, we will automate a procedure to get EpiData output from multiple tables into
one single nicely formatted table by using 1) a work-around to get all strata displayed even if
their case count is zero, and 2) formatting the output in an esthetically appealing way by taking
recourse to a spreadsheet template.

Modifying the basic menu

You have a required zip file “course_d_ex05_required.zip”. This is essentially the
solution to Exercise 4, but with a slightly changed package name (“epidata_report2\”)
to avoid confusion. Ensure first that your temporary folder C:\TEMP is empty, then unzip this
required zip file into that folder and you get a folder and its start.bat:

Test it by double-clicking the start.bat file and then exit the menu again.

We need four more sub-folders in the epidata_report2 folder:
dummyset\
LibreOfficePortable\
templates\
workfolder\

After you created them, make sure that the epidata_course folder is empty, then copy the
following five folders into the epidata_course folder:
dummyset\
originals\
pgm\
temp\
workfolder\

These will be used as simulation folders: we do everything in our “regular” EpiData Analysis,
simulating what will happen in the menu. Once we assured functionality, we copy our

course_d_ex05_task
Page 2 of 20

simulation folders into the menu in the c:\temp folder, start the menu and then run the
program from there.

We will not yet deal with the LibreOfficePortable folder nor now change the
start_tb.htm file.

The dummy files
We mentioned above that a prerequisite for a standard output is that we always need the same
output style or, in other words, a display of all possible cells in a table. If we have a column
variable COLVAR with 3 levels and a row variable ROWVAR with 4 levels we have 3x4 = 12
cells (not counting the marginals):

ROWVAR
COLVAR

1 2 3

1 c1-r1 c2-r1 c3-r1

2 c1-r2 c2-r2 c3-r2

3 c1-r3 c2-r3 c3-r3

4 c1-r4 c2-r4 c3-r4

We need c times r records to have one record for every possible combination. To make this
generically applicable, we will create an EpiData *.rec file with two variables:
colvar ##
rowvar ##

and pretend that we have 12 columns and only 1 row. We thus complete a total of 12 records
with column values 1, 2, …, 12 and row value 1, starting with making a dummy_00.qes file,
then from it its dummy_00.rec file. We save both files in our dummyset sub-folder:
epidata_course\dummyset\

When now opening our “regular” or “standard” (not menu) EpiData Analysis, we first edit the
EpiDataStat.ini file in Edit:

so that the last CD command directs EpiData Analysis to start in the temp sub-folder of the
epidata_course folder:
cd c:\epidata_course\temp

As you perhaps remember, the EpiDataStat.ini file of the menu is also set to start in that
folder. This allows moving one level up, then one level down into any sub-folder of the
package.
Our intention will be to create a table consisting of four sub-tables, resulting from cross-
tabulation of microscopy case status (smear-positive or other than smear-positive) versus

course_d_ex05_task
Page 3 of 20

quartiles of age, sex, site of tuberculosis, and category of tuberculosis patient. For each of the
four sub-tables we create a dummy set with 1 record for each possible cell. We start with
creating one such dataset for case status versus age quartiles. Case status (the column variable)
has 2 levels (case, non-case) and quartiles (the row variable) has 5 levels (the 4 quartiles, and
missing age).

We start by opening a new *.pgm file in the EpiData Analysis editor, directing it from the
current temp sub-folder to the dummyset sub-folder and reading the dummy_00.rec file:
* Create dummy set

cls
close

cd ..
cd dummyset

read "dummy_00.rec"

and save it as dummy_case_demogr_01.pgm in the dummyset folder. The dataset has
12 levels for the column variable rather than only the 2 we need. This will be addressed at the
end of the program with a selection. The row value it has is 1, but as we will do some copying
later with modification, we will overwrite it with, well “1” (one).
read "dummy_00.rec"
rowvar=1

We need to create a unique identifier from the combination of the column and the row value.
Later, we will create such an identifier in the same manner from the actual data set and then the
dummy file created here can be merged to the actual dataset on this identifier. As we want to
make this generically valid, we will consider how we actually designed the entry form, i.e. with
two-digit fields for both column and row, thus we expand:
cls
close
read "dummy_00.rec"
rowvar=1
gen s(2) tempcol=string(colvar)
gen s(2) temprow=string(rowvar)
if colvar<10 then tempcol="0"+string(colvar)
if rowvar<10 then temprow="0"+string(rowvar)
gen s(5) id=tempcol+"-"+temprow
drop tempcol temprow
savedata "dummy_01.rec" /replace

Now, we copy the whole block and change only what is shown in red:
cls
close
read "dummy_00.rec"
rowvar=2
gen s(2) tempcol=string(colvar)
gen s(2) temprow=string(rowvar)
if colvar<10 then tempcol="0"+string(colvar)
if rowvar<10 then temprow="0"+string(rowvar)
gen s(5) id=tempcol+"-"+temprow
drop tempcol temprow
savedata "dummy_02.rec" /replace

and repeat it until we have a total of 5 dummy sets with row values of 1, 2, 3, 4, and 5
respectively, then append the 5 files:

course_d_ex05_task
Page 4 of 20

cls
close
read "dummy_01.rec"
append /file="dummy_02.rec"
append /file="dummy_03.rec"
append /file="dummy_04.rec"
append /file="dummy_05.rec"
select colvar<=2
savedata "dummy_case_demogr_01.rec" /replace
Note the selection (in red) for the column levels in the second to last line. We must end up with
10 records, shown in the browser window as:

At the end, we erase all intermediary files:
erase "dummy_01.rec"
erase "dummy_02.rec"
erase "dummy_03.rec"
erase "dummy_04.rec"
erase "dummy_05.rec"

While we are at it, we should make dummy sets for the other three variables:
Row
variable

Levels (strata) Dummy set file name Records

age
quartile

5 (Quartiles 1, 2, 3, 4, and missing
age)

dummy_case_demogr_01.rec 10

sex 3 (female, male, missing) dummy_case_demogr_02.rec 6

site 3 (pulmonary, extrapulmonary,
missing)

dummy_case_demogr_03.rec 6

category 7 (new, relapse, failure, default,
transfer, other, missing)

dummy_case_demogr_04.rec 14

The principle is the same, and it is recommended to save each *.pgm file under a separate
corresponding name to facilitate corrections if errors had been made and are found out only
later.

The main analysis file
Let’s open a new file in the EpiData Anlysis editor and save it right away as
case_demogr.pgm in the \pgm subfolder.

Similar as in the previous exercise, we copy the required files into the newly created working
folder which we then access:

course_d_ex05_task
Page 5 of 20

cd ..
cd originals
copyfile "sample_2004.chk" "..\workfolder\sample_2004.chk" /replace
copyfile "sample_2004.rec" "..\workfolder\sample_2004.rec" /replace
copyfile "sample_2005.chk" "..\workfolder\sample_2005.chk" /replace
copyfile "sample_2005.rec" "..\workfolder\sample_2005.rec" /replace

cd ..
cd dummyset
copyfile "dummy_case_demogr_01.rec" "..\workfolder\dummy_case_demogr_01.rec" /replace
copyfile "dummy_case_demogr_02.rec" "..\workfolder\dummy_case_demogr_02.rec" /replace
copyfile "dummy_case_demogr_03.rec" "..\workfolder\dummy_case_demogr_03.rec" /replace
copyfile "dummy_case_demogr_04.rec" "..\workfolder\dummy_case_demogr_04.rec" /replace

cd ..
cd workfolder

We then append the two years of data and make our case definition for the column variable:
read "sample_2004.rec"
append /file="sample_2005.rec"

define case #
case=2
if sm00>0 and sm00<9 then case=1
label case "Smear-based case definition"
labelvalue case /1="Case"
labelvalue case /2="Non-case"

Note that “Non-cases” are not smear-negative, they are not proven smear-positive, i.e. include
all cases without a positive smear.

If you run the above, we see that the dataset contains a variable regdate, the registration date.
In the previous exercise we selected cases for quarters. We want to make this more flexible
here and allow the person running the program to choose interactively any time interval. We
need thus six variables for day, month, and year to begin and to end and two additional variables
to construct the two corresponding dates:
cls
type "Be patient...data compilation in progress" /h2
define regbegdd ## global
define regbegmm ## global
define regbegyy #### global
define regenddd ## global
define regendmm ## global
define regendyy #### global
define regbegdate <dd/mm/yyyy>
define regenddate <dd/mm/yyyy>
We then allow interactive selection for the beginning of the interval:
cls
type "Enter beginning of registration period, day, month, year" /h2
type "Only a date between 1 Jan 2004 and 31 Dec 2005 is possible" /h2
regbegdd=?Enter begin day of registration?
regbegmm=?Enter begin month of registration?
regbegyy=?Enter begin year (4-digit) of registration?
regbegdate=dmy(regbegdd, regbegmm, regbegyy)
and selection for the ending of the interval:
cls
type "Your chosen start date is @regbegdd - @regbegmm - @regbegyy" /h2
type "Enter now your choice of the end of registration period, day, month, year" /h2
type "Only a date between 1 Jan 2004 and 31 Dec 2005 is possible" /h2
regenddd=?Enter end day of registration?
regendmm=?Enter end month of registration?

course_d_ex05_task
Page 6 of 20

regendyy=?Enter end year (4-digit) of registration?
regenddate=dmy(regenddd, regendmm, regendyy)
Note the blue line which allows displaying the chosen date on the output screen.
Finally, we make the selection of the interval, and retain just the variables that we need for
further work to speed up processing time and save the reduced data set:
cls
type "Be patient ... analysis in progress" /h2
select regdate>=regbegdate and regdate<=regenddate
keep case age sex site category
savedata "temp_01.rec" /replace

Run this part and for demonstration purposes, use the time interval including 1 Jan 2004 through
4 Jan 2004 to get a small data set that will assure that not all strata have cases (you should get
15 records).
So far, we had the preparatory steps. Now comes the construction of the first table, which is
case status versus quartiles of age. We read the dataset and define a variable colvar to have
identity with the variable name used in the dummy dataset and assign it the values of the
variable case:
**
* case_demogr_01: Age quartiles

cls
type "Be patient...data compilation in progress" /h2
close
logclose
read "temp_01.rec"

define colvar ##
colvar=case

The row variable should take the values of the age quartiles. In Part B, Exercise 2, we
introduced how we can use the values EpiData Analysis stores in the variable result if we
let it execute a command such as means. We utilize this here for the variable age:
means age if age<>99
define quart #
if age <$p251 then quart=1
if age>=$p251 and age<$p501 then quart=2
if age>=$p501 and age<$p751 then quart=3
if age>=$p751 then quart=4
if age =99 then quart=5

Then, in analogy to the column variable, we write for the row variable:
define rowvar ##
rowvar=quart

This way we have the two variables required to make our cross-table:
tables colvar rowvar

In Part B, Exercise 3, you learned that by replacing the tables command with the
aggregate command we can get the result written into a file and then manipulate that file
like creating a unique identifier in the same manner as we did in the dummy file:
aggregate rowvar colvar /close
cls
type "Be patient ... analysis in progress" /h2

course_d_ex05_task
Page 7 of 20

gen s(2) id01=string(colvar)
gen s(2) id02=string(rowvar)
if colvar<10 then id01="0"+string(colvar)
if rowvar<10 then id02="0"+string(rowvar)
gen s(5) id=id01+"-"+id02
drop id01 id02
savedata "temp_02.rec" /replace

If we run this (with our above selection of 15 records) and browse this file, we get:

Manually adding up the field N we get the 15 case we expect. We have 6 records. As the
column variable has 2 levels and the row variable 5, we should have 2*5=10 records if each
possible cell had cases. Thus, 4 cells have no cases. Our dummy file for age quartiles
dummy_case_demogr_01.rec has all 10 records. We thus read in the dummy file and
merge it on the id to this temp_02.rec file:
cls
type "Be patient ... analysis in progress" /h2
close
read "dummy_case_demogr_01.rec"
merge id /file="temp_02.rec"
sort rowvar colvar

Browsing shows which cells are missing in the actual data set and are contributed by the dummy
set (Only in memory):

It is now simple to replace the period (for missing) with a count of zero and do a bit book
keeping:
gen i cases=n
if n=. then cases=0
drop n mergevar
savedata "temp_03.rec" /replace

course_d_ex05_task
Page 8 of 20

to get with browsing:

We add a string variable to allow easy identification of values of the field rowvar:
gen s(35) rowvartxt=.
if rowvar=1 then rowvartxt="01_age_Q1"
if rowvar=2 then rowvartxt="01_age_Q2"
if rowvar=3 then rowvartxt="01_age_Q3"
if rowvar=4 then rowvartxt="01_age_Q4"
if rowvar=5 then rowvartxt="01_age_missing"

As shown in Part D, Exercise 1, we reshuffle from long to wide, select only the remaining
necessary row, and drop superfluous variables:
cls
type "Be patient ... analysis in progress" /h2
gen i case=.
gen i noncase=.

cls
type "Be patient ... analysis in progress" /h2
case=cases
if colvar[_n+1]=2 then noncase=cases[_n+1]

select colvar=1
drop colvar rowvar id cases

savedata "case_demogr_01.rec" /replace

and we get a compact rectangular file in browsing

in which each cell has a value, in contrast to the tables command which omits the missing:

course_d_ex05_task
Page 9 of 20

The next sub-table deals with case status versus sex. Because of our setup, we can copy the
entire block, and then change the assignment to rowvar, the dummy file set used for merging,
change the values for rowvartxt, and finally save the file as case_demogr_02.rec.
When done and then browsing you should get:

The two files we created, case_demogr_01.rec and case_demogr_02.rec have the
same columns and can thus be appended:
cls
type "Be patient ... analysis in progress" /h2
close
read "case_demogr_01.rec"
append /file="case_demogr_02.rec"

In the menu, we want that at the end of the program, the browser window opens and the user is
instructed what to do with the content of the browser window:
set display databrowser=on
browse
cls
type "Data compilation complete" /h2
type "Copy content of the browser window to clipboard and paste into spreadsheet" /h2

This gives us, labeled and clear, but with some esthetic deficiencies for the general user:

With that we are done (run the entire program to test that it works). We will now turn to the
next part, the menu. The finalization of the script with all four variables rather than just these
two will be part of the task.

course_d_ex05_task
Page 10 of 20

For the time being we are done with the work in the “regular” EpiData Analysis and what we
did will work smoothly in the EpiData Analysis menu. Thus, copy all sub-folders from the
epidata_course to the epidata_report2 folder, overwriting everything if prompted.

Installing the LibreOfficePortable suite

The challenge at hand is to format the above *.rec file into something useful and esthetically
pleasing that can easily be shared with others who do not have EpiData installed on their
computer. The most appealing approach is the use of non-proprietary software that is part of
the menu package and can thus be fully controlled and easily used through a few clicks.
This is most efficiently accomplished with a pre-formatted spreadsheet template. Pre-
formatting is possible because the number of columns and rows is fixed in the EpiData Analysis
output: it was the very purpose of merging a pre-defined dummy set with a dataset sub-
selection. Using proprietary Excel™ cannot as smoothly solve the problem. It notably requires
that the user has purchased the software. It is also not that trivial to access Excel™ from the
EpiData start_tb.htm file. A straight forward way is to use the portable edition of non-
proprietary, open-source LibreOffice (formerly known as OpenOffice). It is a true suite, that
is, it has a core functionality that holds all individual sub-components (seven in total) together.
There is no point in trying to install only the spreadsheet sub-component, it is making things
complicated while not at all being a space-saver. In the software group you find the install file
(or preferably download it from the Internet, but note its large file size). Install it into the sub-
folder LibreOfficePortable in the epidata_report2 folder we have already
created.

Editing the start_tb.htm file

As you remember, the start_tb.htm file is the file called when you start the EpiData
Analysis executable file epidatastat.exe. It defines the menu interface. It is located in
the \languages\en sub-folder. We open it in our text editor (while possible of course, don’t
do it in NotePad™, it is not a quality text editor. Use instead free Crimson Editor you find in
the software section, the coloring is just one of its many advantageous aspects).

Just after the opening table tag <tbody> you find (on line 34 if you use Crimson):

All cells in a given the table row (shown with the beginning tag </tr> and the ending tag
</tr> circled red above) are a bit crammed up. We want to isolate the individual cells for
clarity’s sake, take the row apart with hard carriage returns so that each cell starting with an
opening <td> and a closing </td> tag gets its own paragraph as follows:

course_d_ex05_task
Page 11 of 20

This allows counting the cells: here we have 4 (two cells in the middle are merged with
colspan=“2”). However, we want to have 6 cells per row:

We now have:

EpiData
icon

 Union
icon

 Analysis
icon

A quarterly report on case finding

We needed thus only 4 cells, but new we want to change this to:

EpiData
icon

 Union
icon

 Analysis
icon

Run EpiData analysis
program

Spread-
sheet
icon

Paste output into
spreadsheet

This requires 6 cells per row. In the top row above, we thus change this line:

to expand the middle colspan=“2” to colspan=“4”:

The subsequent empty (no text, no icons) row is changed from:

to

We thus change (tedious perhaps but also educational) every row to always have a total of 6
cells per row, irrespective of whether the row is empty or contains icons and / or instructions.
Attention must be paid to make the merging (colspan) in the correct places, and noting that

course_d_ex05_task
Page 12 of 20

sometimes we need colspan=“2” and sometimes colspan=“3”. If you are all done with
each row in this way and you refresh the menu interface (F8), there should not be any visually
apparent change, but you have changed your menu table from 4 to 6 columns.
Next we duplicate by copying the row with “A quarterly report on treatment outcome” and
change the text to “Demographic and other characteristics of patients” which should give us:

If we remove the colspan=“3” in what is below line 86:

and duplicate lines 85 and 86, then we should get:

displayed in the browser as:

In line 85 (here) we change the name of the program file “quarterly_report_2.pgm” to
the program file we wrote before, i.e. “case_demogr.pgm”. After saving and then
refreshing the menu in the browser, we test it and should get (perhaps with different numbers,
depending on our interval selection):

What’s above in lines 86 and 87 describes the contents for cells 4 and 5 of the total 6 cells in
the row. It must become something quite different. What’s between the single quotes shown
below in blue:
<a href='epi: set echo=off; CLS; run "..\pgm\case_demogr.pgm"; type "F8: Go
back to Menu"'>

course_d_ex05_task
Page 13 of 20

are all EpiData Analysis commands. Instead we want to call the LibreOffice spreadsheet and
within a template (which we have not yet written), which will get the name
“case_demogr.ots” (LibreOffice spreadsheet templates have the extension *.ots).
Thus, all between the single quotes must be deleted and be replaced with the path to the *.exe
file of the LibreOffice spreadsheet (the “LibreOfficeCalcPortable.exe” file in the
sub-folder LibreOfficePortable). The template “case_demogr.ots” will reside in
the sub-folder templates. Hierarchically at the same location of images the path to the
executable for the LibreOffice spreadsheet needs analogously a preceding double “../../”,
i.e. the reference becomes:

The reference to the image:
alt="epidata_analysis" src="../../images/epidatastat.png"

needs to be changed, using the logo of LibreOffice spreadsheet provided in the images folder:
alt="LibreOffice" src="../../images/logo_libreoffice_calc.png"

Finally, the label: “Demographic and other characteristics of patients”
could be changed to something like “Access the spreadsheet to format EpiData
output”. Displayed in the browser window after refreshing it shows as:

Access is of course not functional as the template is not yet available. This is the next thing we
are making.

Creating a template in the LibreOfficeCalcPortable spreadsheet

Open a new spreadsheet by double-clicking the executable “LibreOfficeCalcPortable.exe”
and you get an interface similar to the Microsoft Excel™ spreadsheet:

If you return to our menu, you can still call browsing with F6 as you would in the “regular”
EpiData Analysis, the file created is still there and you get:

course_d_ex05_task
Page 14 of 20

If you click on the intersection between rows and columns (shown red-circled above), the entire
file gets marked (as in a spreadsheet):

Right-clicking gives the option to copy to Clipboard (CTRL+C will also do):

Copy and Close and return to the spreadsheet and paste (CTRL+V) to get prompted:

If Tab is not ticked, you have to, to get the input into columns rather than into one cell per row:

course_d_ex05_task
Page 15 of 20

After OK you get the browser output copied into the spreadsheet:

Save this right away as an ODF Spreadsheet Template (.ots) (*.ots):

in the \templates sub-folder. As long as we don’t quit LibreOffice, saving is always to the
template (not a regular spreadsheet file, which would have the extension *.ods).

We will have two sheets in this template, one for input, and a second for output, and we label
them at the bottom, changing:

From default label of one sheet … … to customized label with two sheets

In the output sheet, we start with writing some more or less sensible title:

You may know from Microsoft Excel™ that you can copy content from one sheet’s cell to any
cell in a second sheet (here output), if you type an equal sign “=” into the destination cell in
the output sheet then switch to the source cell in the first sheet (here input) and press there the
hard carriage return. Specifically here, move your cursor into cell B3 of the output sheet, type
the equal sign, then go to cell A1 in the input sheet and press the hard carriage return key. You
will automatically be returned to the output sheet and now have the value written into cell B3:

If you inspect the B3 cell content you see the formula:

course_d_ex05_task
Page 16 of 20

Copy this cell down and then copy the column to the right to get the entire content of the input
sheet:

We refine formatting further, inserting rows and making more appealing labels (after all our
row names were just for unambiguous identification). In addition to the standards of inserting
rows and columns and so on, make use of Format | Cells:

It has an extensive menu for all sorts of things on formatting cells:

To make sums you may use =sum(a1:a4) to get the sum of cells a1+a2+a3+a4. Do you know
how to avoid the error message from a division by zero:

If you type:
=IF(F11<>0,C11/F11*100,"NA")

you get:

course_d_ex05_task
Page 17 of 20

Note that the default of LibreOffice are American measures. For instance, the default page size
is Letter size rather than A4. It is easy to change if you need to do so (consider printing).
After you have exhausted your creativity, you may get something like:

After being happy with your formatting (don’t overdo it now, you will have more opportunity
in the upcoming task), we return to the input sheet, delete all numbers (leave the labels) and put
the cursor into cell A1:

Make sure you save it (it will still be saved as the *.ots template file), and then close
LibreOffice Calc (ALT+F4 closes the program).
To test, run the program again, make some other interval selection, and then click the
LibreOffice icon to open the template.

course_d_ex05_task
Page 18 of 20

Note: LibreOffice is a slow opener, much slower to open than Microsoft Office. Be patient,
do not click the icon more than once: either it works with one click or it will not work with
100 clicks, but multiply clicking can cause conflicts and will surely slow it down even further!

The last thing to show, is the inbuilt possibility to make a PDF file. If you have run your
program, and pasted the EpiData Analysis browser content into the input file, switch to the
output file and mark all fields:

In File you have Export as PDF:

Clicking it, you need to choose Selection under the General tab:

and save the selection in some folder with your favorite name:

course_d_ex05_task
Page 19 of 20

Then go there to view it. Because the access was to a template file, this spreadsheet is still
untitled:

You can save it (as a LibreOffice *.ods spreadsheet file or also as a Microsoft Office Excel™
file).

Task:
o Complete the EpiData Analysis program file “case_demogr.pgm” to make an output for

all four variables i.e. adding site of disease and patient category. Then upgrade the
LibreOffice template file “case_demogr.ots” and create the output as a PDF file.

o Write a “cleaning” program that ensures that all temporary session files are erased.

course_d_ex05_task
Page 20 of 20

Tasks:
o Complete the EpiData Analysis program file “case_demogr.pgm” to make an output for

all four variables i.e. adding site of disease and patient category. Then upgrade the
LibreOffice template file “case_demogr.ots” and create the output as a PDF file.

o Write a “cleaning” program that ensures that all temporary session files are erased.

The solution is the entire menu package. The PDF exported spreadsheet output is shown on the
following page.

Solution to Exercise 5: Formatting standardized analysis output in a
spreadsheet

Key points:
• Cross-tables in analysis may have varying dimensions, depending on how

many strata have counts
• A work-around to obtain fixed dimensions is the use of merging the

aggregated data with a dummy set in which there is one record for each
possible column-row combination

• Output from multiple tables can be stacked in a *.rec file after aggregation
and a and pasted into a preformatted spreadsheet for a formatted output

course_d_ex05_solution
Page 1 of 2

Report from the National Tuberculosis Program

Page 1 of 1

Characteristics of microscopy confirmed and other cases

Characteristic
Confirmed cases

Other cases Total Col %N Row %
Total 5,058 72.5 1,921 6,979 100.0
Age quartiles

Quartile 1 1,014 61.8 627 1,641 23.5
Quartile 2 1,365 74.6 465 1,830 26.2
Quartile 3 1,367 77.6 395 1,762 25.2
Quartile 4 1,312 75.2 432 1,744 25.0
Age missing 0 0.0 2 2 0.0

Sex
Female 1,408 65.9 728 2,136 30.6
Male 3,650 75.4 1,192 4,842 69.4
Sex missing 0 0.0 1 1 0.0

Disese site
Pulmonary 5,030 85.6 848 5,878 84.2
Extrapulmonary 23 2.1 1,072 1,095 15.7
Site missing 5 83.3 1 6 0.1

Patient category
New 4,366 74.5 1,491 5,857 83.9
Relapse 502 97.9 11 513 7.4
After failure 64 100.0 0 64 0.9
After default 22 91.7 2 24 0.3
Transfer in 76 52.4 69 145 2.1
Other 8 14.3 48 56 0.8
Category missing 20 6.3 300 320 4.6

Part E. Beyond EpiData Analysis using R

Part E: Beyond EpiData Analysis using R
Exercise 1: Introduction to R software: basics
Exercise 2: Introduction to R software: data bases and functions
Exercise 3: Multivariable analysis in R part 1: A logistic regression
Exercise 4: Multivariable analysis in R part 2: A Cox proportional hazard model

Introductory note
Part E addresses how to conduct a multivariable analysis for two situations for which EpiData
Analysis is not designed to be operational. With our philosophy that there should preference
be given to outstanding freely available software, we chose to introduce the open-source
package R rather than any of the proprietary software solution packages.

The first exercise introduces the bare-bone basics of R software with a few simple exercises to
get a feel for its working. Recommended texts for self-study are (available on the course CD-
ROM):

Aragón T J. Applied epidemiology using R. University of California, Berkeley School of Public Health, and
the San Francisco Department of Public Health. Version 14 October 2013, available from
http://medepi.com/courses/applied-epi-using-r/.

Lumley T and the R Core Development Team and UW Department of Biostatistics. R fundamentals and
programming techniques. Version Birmingham, 2006-2-27/28, available from
http://faculty.washington.edu/tlumley/Rcourse/R-fundamentals.pdf.

Venables W N, Smith D M and the R Core Team. An introduction to R. Notes on R: a programming
environment for data analysis and graphics, Version 3.1.0 (2014-04-10), available from: http://cran.r-
project.org/doc/manuals/R-intro.pdf.

The second exercise extends on the basics by introducing data bases and functions. The
recommended text for self-study is (available on the course CD-ROM):

Myatt M. Open source solutions – R. Nordic School of Public Health and University of Tartu. Computer
software in epidemiology / statistical practice in epidemiology. Version 16 May 2005, available from
http://www.brixtonhealth.com.

The third exercise gives the first application, the use of logistic regression to determine
predictors that include continuous variables and variables with more than two levels. The
recommended text for self-study is (available in the course material):

Manning C. Logistic regression (with R). Version 4 November 2007, available from
http://nlp.stanford.edu/~manning/courses/ling289/logistic.pdf.

The fourth exercise gives the second application, survival analysis where stratification with the
Kaplan-Meier approach does no more suffice and adjustments are preferred by using a Cox

http://medepi.com/courses/applied-epi-using-r/
http://faculty.washington.edu/tlumley/Rcourse/R-fundamentals.pdf
http://cran.r-project.org/doc/manuals/R-intro.pdf
http://cran.r-project.org/doc/manuals/R-intro.pdf
http://www.brixtonhealth.com/
http://nlp.stanford.edu/%7Emanning/courses/ling289/logistic.pdf

proportional hazard model. The recommended texts for self-study are (available in the course
material):

Tableman M. Survival analysis using S/R. Unterlagen für den Weiterbildungsgang in angewandter Statistik
an der ETH Zürich. [Note: despite the German subtitle, the document is entirely in English, except for the
subtitle which refers to the course at the Swiss Federal Institute of Technology in Zurich]. Version August-
September 2012. It is an excerpt from the book Survival Analysis Using S: Analysis of Time-to-Event Data
by Mara Tableman and Jong Sung Kim, published by Chapman & Hall/CRC, Boca Raton, 2004.

Therneau T M. Package ‘survival’. Version 2.37-7, July 2, 2014, available from http://cran.r-
project.org/web/packages/survival/index.html.

Acknowledgments:
We used the following data in the exercises:
In Exercise 1, we use an example given by Altman in:
Altman D G, Machin D, Bryant T N, Gardner M J. Statistics with confidence. 2nd edition. 2 ed. Bristol: BMJ
Group; 2000.

In Exercises 2, 3, and 4 we use data from:
Aung K J M, Van Deun A, Declercq E, Sarker M R, Das P K, Hossain M A, Rieder H L. Successful “9-month
Bangladesh regimen” for multidrug-resistant tuberculosis among over 500 consecutive patients. Int J Tuberc Lung
Dis 2014;18: in press.

We are grateful to Drs Aung, Declercq, and Van Deun to grant permission to use an excerpt of
individual data from the original dataset.

Nguyen Binh Hoa, Ajay M V Kumar, and Zaw Myo Tun went through the first draft of the
exercises and gave valuable input into the development of Part E.

course_e_ex01_task

Page 2 of 14

http://cran.r-project.org/web/packages/survival/index.html
http://cran.r-project.org/web/packages/survival/index.html

R is a language and environment for statistical computing and graphing. It provides a suite of
numerous packages for a virtually unlimited number of applications, including the most
powerful tools that an epidemiologist might need. It has a large community of collaborators
and contributors, it is entirely open to everybody who wants to use it and who wishes to
contribute.

The starting point on the internet is the “The R Project for Statistical
Computing” at its web site: http://www.r-project.org/. This is from
where you access one if its mirror sites to download the software.

In tandem with R, we will also use RStudio, also open-source and free, a
powerful and productive user interface for R. It can be found for download
at its web site: http://www.rstudio.com/.

If your course comes on a CD-ROM, you find the two software packages on your CD-ROM,
but as always with software, we strongly recommend that you obtain it from its original source
on the internet.
Install R on your computer and then install RStudio. If you open RStudio, you see that it is
divided into a left-hand-sided panel, and a split right-handed panel:

In Tools | Options we can adjust to the preferred layout:

Exercise 1: Introduction to R software

At the end of this exercise you should be able to:
a. Have a basic understanding of how R works and to expand on this basis in a

self-learning process
b. Be informed about resources on R software

course_e_ex01_task

Page 3 of 14

http://www.r-project.org/
http://www.rstudio.com/

We chose here (somewhat arbitrarily) to have the Source on the top left, the Console on the top
right, the Environment, History, … on the bottom left, and the Files, Plots, Packages, Help on the
bottom left. and get altogether four quadrants:

So that after these adjustments we get:

course_e_ex01_task

Page 4 of 14

We cleared the screen of the Console by using the shortcut CTRL+L. To switch between the
Console and the Source editor quadrants use CTRL+1 to get to the Source editor, and CTRL+2
to get to the Console.

Of course, you are free to arrange it at your liking, but for the time being in this course, we will
refer to this arrangement.

First we Create project from an Existing directory:

and browse for the EPIDATA_COURSE project folder:

You note on the left top:

and note that the left side has been collapsed to show the environment only and on the right side
we are in Files:

If you click on the toggle icon above Source:

course_e_ex01_task

Page 5 of 14

You see the split screen again.

Note also that RStudio and R use forward slashes “C:/epidata_course/” in the Console. RStudio
actually created a sub-folder “.Rproj.user\” which is not public and by default hidden
from view.
We are therefore all set to go. To introduce the workings of R we will create a two-by-two
table as in a case-control study and calculate the odds ratio with a Woolf confidence interval.

A case-control study example
Our reference text for statistical calculations like for EpiData Analysis is, whenever possible,
the text by Altman and collaborators:
 Altman D G, Machin D, Bryant T N, Gardner M J. Statistics with confidence. 2nd edition. Bristol: BMJ

Group, 2000: pp 61-62.

The odds ratio is defined as the odds of exposure among cases divided by the odds of exposure
among controls. Woolf’s logit method uses normal approximation to the distribution of the
logarithm of the odds ratio in which the standard error is
SE(logeOR) = SQRT(1/a + 1/b + 1/c + 1/d)

To obtain the 95% confidence interval, we calculate the quantities:
95% CI = logeOR ± 1.96 * SE(logeOR)

By exponentiating, we get the 95% confidence interval.
To enable verification of our numbers, we are going to use the same example as Altman uses
in table 7.4 for the worked example:

ABO non-secretor state
Study group

Cases Controls Total

Yes 54 89 143
No 60 245 305
Total 114 334 448

We will be writing our commands into the upper left quadrant (Source editor). When we run
it, it will show in the right upper quadrant (the Console). Objects that we create will be found
in the left lower quadrant.

In the Source editor, you should now have the empty workspace like any text editor:

course_e_ex01_task
Page 6 of 14

Type:
a <- 54

“a” is what we call an “object” to which we assign (using “<-”) the value 54. Some people
say “Everthing is an object in R”. There is (incomplete, though) truth to this. Anything and
everything can be assigned to an object. Here we assign a number to an object “a”. We can
name our objects whatever we want them to be called:
A
a
a.plus.b

but note importantly, they are case-sensitive: “A” is not the same as “a” in R. Another important
note to make is that the value of an object can be overwritten without any warning.

You probably type the lesser sign “<”, followed by the minus sign “-”. RStudio allows you to
use ALT+- alone (the ALT key plus the minus sign) and you get the “assign” symbol
combination including the spaces that we often like to make in R.
Nothing happened when you hit the carriage return key and this is how it is supposed to be in
the Source editor. You only type here your stuff. To execute it, you need to tell it to do it. It
is like writing commands in an EpiData Analysis program, and like in the latter you have:

a Run command: anywhere on a command line, it runs the current line, marking whatever you
wish, it runs the marked section, nothing new here for the seasoned EpiData user. If we run
this line, two things happen: in the right upper quadrant, the Console, you get:

This is confirmation that the command Run was executed. In the left lower quadrant, the
Values, you get:

As we are going to use the Run command often, it is useful to know that the shortcut
CTRL+Enter accomplishes the same thing as Run. CTRL+Shift+Enter runs the entire script.

All objects at your disposal will be listed here. In the Console, the value of object “a” is not
visible. Some things you do will give you the result immediately, others will not, this
assignment obviously belongs to the latter category. But type into the second line below the
assignment:
365/7

and Run it. What you get now in your console is:

course_e_ex01_task
Page 7 of 14

both the command you wrote and the result from the calculation. If you write into your working
space:
a

and Run it you get:

CTRL+L clears the Console.

Let’s do the other assignments, writing each on a separate line:
b <- 89
c <- 60
d <- 245

then Run after marking. You should now have all four objects visible in the lower left quadrant:

While we have our four objects that make up the core of the 2-by-2 table, we would like to have
the complete table including its marginals, and all assigned to one object.
To this end we will first create a vector, that is a one-dimensional object containing the values
of a, b, and their sum. To keep with intuition, we will call this object “ab”. Type:
ab <- c(a, b, a+b)

The “c” stands for “concatenate”, that is putting a string consisting of sub-strings together. The
elements of the vector are in parenthesis, separated by commas. They are, in the order in which
we want to have them, our created two objects a and b, and the third element the sum of the
two.
To see the result, type
ab

on a new line. Alternatively, you could also put a series of commands on one single line,
separated by semi-colons, like in:
ab <- c(a, b, a+b); ab

and you should get:

course_e_ex01_task
Page 8 of 14

Note, that in the left lower quadrant, you get now the object ab and a definition of what it is:

Analogously, we create the second vector for the non-exposed:
cd <- c(c, d, c+d)

and get accordingly:

We have thus two vectors, one for the exposed and another for the non-exposed. Now we want
them to be together in one single object that we will call abcd. The command to “bind” two
rows together is:
abcd <- rbind(ab, cd); abcd

and we get:

The “rbind” is for “row binding”. Of course, if there is “rbind”, there must also be a
“cbind” for column binding. Note also on the top [,1], [,2] and [,3]: R labels (missing
an actual label) things in a Cartesian way as [row, col]. R writes the indices to designate
position in square brackets. As the column headers don’t have a row designation, it is thus the
comma followed by the column number. What might be the internal designation for the location
of the number 54? Yes, it is [1,1] for first row, first column, while 305 is in position [2,3].

We have combined two vectors (one-dimensional objects) and the result is a matrix (a two-
dimensional object). We could have created a matrix directly from the four objects a, b, c, and
d. However, we have to pay attention to the correct the sequence:
abcd_m <- matrix(c(a, c, b, d, a+b, c+d), nrow=2, ncol=3); abcd_m

noting that the matrix function reads the data column-wise (!), we get:

We don’t need to write “nrow=2, ncol=3” to tell R that these 6 objects must be allocated to 2
rows and 3 columns, it suffices to stated:
abcd_m <- matrix(c(a, c, b, d, a+b, c+d), 2, 3); abcd_m

as R understands the first assignment (“2”) to be for the number of rows, and the second (“3”)
for the number of columns. If we don’t pay attention to the default sequence row-column:

course_e_ex01_task

Page 9 of 14

abcd_m <- matrix(c(a, c, b, d, a+b, c+d), 3, 2); abcd_m

we get a solution, but not the intended one:

In contrast, if we specify:
abcd_m <- matrix(c(a, c, b, d, a+b, c+d), ncol=3, nrow=2); abcd_m

we will get what we intend:

Thus, as beginners, not yet fully conscious of default sequences, it is safer to be overly explicit.
To get back to the matrix: A matrix is a “two-dimensional table of like elements” (Aragón).
Remove the object abcd_m as we are not going down this way for the time being:
rm(abcd_m)

where rm is the command to remove an object which is specified within the following
paranethesis.
To complete the table, we need to make a row that is the sum of the first and the second row.
We will call it rtot and it must be:
rtot <- abcd[1,] + abcd[2,]; rtot

because we are adding values of the respective column in row 1 [1,] to the values in row 2
[2,]. The result:

The last thing we have to do to get our complete table with all the marginals is row binding to
an object that we will call tab:
tab <- rbind(abcd, rtot); tab

giving:

Before we lose our hard work, let’s save what we typed so far in our editing window (the Source
as we named the upper left quadrant initially) as “e_ex01_or.r” (by going through File |
Save or by clicking the diskette icon). To our knoweldge, R is not very particular what
extension we give things, but we keep anyhow to what is quite widely common usage, and that
is to give the extension *.r. You note how the file name replaces the Untitled:

course_e_ex01_task

Page 10 of 14

=>

While we have everything we need, we could make it a bit more appealing with appropriate
column an row labeling which is done as:
colnames(tab) <- c(“Case”, “Control”, “Total”)
rownames(tab) <- c(“Exp+”, “Exp-”, “Total”)

and check to verify with:
tab

“colnames” and “rownames” are the respective commands to give labels to columns and
rows, while what follows in the parenthesis (tab) is the object to which the command applies.

We can also label the dimensions:
names(dimnames(tab)) <- c("Exposure", "Status"); tab

and get:

So far so good, but all we have is input, but what we really need are calculations. The odds
ratio should be simple enough, we need to define the location by row and column of a, b, c,
and d to then calculate (a/c)/(b/d), thus:
or <- (tab[1,1]/tab[2,1])/(tab[1,2]/tab[2,2]); or

Note again here the brackets (not parentheses): whenever something needs to be indexed in R,
brackets are used, here for the Cartesian positioning [row, col] but also if one wishes to
describe the position of a record.

We specify the object tab and the position of its numeric elements to get the correct
calculation, and the result should be:
2.477528

For the calculation of the 95% confidence interval (CI) we do this preferably in more than one
step, first calculating the standard error se:
se <- sqrt(1/a+1/b+1/c+1/d)

We take here directly our four input objects as this calculation is independent of the position in
the table. Next, for the lower and upper 95% CI:
or.ci.lower <- exp(log(or)-1.96*se)
or.ci.upper <- exp(log(or)+1.96*se)

Let’s remove the objects that we don’t need, the command to remove objects is rm:

course_e_ex01_task

Page 11 of 14

rm(ab, cd, abcd, rtot, se)

Finally, let’s get an output that summarizes it all together:
print(tab)

cat("\nOR:", round(or, digits=3), "\n95% CI:", round(or.ci.lower,
 digits=3), "to ", round(or.ci.upper, digits=3))

With the function “cat” we avoid quotes where we don’t need them, and then take control by
writing them where we need them:
x <- c("Ajay", "Hoa", "Zaw")
x

gives:
"Ajay" "Hoa" "Zaw"
but
cat(x)

gives:
Ajay Hoa Zaw

The function “\n” is equivalent to a hard carriage return.

The function round is followed by the object, then a comma, then the number of digits to
which it is rounded, all in parentheses as is usual with functions.

Note that it is best if you write everything of the second item (starting with “cat”) on a single
line. We should get:

Verifying by comparison with the results in Altman’s shows that what we obtained is correct.
To make this more generically useful, we remove now all non-essential things, first of all the
input objects a, b, c, and d. While not necessary (any object can be overwritten without
warning), it is intuitively more appealing if we just keep the rest and then enter new values for
a, b, c, and d and then run our “stripped” e_ex01_or.r. Thus, the stripped
e_ex01_or.r may look like (note the hash “#” symbol at the beginning of the line
correspondes to the asterisk “*” in EpiData Analysis denoting a non-executed comment):
Complete 2 by 2 table from
a, b, c, d and calculate odds ratio wih Wolf CI
Assign below values for a, b, c, and d as in:
a <- 100

ab <- c(a, b, a+b)
cd <- c(c, d, c+d)
abcd <- rbind(ab, cd)

course_e_ex01_task

Page 12 of 14

rtot <- abcd[1,]+abcd[2,]
tab <- rbind(abcd, rtot)
colnames(tab) <- cbind("Case", "Control", "Total")
rownames(tab) <- rbind("Exp+", "Exp-", "Total")
names(dimnames(tab)) <- c("Exposure", "Status"); tab
or <- (tab[1,1]/tab[2,1])/(tab[1,2]/tab[2,2])
se <- 1.96*sqrt(1/a+1/b+1/c+1/d)
or.ci.lower <- exp(log(or)-se)
or.ci.upper <- exp(log(or)+se)

print(tab)
cat("\nOR:", round(or, digits=3), "\n95% CI:", round(or.ci.lower,
digits=3), round(or.ci.upper, digits=3), "\n")

You would now assign any value to your input objects a, b, c, and d, for instance directly in
the console and then open this script and Run it, and there it will be.

To quit R, type:
q()

You will be prompted whether you wish to save the workspace image:

to which you can safely answer with “n”: we have saved our scripts and do not need to save
in addition the log file.

Task

In analogy to the calculation of the odds ratio, write an R script e_ex01_rr.r that
calculates the relative risk from two proportions (thus not a ratio of incidence rates, but a
ratio of two prevalence proportions) for a study used in Altman’s textbook. It has the
isolation of Helicobacter pylori as the outcome and the history of an ulcer in the mother as
the exposure. We use the following set-up of notations:

Exposure
Outcome

Ill Healthy Total

Yes A B A+B
No C D C+D
Total A+B B+D A+B+C+D

The data provided by Altman in table 7.2 (page 59) are as follows:

Mother with a
history of ulcer

H pylori isolated

Yes No Total

course_e_ex01_task

Page 13 of 14

Yes 6 16 22
No 112 729 841
Total 118 745 863

The relative risk is calculated by:
 R = [A/(A+B)]/[C/(C+D)]

The standard error of the logeR is:
 se = SQRT(1/A-1/(A+B)+1/C-1/(C+D))

The 95% CI is thus:
 95%CI = exp(logeR ± 1.96*se)

course_e_ex01_task

Page 14 of 14

Task

In analogy to the calculation of the odds ratio, write an R script e_ex01_rr.r that
calculates the relative risk from two proportions (thus not ratio of incidence rates, but ratio
of two prevalence proportions) for a study used in Altman’s textbook. It has the isolation of
Helicobacter pylori as the outcome and the history of an ulcer in the mother as the exposure.
We use the following set-up of notations:

Exposure
Outcome

Ill Healthy Total

Yes A B A+B
No C D C+D
Total A+B B+D A+B+C+D

The data provided by Altman in table 7.2 (page 59) are as follows:

Mother with a
history of ulcer

H pylori isolated

Yes No Total

Yes 6 16 22
No 112 729 841
Total 118 745 863

The relative risk is calculated by:
 R = (A/(A+B))/(C/(C+D))

Solution to Exercise 1: Introduction to R software: basics

Key points:
a. R is both a language and an environment of computing
b. Anything and everything can be assigned to an object
c. Object names are case-sensitive
d. A vector is a one-dimensional object of like elements
e. A matrix is a two-dimensional table (another object) of like elements
f. Vectors can be bound to matrices

The standard error of the logeR is:
 se = SQRT(1/A-1/(A+B)+1/C-(1/(C+D))

The 95% CI is thus:
 95%CI = exp(logeR ± 1.96*se)

Solution:

The solution for the e_ex01_rr.r is a straight forward modification of the
e_ex01_or.r:

Complete 2 by 2 table from
A, B, C, D and calculate relative risk with Wolf CI

A <- 54
B <- 89
C <- 60
D <- 245

AB <- c(A, B, A+B)
CD <- c(C, D, C+D)
ABCD <- rbind(AB, CD)
rtot <- abcd[1,]+abcd[2,]
tab <- rbind(ABCD, rtot)
colnames(tab) <- cbind("Ill", "Healthy", "Total")
rownames(tab) <- rbind("Exp+", "Exp-", "Total")
names(dimnames(tab)) <- c("Exposure", "Status")
se <- sqrt(1/A-1/(A+B)+1/C-1/(C+D))
rr <- (tab[1,1]/tab[1,3])/(tab[2,1]/tab[2,3]); rr
rr.ci.lower <- exp(log(rr)-1.96*se)
rr.ci.upper <- exp(log(rr)+1.96*se)

print(tab)
cat("\nRR:", round(rr, digits=3), "\n95% CI:", round(rr.ci.lower,
digits=3), round(rr.ci.upper, digits=3), "\n")

The result is:

course_e_ex01_solution

Page 2 of 2

What we did in Exercise 1 is unusual in analysis: we entered aggregate data and analyzed them,
while the usual currency of analysis is appropriate aggregation of individual observations.
Commonly, datasets have been entered in other software as R is not a data entry tool. In the
context of this course, data will come as an EpiData dataset with a *.REC and a *.CHK file.
R accepts a multitude of data formats for import. In fact, a package has been developed that
expands on the number of formats of datasets which can be imported into R, including for
instance Epi Info / EpiData *.REC files and Stata *.dta files.

An important part of the versatility of R lies with the system of “packages”. What we have
been using is the basic package, but if we want to utilize the capability of importing EpiData
*.REC files or Stata *.dta files, the package “Foreign” should be added to our existing setup.
In the lower right quadrant in RStudio, you see:

Click on Packages and you get a list of packages that are available with those loaded already
ticked as for e.g. a basic statistical package:

The package we need is called foreign. You have to tick Install to get a menu:

You shouldn’t need to do anything here except typing foreign into the line Packages and
then Install as RStudio knows by definition where you have installed your copy of R. You need
to be on the Internet though to get to the repository:

Alternatively, you can use the included Zip package in the course material, but then you need
to change the Install from and get the downloaded zip file. But as always, to ensure obtaining

Exercise 2: Introduction to R software: data bases and functions

At the end of this exercise you should be able to:
a. Know how to import a data base from another format
b. Create a function and apply it to an analytic problem

the most up-to-date version, get it whenever possible directly from the internet (http://cran.r-
project.org/web/packages/foreign/index.html).
Having installed the package does not automatically put it at your disposal, you will have to
call it. We start a new *.r script that we will name e_ex02.r.

In the required files on the course site you find the EpiData REC/CHK pair e_ex02.rec and
e_ex02.chk. This is an abbreviated set of treatment results among patients with laboratory-
confirmed multidrug resistance in Bangladesh.

The package foreign allows importing *.REC files with the command:
read.epiinfo("c:/epidata_course/e_ex02.rec")

However, this approach disregards the metadata (the *.CHK file) and only imports the field
values from the *.REC file. We can write value labels in R, but we would first need to examine
the *.CHK file and be careful about errors: tedious and error-prone. More efficient and safer
is to use EpiData Entry 3.1 (or the EpiData Manager) to export the e_ex02.* file pair to a
Stata *.dta file that contains both values and labels and then read the Stata file into R. Once
you have exported the EpiData file pair to a Stata e_ex02.dta file, we are ready for import
into R.
Being sticklers in labeling things, we start with a title, followed by actually invoking the now
installed package foreign:
Import an EpiData REC file

library(foreign)
e_ex02.dat <- read.dta("c:/epidata_course/e_ex02.dta")
Because we have made the “epidata_course” our project folder, it suffices to type:
e_ex02.dat <- read.dta("e_ex02.dta")
We read the Stata file by putting file name (and file path) in quotation marks inside a parenthesis
(note the use of forward slashes) as in EpiData. We assign the imported file to an object that
we will call e_ex02.dat. The *.dat is not required, it is just an object after all. We could
call the object “a” if we wished to do so. The period separating the elements “e_ex02” and
“dat” is not designating an extension, it is just one of the many ways R allows giving names
to objects.
In a second step, we write the data to disk:
library(foreign)
e_ex02.dat <- read.dta("c:/epidata_course/e_ex02.dta")
write.table(e_ex02.dat, file="e_ex02.dat", row.names=TRUE)

Perhaps this is as good as any occasion to introduce the Help functions in R. If you know
already “write.table”, then it is easy, type:
help(write.table)

and you get in the lower right-hand corner box quite extensive information (try it out!).
To see what the import did, type:
e_ex02.dat[1:5,]

This gives the first 5 records:

course_e_ex02_task

Page 2 of 19

http://cran.r-project.org/web/packages/foreign/index.html
http://cran.r-project.org/web/packages/foreign/index.html

To see the variable names only, type:
Get the list of variable names only
names(e_ex02.dat)
and get:

R has a special way to deal with missing information. It uses NA to denote any missing value,
be it numeric or text. If NA is the assigned value, then a record in an analysis using the variable
with such a value will be excluded. We will use different approaches to the analysis. In some
analyses, we will include all 515 records – how many records we have, can be seen in the
Environment lower quadrant of the left panel:

In another analysis, we will exclude missing observations. We will create three datasets:

e_ex02_01.dat is the unaltered full set with missing values designated by NA, R’s way to
define missing values.

e_ex02_02.dat is the dataset containing only records with information on initial
fluoroquinolone resistance.

e_ex02_03.dat is the subset of patients with initial ofloxacin resistance with either a
bacteriologically unsuccessful outcome (failure or relapse) or a
bacteriologically successful outcome (relapse-free cure or treatment
completion).

The dataset
To get information on the structure of the dataset:
str(e_ex02.dat)

and we get (top only shown):

course_e_ex02_task

Page 3 of 19

The full dataset thus contains 515 records with 12 variables (rearranged):

AGE: Age in years as an integer.

AGEQUART: Age as a categorical variable in quartiles.

AGEMED: Age as a binary categorical variable (below the median, and median and larger).

SEX: Patient’s sex as categorical variable (Female, Male).

OUTCOME07: 7-level treatment outcome (Cure, Completion, Failure, Death, Default, Relapse,
Reinfection).

OUTCOME02: Outcome as a binary categorical variable, i.e. successful (relapse-free cure or
completion) vs all other outcomes (Success, Failure).

TOTOBSTIME: Time of observation, an integer in days from treatment start until an event
occurred (see later) or the observation time ended because of follow-up completion.

FQ04: Drug susceptibility test result for ofloxacin. If resistant, the minimum inhibitory
concentration to gatifloxacin was determined. This categorical variable has four levels
(Susceptible, Low-level resistance, High-level resistance, Missing).

PZA02: Drug susceptibility test result of molecular (pncA) for pyrazinamide as a categorical
binary variable, resistant vs not known to be resistant (PZA not known resistant, PZA resistant).

KMY02: Drug susceptibility test result of phenotypic testing for kanamycin as a categorical
binary variable, resistant vs not known to be resistant (KM not known resistant, KM resistant).

PTH02: Drug susceptibility test result of phenotypic testing for prothionamide as a categorical
binary variable, resistant vs not known to be resistant (PTH not known resistant, PTH resistant).

CXR02: Radiographic disease extent as a categorical binary variable, bilateral vs not known to
be bilateral (Not known bilateral, Bilateral).
The information for some variables was complete (age and sex), for some very few had missing
information (fluoroquinolone drug susceptibility test result, missing assigned to a defined
category). Some variables had quite a few missing (known pncA sequencing result for
pyrazinamide), others were quite complete (like radiographic disease extent). One could argue
to deal differently with the missing than what was done for this exercise in this simplified
categorization as “not known resistant”. In any case, we chose here certain simplifications that
are unlikely to importantly bias the planned analysis in the wrong direction. For some key
questions, a “purist’s” approach is chosen to deal with missing values.
The easiest to create is the full set: the only manipulation required is an assignment of the only
variable with a missing value, the variable FQ04 for ofloxacin drug susceptibility test result:

course_e_ex02_task

Page 4 of 19

e_ex02.dat[e_ex02.dat$fq04=="Missing", "fluoroquinolone"] <- NA

Several new and important things are seen in this command line. Starting with the outermost
right assignment NA, we note how R deals with missing data. In the data entry exercises with
EpiData software we had taught (a bit dogmatically) that we wish to have a value (commonly
designated as 9, 99, 9.99 etc) for all records with a missing value in a field. But this is by no
means a universal standard. Rather more commonly such a field may remain empty or might
have some value for missing or might be a mixture of both. Dealing correctly with missing
values remains one of the most challenging tasks in any analysis. When we read the dataset
and look at a frequency as follows:
table(e_ex02.dat$fq04)

we get (note the use of “table” rather than “tables” as in EpiData) before and after the NA
assignment above:
Before:

After:

We could deal with the 14 missing as a category and leave it just as it is with these 4 category
levels. In our, we will, however, pay special interest to this variable. As 14 of 515 is just 2.7%
of all observations, there is no important bias if we later simply exclude these 14 cases. There
are different ways to sub-setting, but we assign the R designation for missing, which is NA.

To the very left we have the name of the dataset e_ex02.dat. Inside the brackets we identify
the variable within the dataset as in:
setname$varname

The “==” is new and differs what we learned in EpiData. The following are the logical
operators used in R:

This is from the Quick-R website:
http://www.statmethods.net/

course_e_ex02_task

Page 5 of 19

http://www.statmethods.net/

an extraordinarily useful website to get – as it says – quick answers to questions on R, highly
recommendable! R (and Stata) uses the double == sign for equality rather than the single equal
sign because the latter (=) can be used as “assign” instead of the <- we now got used to (and
will stick to).
Thus, to get back:
e_ex02.dat$fq04=="Missing"

This identifies the variable fq04 within the dataset e_ex02.dat and identifies records in
which the category value is “Missing” (note that the value is not the “value” from the *.REC
file, but the value is the label obtained from the Stata file for easy identification). After the
comma, we state that we retain the variable name fq04:
e_ex02.dat[e_ex02.dat$fq04=="Missing", "fq04"] <- NA

we could check whether we have now records with NAs with the important command:
na.is(x)

which is used to find out which elements of x are recorded as missing (NA), i.e. here:
is.na(e_ex02.dat$fq04)

and we get (an excerpt from the list of all 515 records):

To assign this revised set to the new object with the desired name and to ensure that it is a “data
frame”, we write:
e_ex02_01.dat <- data.frame(e_ex02.dat)

What is called a “data frame” in R is just what we EpiData users call a dataset. “It is a list of
vectors and / or factors of the same length that are related “across” such that data in the same
position come from the same experimental unit” (formulation copied from Peter Dalgaard,
Introductory statistics with R, 2008). The distinction is made because R can deal with other
types of data collection.

Sub-setting
The next dataset is trickier to create. An excellent source on the internet to find quick answers
is Quick-R at http://www.statmethods.net/index.html. If we enter “subsets” into the Search
box, we see among several option, option Nr 1:

Clicking on the link we get all we need to know for starters. To select observations, the full
explicit is:
newdata <- mydata[which(mydata$gender=='F' & mydata$age > 65),]

There is a short-cut allowed:
newdata <- mydata[which(gender=='F' & age > 65),]

course_e_ex02_task

Page 6 of 19

http://www.statmethods.net/index.html

Note here the single quotes to enclose text, but we can also use double quotes. In any case, we
need to know the criteria. We mentioned above that we want to do a sub-analysis on patients
with initial ofloxacin resistance. If we just write some table command, we might have the
problem of ambiguity on which of the currently existing two datasets the command needs to be
executed.

Our dataset to create is to be named “e_ex02_02.dat”. It will only contain records without
missing data for the variable fq04. We are thus making a selection in EpiData language or
sub-setting in R language. If we start from the originally read dataset, we write:
e_ex02_02.dat <- e_ex02.dat[which(e_ex02.dat$fq04 != "Missing"),]

Alternatively, and perhaps simpler, we can use the subset function:
e_ex02_02.dat <- subset(e_ex02.dat, fq04 != "Missing")

Note (and see above) the “!=” denoting “unequal”.

To make the even more complex third dataset, the newcomer might best first stick to the fully
explicit. We thus write three lines, making intermediary datasets, each line being self-
explanatory:

We start with the dataset e_ex02_02.dat which has 501 records. Excluding 26 deaths
defined in the variable outcome07, we get 475 observations in the new dataset
e_ex02_02_03a.dat:
e_ex02_03a.dat <- subset(e_ex02_02.dat, outcome07 != "Death")

Excluding then 40 defaulters defined in the variable outcome07, we get 435 observations in
the new dataset e_ex02_02_03b.dat:
e_ex02_03b.dat <- subset(e_ex02_03a.dat, outcome07 != "Default")

Excluding finally 382 patients with initial fluoroquinolone susceptibility defined in the variable
fq04, we get 53 observations in the final desired dataset e_ex02_02_03.dat:
e_ex02_03.dat <- subset(e_ex02_03b.dat, fq04 != "Susceptible")

Of course, this can all be written into a single command line:
e_ex02_03.dat <- subset(e_ex02_02.dat, outcome07 != "Death" & outcome07 !=

"Default" & fq04 != "Susceptible")

and one gets the same result of 53 observations.

Finally, to save the three datasets to disk, we do as above:
write.table(e_ex02_01.dat, file="e_ex02_01.dat", row.names=TRUE)
write.table(e_ex02_02.dat, file="e_ex02_02.dat", row.names=TRUE)
write.table(e_ex02_03.dat, file="e_ex02_03.dat", row.names=TRUE)

course_e_ex02_task

Page 7 of 19

A generically applicable function for the analysis of a 2-by-2 table
If we had a variable fq02 to denote a binary outcome for initial fluoroquinolone (FQ)
resistance (aggregating low and high resistance) and excluding those with missing
fluoroquinolone test result, an analysis by the binary outcome in EpiData Analysis is as follows:
select fq02<>9 // exclude records with missing FQ result
tables outcome02 fq02 /o

which gives:

Second, we make a stratified analysis to look at the influence of SEX:
tables outcome02 fq02 sex /o

which gives a summary:

by the Mantel-Haenszel procedure.
The first table in R requires that we make a new variable for a binary result of fluoroquinolone
resistance and then create the table:
e_ex02_02.dat[e_ex02_02.dat$fq04=="Susceptible", "fq02"] <- "1-Susceptible"
e_ex02_02.dat[e_ex02_02.dat$fq04=="Low-level resistance", "fq02"] <- "2-Resistant"
e_ex02_02.dat[e_ex02_02.dat$fq04=="High-level resistance", "fq02"] <- "2-Resistant"
e_ex02_fq02.dat <- data.frame(e_ex02_02.dat)

At this point let’s introduce attach. Followed in parenthesis by the dataset name:
attach(e_ex02_02_fq02.dat)

it puts the dataset e_ex02_02_fq02.dat into the search path and we do thus not to need to
repeat the dataset name all the time, it suffices to write the variable names. It is equally
important not to forget to detach a dataset to get it out of the path. Thus, we type here:
detach(e_ex02_02.dat)

If the data set is in the path, what would otherwise be:
table(e_ex02_fq02.dat$fq02, e_ex02_fq02.dat$outcome02)

course_e_ex02_task

Page 8 of 19

becomes simplified:
table(fq02, outcome02)

This gives just the bare bone core of the correct output table:

Note here that for the R command table the sequence is different from EpiData: the first
variable gives the row and the second variable the column. We noted earlier that the default
sequence in R is row, then column. Note also that we numbered “1-Susceptible” and “2-
Resistant” to get these into our preferred alphabetical sequence (the default would be the
inverse).
Could we somehow use what we did in Exercise 1, edit it a bit and get it functional for this
situation? Open the e_ex01_or.r in the text editor and remove everything, except the
following lines:
or <- (tab[1,1]/tab[2,1])/(tab[1,2]/tab[2,2])
se <- sqrt(1/a+1/b+1/c+1/d)
or.ci.lower <- exp(log(or)-1.96*se)
or.ci.upper <- exp(log(or)+1.96*se)
print(tab)
cat("\nOR:", round(or, digits=3), "\n95% CI:", round(or.ci.lower, digits=3),
"to ", round(or.ci.upper, digits=3))

We are going to create a Function that can be applied in the future to the same setting. We
have already used functions, TABLE is a function. To make our own function, type:
tab2by2 <- function(exposure, outcome) {}

This is the framework only, and it doesn’t yet do anything. To put it to useful work, type:
fix(tab2by2)

and a function editor window opens:

Our commands will go between the curly braces {}. It is a custom (but no real need, but we
will faithfully follow customs of those with more experience, they usually have their reasons)
to put the opening brace { on a new line and then the commands after that on new lines, and
have the closing brace } again at the end alone on a line. After we paste from the text editor
what we have, we should thus get:

course_e_ex02_task

Page 9 of 19

It is not yet quite correct, because there is no object tab. Thus type on the line before the
“or”:
tab <- table(exposure, outcome)

That is, we assign the output of any two-by-two table of this format to an object tab. You may
note that the RStudio short-cut key ALT+- to get the assign combination “<-” is non-functional
in functions, you have to type it out. As we are already using a, b, c, and d, we might as well
keep these, and then make in the “or” line assignments to these, so that in the revision we get:
function(exposure, outcome)
 {
 tab <- table(exposure, outcome)
 a <- tab[1,1]; b <- tab[2,1]; c <- tab[1,2]; d <- tab[2,2]
 or <- (a/c)/(b/d)
 se <- sqrt(1/a+1/b+1/c+1/d)
 or.ci.lower <- exp(log(or)-1.96*se)
 or.ci.upper <- exp(log(or)+1.96*se)
 print(tab)
 cat("\nOR:", round(or, digits=3), "\n95% CI:", round(or.ci.lower,

digits=3), "to ", round(or.ci.upper, digits=3))
}

Save it. We could save it later when quitting in the workspace, but it is better to also save in in
a file and doing that now:
save(tab2by2, file = "tab2by2.r")

Conversely, when we open RStudio anew, it can be loaded whenever we need it with:
load(“tab2by2.r”)

Note that you actually need the full path, thus in our case:
load("C:/epidata_course/tab2by2.r")

Also note that this approach results in an *.r file that is not anymore a straight text file (you see
gibberish in the text editor). It seems to be the price that has to be paid for a function we write
by ourselves.

Before we apply it, we need to reopen and Run our e_ex02.r script which should read now:
Exercise 2: Introduction to R software: data bases and functions

####################################
1) Import a Stata file

library(foreign)
e_ex02.dat <- read.dta("e_ex02.dta")
e_ex02.dat <- read.dta("c:/epidata_course/e_ex02.dta")
write.table(e_ex02.dat, file="e_ex02.dat", row.names=TRUE)

course_e_ex02_task

Page 10 of 19

See the first 5 records
e_ex02.dat[1:5,]

Get the list of variable names only
names(e_ex02.dat)

table(e_ex02.dat$fq04)

####################################
2) Create full unaltered set (515 records)
e_ex02.dat[e_ex02.dat$fq04=="Missing", "fq04"] <- NA
is.na(e_ex02.dat$fq04)
e_ex02_01.dat <- data.frame(e_ex02.dat)

####################################
3) Create a subset with records with known FQ DST result (401 records)
e_ex02_02.dat <- e_ex02.dat[which(e_ex02.dat$fq04 != "Missing"),]
or alternatively with the SUBSET function:
e_ex02_02.dat <- subset(e_ex02.dat, fq04 != "Missing")

####################################
4) Create a subset with records with known FQ resistance and
bacteriological success or failure (53 records)
Commands on three lines
e_ex02_03a.dat <- subset(e_ex02_02.dat, outcome07 != "Death")
e_ex02_03b.dat <- subset(e_ex02_03a.dat, outcome07 != "Default")
e_ex02_03.dat <- subset(e_ex02_03b.dat, fq04 != "Susceptible")
Alternatively, commands on single line
e_ex02_03.dat <- subset(e_ex02_02.dat, outcome07 != "Death" & outcome07 != "Default"

& fq04 != "Susceptible")

Table of outcome by FQ resistance
Create first a new variable FQ02

e_ex02_02.dat[e_ex02_02.dat$fq04=="Susceptible", "fq02"] <- "1-Susceptible"
e_ex02_02.dat[e_ex02_02.dat$fq04=="Low-level resistance", "fq02"] <- "2-Resistant"
e_ex02_02.dat[e_ex02_02.dat$fq04=="High-level resistance", "fq02"] <- "2-Resistant"
e_ex02_fq02.dat <- data.frame(e_ex02_02.dat)
table(e_ex02_fq02.dat$fq02, e_ex02_fq02.dat$outcome02)

write.table(e_ex02_01.dat, file="e_ex02_01.dat", row.names=TRUE)
write.table(e_ex02_02.dat, file="e_ex02_02.dat", row.names=TRUE)
write.table(e_ex02_03.dat, file="e_ex02_03.dat", row.names=TRUE)

####################################
5) Make functions: 2-by-2 table
Prepare making a function
tab2by2 <- function(exposure, outcome) {}
fix(tab2by2)
save(tab2by2, file = "tab2by2.r")

attach(e_ex02_fq02.dat)

As the last command is ATTACH the proper file, let’s try to apply it. Type:
load("C:/epidata_course/tab2by2.r")
tab2by2(fq02, outcome02)

and you should get:

course_e_ex02_task

Page 11 of 19

identical to the EpiData Analysis output (see above). Note that the R load function is
necessary only after exiting R and reopening the script. Similarly, the three lines:
tab2by2 <- function(exposure, outcome) {}
fix(tab2by2)
save(tab2by2, file = "tab2by2.r")

have been put as comments as they do not need repeat execution once done.

We can use this function for any other EXPOSURE-OUTCOME pair, such as:
tab2by2(sex, outcome02)

In EpiData Analysis:
tables outcome02 sex /o

We surely have to watch out for the variable SEX. You know from earlier that EpiData Analysis
inverts (by design) the sequence of values for the exposure and outcome variables, while the
net effect on the odds ratio thus remains unaffected.

To summarize: TABLE is an inbuilt function in R which cross tabulates the two variables.
Replacing TABLE by our function ‘tab2by2’ runs our code creating the table and with the
odds ratio and the 95% confidence interval, displayed it in the desired format. There are many
functions that have been created already by R users and collaborators which we can make use
of. Thus, a skill we have to master is to search for a function which suits our purpose and make
correct and careful use of it. This example illustrates the basic mode of using and applying
functions in R.

A generically applicable function for the analysis of a 2-by-2-by-2 table
In the previous paragraph we dealt with a matrix (a two-dimensional object of like elements).
It was the special case of a 2-by-2 matrix. In this part, we move now forward to deal with
arrays. An array is an n-dimensional table of like objects. In particular, we will concern

course_e_ex02_task

Page 12 of 19

ourselves with the special case of a 2-by-2-by-2 table, i.e. a 3-dimensional table. We can
construct such an object in R with the command:
z <- array(1:8, c(2, 2, 2)); z

and get:

What is the location of “7”? Try:
u <- z[1, 2, 2]; u

The third dimension (row is the first, the column the second, the added one the third) is also
indicated by the the two leading commas:
, , 2

We mentioned before that the location [indexing] in R is defined within brackets []. The
default sequence is by dimension, separated by commas, where the first dimension is always
the row, the second the column and here the third is what we epidemiologists call the stratifying
dimension. If we apply this concept of a multidimensional array to epidemiology, we thus have
the concept of stratification.
The generic grammar for a table command for this basic stratification is:
table(exposure, outcome, stratvar)

or
table(rowvar, columnvar, stratvar)

where stratvar is the name of the straifying variable. In our case, specifically, we try:
table(fq02, outcome02, sex)

to get, if the last attach command was attach(e_ex02_fq02.dat):

course_e_ex02_task

Page 13 of 19

In 1959, Mantel and Haenszel proposed an efficient method for estimating a summary odds
ratio from a series of 2 by 2 tables. It is easy to apply and does not require iterative calculations.
In the following introduction, we follow Schlesselman’s explanations and use of example
(Schlesselman J J. Case-control studies. Design, conduct, analysis. New York: Oxford
University Press, 1982).
The Mantel-Haenszel estimate of the odds ratio (ORmh), adjusted for the effects of the
stratification variables is calculated as:
SUM(aidi/ni)/SUM(bici/ni)

An estimate of the variance of the ORmh has been proposed. If we define:
wi = bici/ni

and
vi = (ai + ci)/aici + (bi + di)/bidi

then the variance of the loge ORmh is given by:
var(ln ORmh) ≈ SUMwi2vi/(SUMwi)2

The approximate 95% confidence interval is thus given by:
ln ORmh ± 1.96*SQRT[var(ln ORmh)]

If we apply this to our data:
 Female Male
 Failure Success Failure Success
Resistant 9 10 9 34
Susceptible 21 106 38 274

OR 4.543 1.909
ni 146 355
Wi 1.438 3.639
vi 0.268 0.170
aidi/ni 6.534 6.946
bici/ni 1.438 3.639
SUM(aidi/ni) 13.481
SUM(bici/ni) 5.078
ORmh 2.655
wi^2*vi 0.555 2.258
SUM(wi^2*vi) 2.813
(SUMwi)^2 25.784
SUM(wi^2*vi)/(SUMwi)^2 0.109
var(lnORmh) 0.109
ORmh-lower 1.390
ORmh-upper 5.072

EpiData Analysis gives:
ORmh: 2.65 (1.43-4.93)

The point estimate is the same, but the 95% CI interval is slightly different because EpiData
Analysis uses consistently the Robins, Greenland, Breslow confidence intervals, while we
followed here Schlesselman’s example using Hauck’s interval. As the exercise is about the

course_e_ex02_task

Page 14 of 19

principle of learning on how to go about when creating a function, the choice of the confidence
interval does not really matter here.
We will keep to this most simple example with only 8 cells total among three variables: each
variable is binary.
Let’s best start from scratch and make a new function:
ormh <- function(exposure, outcome, stratvar) {}

We create a function ORMH (short for Mantel-Heanszel odds ratio) that takes three parameters,
in that given sequence.

We propose to draft the content that goes between the curly braces {} in the text editor before
we put into it with fix. We can modify what we had before, just slightly so:
tab <- table(exposure, outcome, stratvar)
a1 <- tab[1,1,1]; b1 <- tab[2,1,1]; c1 <- tab[1,2,1]; d1 <- tab[2,2,1]
a2 <- tab[1,1,2]; b2 <- tab[2,1,2]; c2 <- tab[1,2,2]; d2 <- tab[2,2,2]

This takes into account that we work now with a 3-dimensional array and have a1, a2, and b1,
b2, etc.

We have to create the aidi/ni and the bici/ni for each of the two tables:
adn1 <- (a1*d1)/n1
adn2 <- (a2*d2)/n2
bcn1 <- (b1*c1)/n1
bcn2 <- (b2*c2)/n2

and from these we calculate the object MHOR:
mhor <- (adn1+adn2)/(bcn1+bcn2)

Note that we chose the object name to be mhor to distinguish in from the function name ormh.
Before we get too much carried away in our excitement, we should check whether we are on
the right track:
fix(ormh)

and insert what we currently have:
function(exposure, outcome, stratvar)
 {
 tab <- table(exposure, outcome, stratvar)
 a1 <- tab[1,1,1]; b1 <- tab[2,1,1]; c1 <- tab[1,2,1]; d1 <- tab[2,2,1]
 a2 <- tab[1,1,2]; b2 <- tab[2,1,2]; c2 <- tab[1,2,2]; d2 <- tab[2,2,2]
 n1 <- a1+b1+c1+d1
 n2 <- a2+b2+c2+d2
 adn1 <- (a1*d1)/n1
 adn2 <- (a2*d2)/n2
 bcn1 <- (b1*c1)/n1
 bcn2 <- (b2*c2)/n2
 mhor <- (adn1+adn2)/(bcn1+bcn2)
 print(tab)
 cat("\nOR:", round(mhor, digits=3))
}
and test it with the command:
ormh(fq02, outcome02, sex)

course_e_ex02_task

Page 15 of 19

We get:

We are definitely on the right track! Therefore, we might continue requiring next the two
components w and v that we calculate as intermediate steps for calculation of the variance and
then the variance itself:
w1 <- (b1*c1)/n1
w2 <- (b2*c2)/n2
v1 <- ((a1+c1)/(a1*c1))+((b1+d1)/(b1*d1))
v2 <- ((a2+c2)/(a2*c2))+((b2+d2)/(b2*d2))
varor <- ((w1^2*v1)+(w2^2*v2))/((w1+w2)^2)

Then we calculate the confidence interval:
se <-sqrt(var.mhor)
mhor.lower <-exp(log(mhor)-1.96*se)
mhor.upper <-exp(log(mhor)+1.96*se)

Finally, by adding what is to appear on the screen, we get the full function as:
function(exposure, outcome, stratvar)
{
 tab <- table(exposure, outcome, stratvar)
 a1 <- tab[1,1,1]; b1 <- tab[2,1,1]; c1 <- tab[1,2,1]; d1 <- tab[2,2,1]
 a2 <- tab[1,1,2]; b2 <- tab[2,1,2]; c2 <- tab[1,2,2]; d2 <- tab[2,2,2]
 a <- a1+a2; b <- b1+b2; c <-c1+c2; d <- d1+d2
 or <- (a/c)/(b/d)
 se <- sqrt(1/a+1/b+1/c+1/d)
 or.ci.lower <- exp(log(or)-1.96*se)
 or.ci.upper <- exp(log(or)+1.96*se)
 n1 <- a1+b1+c1+d1
 n2 <- a2+b2+c2+d2
 adn1 <- (a1*d1)/n1
 adn2 <- (a2*d2)/n2
 bcn1 <- (b1*c1)/n1
 bcn2 <- (b2*c2)/n2
 mhor <- (adn1+adn2)/(bcn1+bcn2)
 w1 <- (b1*c1)/n1
 w2 <- (b2*c2)/n2
 v1 <- ((a1+c1)/(a1*c1))+((b1+d1)/(b1*d1))
 v2 <- ((a2+c2)/(a2*c2))+((b2+d2)/(b2*d2))
 var.mhor <- ((w1^2*v1)+(w2^2*v2))/((w1+w2)^2)

course_e_ex02_task

Page 16 of 19

 se <-sqrt(var.mhor)
 mhor.lower <-exp(log(mhor)-1.96*se)
 mhor.upper <-exp(log(mhor)+1.96*se)
 print(tab)
 cat("\nOR adj:", round(mhor, digits=3), "\n95% CI:", round(mhor.lower,

digits=3), "-", round(mhor.upper, digits=3))
}
If we test with:
ormh(oflres, outcome02, sex)

we get:

We can use this generically for other variables, such as:
ormh(fq02, outcome02, cxr02)

and get:

Do not forget to save the function to a file:
save(ormh, file = "ormh.r")

Admittedly, what we have done here is still quite amateurish. Fortunately, more professional
contributors to R have written a function to calculate the Mantel-Haenszel estimate of the odds
ratio. If you just type the function:
mantelhaen.test

course_e_ex02_task

Page 17 of 19

you see the full function. We can use it for our example:
mantelhaen.test(table(fq02, outcome02, sex))

and we get:

To look what the author of that function actually wrote, you can type in analogy of what we did
above:
fix(mantelhaen.test)

We note thereby that the producers of this function that is part of the basic R package has the
same approach to the calculation of the confidence interval as was chosen for EpiData Analysis,
which gave as a summary:

In summary, we have demonstrated that we can create any function in R which has a
generalizable applicability. Fortunately, others have already done most of what is probably
needed and it is thus not usually necessary to write our own functions. This is good news, of
course, as it proves rather tedious and definitely requires sometimes basic, and sometimes more
sophisticated knowledge of statistics. It also requires a thorough knowledge of the S
programming language. Functions abound for R, but one has to look out for them to know how
they are used properly. How did we find that this one exists? At the R prompt, type:
??mantel

and you get in the right lower quadrant of RStudio:

course_e_ex02_task

Page 18 of 19

where you then click on the link for detailed information.

Tasks:

o Append the ormh.r script to calculate and show also the stratum-specific and crude
(unstratified) odds ratioa with 95% confidence intervals (you may use the same type of
confidence interval as we used in the tab2by2.r script)

course_e_ex02_task

Page 19 of 19

Tasks:

o Append the ormh.r script to calculate and show also the stratum-specific and crude
(unstratified) odds ratioa with 95% confidence intervals (you may use the same type of
confidence interval as we used in the tab2by2.r script)

Solution:

The script e_ex02.r:
Exercise 2: Introduction to R software: data bases and functions

####################################
1) Import a Stata file

library(foreign)
e_ex02.dat <- read.dta("e_ex02.dta")
e_ex02.dat <- read.dta("c:/epidata_course/e_ex02.dta")
write.table(e_ex02.dat, file="e_ex02.dat", row.names=TRUE)

See the first 5 records
e_ex02.dat[1:5,]

Get the list of variable names only
names(e_ex02.dat)

table(e_ex02.dat$fq04)

####################################
2) Create full unaltered set (515 records)
e_ex02.dat[e_ex02.dat$fq04=="Missing", "fq04"] <- NA
is.na(e_ex02.dat$fq04)
e_ex02_01.dat <- data.frame(e_ex02.dat)

####################################
3) Create a subset with records with known FQ DST result (401 records)
e_ex02_02.dat <- e_ex02.dat[which(e_ex02.dat$fq04 != "Missing"),]

Solution to Exercise 2: Introduction to R software: data bases and
functions

Key points:
a. The package “foreign” allows importing a variety of data base formats

including EpiData REC files. It will not import any labels
b. “Everything in R is either an object or a function”: in this exercise you

learned creating a generally applicable function for a simple 2-by-2 table,
and for a stratified table to calculate a Mantel-Haenszel estimate of an
adjusted odds ratio with a confidence interval

c. Numerous functions are available already in the base package, you will
have to learn to use the Help file to get the fullest out of these functions

or alternatively with the SUBSET function:
e_ex02_02.dat <- subset(e_ex02.dat, fq04 != "Missing")

####################################
4) Create a subset with records with known FQ resistance and
bacteriological success or failure (53 records)
attach(e_ex02_02.dat)
detach(e_ex02_02.dat)
Commands on three lines
e_ex02_03a.dat <- subset(e_ex02_02.dat, outcome07 != "Death")
e_ex02_03b.dat <- subset(e_ex02_03a.dat, outcome07 != "Default")
e_ex02_03.dat <- subset(e_ex02_03b.dat, fq04 != "Susceptible")
Alternatively, commands on single line
e_ex02_03.dat <- subset(e_ex02_02.dat, outcome07 != "Death" & outcome07 != "Default"

& fq04 != "Susceptible")

Table of outcome by FQ resistance
Create first a new variable FQ02

e_ex02_02.dat[e_ex02_02.dat$fq04=="Susceptible", "fq02"] <- "1-Susceptible"
e_ex02_02.dat[e_ex02_02.dat$fq04=="Low-level resistance", "fq02"] <- "2-Resistant"
e_ex02_02.dat[e_ex02_02.dat$fq04=="High-level resistance", "fq02"] <- "2-Resistant"
e_ex02_fq02.dat <- data.frame(e_ex02_02.dat)
table(e_ex02_fq02.dat$fq02, e_ex02_fq02.dat$outcome02)

write.table(e_ex02_01.dat, file="e_ex02_01.dat", row.names=TRUE)
write.table(e_ex02_02.dat, file="e_ex02_02.dat", row.names=TRUE)
write.table(e_ex02_03.dat, file="e_ex02_03.dat", row.names=TRUE)

####################################
5) Make functions: 2-by-2 table
Prepare making a function
tab2by2 <- function(exposure, outcome) {}
fix(tab2by2)
save(tab2by2, file = "tab2by2.r")

attach(e_ex02_fq02.dat)

load("C:/epidata_course/tab2by2.r")
tab2by2(fq02, outcome02)
tab2by2(sex, outcome02)

####################################
6) Make functions: 2-by-2-by-2 table / Mantel-Heanszel
Arrays for a stratification

table(fq02, outcome02, sex)

ormh <- function(exposure, outcome, startvar) {}
fix(ormh)
save(ormh, file = "ormh.r")
ormh(fq02, outcome02, sex)
ormh(fq02, outcome02, cxr02)

####################################
7) On restart use LOAD to get the funcions
load("C:/epidata_course/ormh.r")
tab2by2(fq02, outcome02)
load("C:/epidata_course/tab2by2.r")
table(fq02, outcome02, sex)
ormh(fq02, outcome02, sex)

mantelhaen.test(table(fq02, outcome02, sex))

course_e_ex02_solution

Page 2 of 4

The script ormh.r:
function(exposure, outcome, stratvar)
{
 tab <- table(exposure, outcome, stratvar)
 a1 <- tab[1,1,1]; b1 <- tab[2,1,1]; c1 <- tab[1,2,1]; d1 <- tab[2,2,1]
 a2 <- tab[1,1,2]; b2 <- tab[2,1,2]; c2 <- tab[1,2,2]; d2 <- tab[2,2,2]
 a <- a1+a2; b <- b1+b2; c <-c1+c2; d <- d1+d2
 or1 <- (a1/c1)/(b1/d1)
 se1 <- sqrt(1/a1+1/b1+1/c1+1/d1)
 or1.ci.lower <- exp(log(or1)-1.96*se1)
 or1.ci.upper <- exp(log(or1)+1.96*se1)
 or2 <- (a2/c2)/(b2/d2)
 se2 <- sqrt(1/a2+1/b2+1/c2+1/d2)
 or2.ci.lower <- exp(log(or2)-1.96*se2)
 or2.ci.upper <- exp(log(or2)+1.96*se2)
 or <- (a/c)/(b/d)
 se <- sqrt(1/a+1/b+1/c+1/d)
 or.ci.lower <- exp(log(or)-1.96*se)
 or.ci.upper <- exp(log(or)+1.96*se)
 n1 <- a1+b1+c1+d1
 n2 <- a2+b2+c2+d2
 adn1 <- (a1*d1)/n1
 adn2 <- (a2*d2)/n2
 bcn1 <- (b1*c1)/n1
 bcn2 <- (b2*c2)/n2
 mhor <- (adn1+adn2)/(bcn1+bcn2)
 w1 <- (b1*c1)/n1
 w2 <- (b2*c2)/n2
 v1 <- ((a1+c1)/(a1*c1))+((b1+d1)/(b1*d1))
 v2 <- ((a2+c2)/(a2*c2))+((b2+d2)/(b2*d2))
 var.mhor <- ((w1^2*v1)+(w2^2*v2))/((w1+w2)^2)
 se <-sqrt(var.mhor)
 mhor.lower <-exp(log(mhor)-1.96*se)
 mhor.upper <-exp(log(mhor)+1.96*se)
 print(tab)
 cat("\nOR stratum 1:", round(or1, digits=3), "\n95% CI:", round(or1.ci.lower,

digits=3), "-", round(or1.ci.upper, digits=3),
 "\n\nOR stratum 2:", round(or2, digits=3), "\n95% CI:", round(or2.ci.lower,

digits=3), "-", round(or2.ci.upper, digits=3),
 "\n\nOR crude:", round(or, digits=3), "\n95% CI:", round(or.ci.lower,

digits=3), "-", round(or.ci.upper, digits=3),
 "\n\nOR adjusted:", round(mhor, digits=3), "\n95% CI:", round(mhor.lower,

digits=3), "-", round(mhor.upper, digits=3))
}

The output:

course_e_ex02_solution

Page 3 of 4

course_e_ex02_solution

Page 4 of 4

In Exercise 1, you learned some basic principles about the R language. As you go along, it will
prove worthwhile to familiarize yourself more and more with the workings of the R / S
language, and we provided you with links to some particularly useful texts that help in
becoming more proficient.
In Exercise 2, you learned how to import a dataset, to assign the special values for missing data
that R recognizes as such, to create data subsets for analysis. Next you learned to write your
own basic function.
For none of the things you learned in Exercises 1 and 2 will we have a need for R. EpiData
delivers all that, and in a very simple and intuitive way. We will take recourse to R only if we
cannot solve a problem analytically with EpiData Analysis. One such application is the logistic
regression analysis which is the subject of this exercise.

Before we get started with the actual work, open a new script page and save it as “e_ex03.r”.
We will use the dataset e_ex02_02.dat as our starting point, that is, the set with 501 cases
with known fluoroquinolone drug susceptibility test result. The simplest way to make a dataset
available in R is with the command read.table:
e_ex03 <- read.table("e_ex02_02.dat")
attach(e_ex03)

We assign its content to an object e_ex03 which we attach, so that it is available in the path.

The indication for a logistic regression
A major challenge in the analysis of epidemiologic data is to avoid falsely inferring causality
between some factor and an outcome. As a simplified example we might find in a given
population that cases of lung cancer occur far more frequently among males than among
females. One would not conclude that being male is a risk factor for lung cancer before first
examining whether smoking might also be a virtually male addiction in that population. For
categorical variables we might use the Mantel-Haenszel stratification approach to adjust for
such confounding. The method has two major limitations. First, the more variables we need
to adjust for, the larger the uncertainty of our estimates and the more likely some strata are left
without counts and making a summary measure becomes impossible. Second, the method is
limited to categorical variables but often we do not wish to categorize a naturally continuous
variable (like age) just to accommodate the method. From various possibilities, one favored
method is logistic regression analysis that overcomes these two major limitations of stratified

Exercise 3: Multivariable analysis in R part 1: Logistic regression

At the end of this exercise you should be able to:
a. Know how to use logistic regression in R
b. Know how to properly remove factors for which most likely adjustment is not

required

course_e_ex03_task

Page 1 of 8

analysis. If carefully done, factors that independently predict a given outcome can be isolated
and thus get the investigator closer to inference of causality.

Logistic regression using R

Logistic regression is part of glm which is used to fit generalized linear models. GLM is part
of the R base package. The basic formulation of the model is simple:
output <- glm(formula = outcome ~ factor(var01) + factor (var02) + var03,

data=datasetname, family=binomial)

where output is the object to which the model results are assigned to, and glm is the actual
function. In parenthesis, one opens with the formula statement and the name of the outcome
variable following the = sign, followed by a tilde ~ and then all the variables in the model.
Specification with factor is required for categorical variables, followed by the variable name
of the variable in parenthesis as with any function (factor being the function here). In the
example var01 and var02 are categorical variables, while var03 is treated as a continuous
variable. All the variables entering the equation are connected by + signs. A comma designates
the end of the variable list and is followed by data= and the name of the dataset. Finally,
family=binomial defines that the logit member of the glm family is to be used.

Why don’t we just enter here for starters an example from our dataset? Please add the following
line (all written onto a single line) at the end of our e_ex03.r:
mylogit <- glm(formula = outcome02 ~ factor(fq02) + factor(sex) + age, data=

e_ex03, family=binomial)

Into the next line type:
summary(mylogit)

and you get:

Let’s examine the output a bit, notably the part that begins with the Coefficients. We
have factor(fq02)2-Resistant and factor(sex)Male. The referent for a variable
is the lowest value. The values for fq02 are 1-Susceptible and 2-Resistant. We

course_e_ex03_task

Page 2 of 8

therefore see factor(fq02)2-Resistant in the line. age is a continuous variable, and
as such it does not have a referent and is shown as it is.

For the numeric output we have the Estimate and Std. Error, and in the last column a
probability Pr(>|z|) for the Estimate. The latter shows that all three variables are highly
significant predictors, but otherwise it is difficult to gauge what these numbers mean. Only by
making this more explicit it becomes more meaningful. The estimate is a logartithm, thus we
do some exponentiation and column binding (cbind):
lreg.or <-exp(cbind(OR = coef(mylogit), confint(mylogit)))
round(lreg.or, digits=4)

and then get more meaningfully:

The two functions coef and confint take the estimate and calculate the confidence interval
from the standard error respectively. cbind “glues” (Dalgaard) the vectors together.
Exponentiating the logarithmic terms gives the odds ratios (labeled here as OR) with the 95%
confidence interval that is more amenable to interpretation. Thus, we need both the summary
and the conversion of the estimates. The former is required to determine how to proceed in the
stepwise exclusion of variables from the model. Intuitively, we correctly use age as a
continuous variable, but it is not certain whether this is actually also analytically correct. We
should at least check first whether the influence of age has continuity as logistic regression will
force a fixed slope.
How should we categorize age? We could follow the standard classification of WHO, but
perhaps a bit less arbitrary is to have the data themselves dictating the categories. In our dataset
we have the variables agequart and agemed. These are indeed data-driven quartiles of age
and the variable age split into a binary variable defined by the median respectively. These
variables were made based on the entire set of 515 records. As we are using a dataset that has
14 records removed, the values are now conceptually if not actually incorrect. We will thus
first remove the two obsolete variables and then create a new variable for quartiles of age based
on the actual 501 records. We used:
names(e_ex03)

before. This gives us the names of the variables and their position in the dataset:

We can see / count that agequart and agemed take positions 5 and 6 respectively in the
sequence of variables. In other words, we need only the variables in positions 1 through 4 and
7 through 13, which we write as:
e_ex03b <- e_ex03[c(1:4, 7:13)]
detach(e_ex03)
attach(e_ex03b)
names(e_ex03b)

where the last line names(e_ex03b) is only to check that we got what we intended to get
and we did:

course_e_ex03_task

Page 3 of 8

Thus here the principle how to drop variables in R. Next we want to create a new variable from
the existing variable age. As the values for the new variable are driven by the data, we need
to know first more about the distribution of age. R has a powerful way of showing quantiles
(look up the Help file by typing ??quantiles). To obtain quartiles, we type:
quantile(age, probs = c(25, 50, 75)/100)

and we get:

To create a new variable agecat from the existing variable age, we ensure (no problem if it
is duplicated from above) that the correct file is in the path and then make the assignments
followed by again detaching the file:
attach(e_ex03b)
e_ex03b$agecat[age >= 00 & age < 23] <- "Q1"
e_ex03b$agecat[age >= 23 & age < 31] <- "Q2"
e_ex03b$agecat[age >= 31 & age < 42] <- "Q3"
e_ex03b$agecat[age >= 42] <- "Q4"
detach(e_ex03b)

We also note that our outcome variable “outcome02” is alphabetically listed as “Failure”
first, then “Success”. Intuitively, we might be more interested in risk factors for “Failure”
rather than in risk factors for “Success”. We thus make a rearrangement to get the order
sequentially such that the odds calculated is Failure / Success, taking into account that R wishes
the outcome to be 0 and 1 (zero and one) and write in full:
attach(e_ex03b)
e_ex03b$agecat[age >= 00 & age < 23] <- "Q1"
e_ex03b$agecat[age >= 23 & age < 31] <- "Q2"
e_ex03b$agecat[age >= 31 & age < 42] <- "Q3"
e_ex03b$agecat[age >= 42] <- "Q4"
e_ex03b$out02[outcome02 == "Success"] <- 0
e_ex03b$out02[outcome02 == "Failure"] <- 1
detach(e_ex03b)
Then we give both new variables new names, write the data to disk, attach the new file, check
the names to verify (not necessary, but it is always a good idea in the beginning to verify), and
then write the output:
e_ex03c <- data.frame(e_ex03b)
write.table(e_ex03c, file="e_ex03c", row.names=TRUE)
attach(e_ex03c)
names(e_ex03c)
table(agecat, out02)

and get:

course_e_ex03_task

Page 4 of 8

This ensures that for the age quartiles Q1 is the referent and for treatment outcome 1-Success
is the referent.

Then we repeat the regression model with the categorized agecat:
Logistic regression with AGE as categorical variable
mylogit2 <- glm(formula = out02 ~ factor(fq02) + factor(sex) + factor(agecat),

data= e_ex03c, family=binomial)
summary(mylogit2)
lreg.or <-exp(cbind(OR = coef(mylogit2), confint(mylogit2)))
round(lreg.or, digits=4)

and get:

The referent is the youngest quartile set to unity. Relative to the referent, the risk of failure
increases in the third and fourth quartile to similar levels and is then highest in the last quartile.
This observation seems to support the treating of age as a continuous variable, or at least not
plainly contradicting it.
This, so far has been “sampling” only. What we really wanted to evaluate is the influence of
several factors that might modify the treatment outcome of multidrug-resistant tuberculosis.
We will be starting with a full model inputting all variables, using instead of the binary fq02
the more detailed fq04, slightly modified. The variable fq04 had originally 4 levels, but in
the source dataset of 501 records we are using in this exercise, the 14 records with a missing
result have been dropped. We will first re-categorize the remaining 3 levels so as to ensure that
the referent is Susceptible. As shown earlier, we do this by adding a sequential number to
the desired sequence to get it alphabetically correct:
attach(e_ex03c)
e_ex03c$fq03[fq04 == "Susceptible"] <- "1-Susceptible"
e_ex03c$fq03[fq04 == "Low-level resistance"] <- "2-Low-level resistance"
e_ex03c$fq03[fq04 == "High-level resistance"] <- "3-High-level resistance"
detach(e_ex03c)

Not that it is essential but for getting things tidy, save the new as a data frame and read it in:
e_ex03d <- data.frame(e_ex03c)
write.table(e_ex03d, file="e_ex03d", row.names=TRUE)
e_ex03e <- read.table("e_ex03d")
and then we are ready for the full model:
mylogit3 <- glm(formula = out02 ~ factor(fq03) + factor(sex) + age +

factor(pza02) + factor(kmy02) + factor(pth02) + factor(cxr02),
data=e_ex03e, family=binomial)

summary(mylogit3)
and we get:

course_e_ex03_task

Page 5 of 8

Note also the “AIC” at the end to which will pay particular attention in the following:
AIC: 407.95

AIC stands for Akaike’s Information Criterion and is a weighted criterion of goodness of fit.
The smaller the value, the better the fit. As we are going with stepwise elimination as one of
the common procedures (Crawley M J. The R book. Second edition, Wiley, Chichester, UK,
2013, 1051 pp), we are checking how the criterion changes. Gauging from the probabilities
above (last column), kanamycin resistance is the first factor to be removed, thus the model is
reduced to:
mylogit3 <- glm(formula = out02 ~ factor(fq03) + factor(sex) + age +

factor(pza02) + factor(pth02) + factor(cxr02), data=e_ex03e,
family=binomial)

summary(mylogit3)
Improving the AIC to 405.96 and putting removal of the chest radiography result as the next.
This removal improves the AIC to 403.99 and suggest removal of prothionamide resistance
next. This removal improves the AIC to 402.54 and suggests removal of pyrazinamide
resistance next. This removal improves the AIC to 401.55. The model is now:
mylogit3 <- glm(formula = out02 ~ factor(fq03) + factor(sex) + age,

data=e_ex03e, family=binomial)
summary(mylogit3)
and gives:

While low-level resistance to the fluoroquinolone is not a predictor, high-level resistance is a
strong predictor, and both sex and age are predictors. Following the rules of being strict,
none of the remaining factors should thus be removed.
If you watched it through the process of elimination, you found:

Modeling step Resulting AIC value

Full model 407.95

Remove kmy02 405.96

Remove cxr02 403.99

Remove pth02 402.54

Remove pza02 401.55

course_e_ex03_task

Page 6 of 8

What we haven’t done yet, but are very much obliged to do is to test whether there is
heterogeneity in the data and we therefore need one or more interaction terms. Woolf's test
for interaction (also known as Woolf's test for the homogeneity of odds ratios) provides a
formal test for Interaction. According to Mark Myatt (see text recommended at the beginning
of Part E), R does not provide Woolf’s test specifically, but the grammar of the function can
be found in the help section on mantelhaen.test which we have used earlier. We use here the
slightly modified script by Myatt (giving the same result), but is slightly more explicit. We
type (perhaps best in the console, so that it does not interfere with our script e_ex03.r:
woolf.test <- function(x) {}
fix(woolf.test)
Then in the editor box:
function(x)
 {
 x <- x + 0.5
 k <- dim(x)[3]
 or <- apply(x, 3, function(x)
 {(x[1, 1] / x[1, 2]) / (x[2, 1] / x[2, 2])})
 w <- apply(x, 3, function(x) {1 / sum(1 / x)})
 chi.sq <- sum(w * (log(or) - weighted.mean(log(or), w))^2)
 p <- pchisq(chi.sq, df = k - 1, lower.tail = FALSE)
 cat("\nWoolf's X2 :", chi.sq, "\np-value :", p, "\n")
}

Finally we save:
save(woolf.test, file = "woolf.test.r")

Back to our e_ex03.r script (not necessary, but no harm either for this time, as it is loaded,
but for the next run after we close, and also that we note where the credit goes to):
Test for interaction, using the script for
Woolf's test provided by Mark Myatt
load("c:/epidata_course/woolf.test.r")

The function requires one parameter, denoted here as x. If we are interested in the interaction
between outcome, ofloxacin resistance, and sex, we could make one object:
tabofl <- table(fq03, out02, sex)

and then:
woolf.test(tabofl)

and we get:

Thus, not to worry about heterogeneity. For the sake of exercise, and also to look what happens,
we will nevertheless put in an interaction term:
mylogit3 <- glm(formula = out02 ~ factor(fq03) + factor(sex) + age +

factor(sex):factor(fq03), data=e_ex03e, family=binomial)
summary(mylogit3)
and we get a poorer AIC of 405.45 and insignificant interaction terms:

course_e_ex03_task

Page 7 of 8

If we find a significant interaction and perhaps even the AIC improves, then the interaction
term must be retained. As you note above, it is simple to write the interaction term which is
writing the two variables connected by a colon as in factor(var1):factor(var2).

We are therefore pretty much assured that this is our final model:
Final model:
mylogit3 <- glm(formula = out02 ~ factor(fq03) + factor(sex) + age,

data=e_ex03e, family=binomial)
summary(mylogit3)
lreg.or <-exp(cbind(OR = coef(mylogit3), confint(mylogit3)))
round(lreg.or, digits=4)

With the following odds ratios and 95% confidence intervals:

Task:
o Examine whether there are interactions between age and sex and fluoroquinolone

resistant and age, so that all possibilities have been checked before we accept the model.

course_e_ex03_task

Page 8 of 8

Task:
o Examine whether there are interactions between age and sex and fluoroquinolone

resistant and age, so that all possibilities have been checked before we accept the model.

Solution:
The e_ex03.r script:
Exercise 3: Multivariable analysis in R part 1: Logistic regression

rm(list=ls())

e_ex03 <- read.table("e_ex02_02.dat")
attach(e_ex03)

Logistic regression with AGE as conintuous variable
mylogit <- glm(formula = outcome02 ~ factor(fq02) + factor(sex) + age, data=e_ex03,

family=binomial)
summary(mylogit)
lreg.or <-exp(cbind(OR = coef(mylogit), confint(mylogit)))
round(lreg.or, digits=4)

Drop variables
names(e_ex03)
e_ex03b <- e_ex03[c(1:4, 7:13)]
detach(e_ex03)
attach(e_ex03b)
names(e_ex03b)

Create new variable for Quartiles of age
Age as categorical variables in quartiles
quantile(age, probs = c(25, 50, 75)/100)
25% 50% 75%
23 31 42

attach(e_ex03b)
e_ex03b$agecat[age >= 00 & age < 23] <- "Q1"
e_ex03b$agecat[age >= 23 & age < 31] <- "Q2"
e_ex03b$agecat[age >= 31 & age < 42] <- "Q3"
e_ex03b$agecat[age >= 42] <- "Q4"
e_ex03b$out02[outcome02 == "Success"] <- 0
e_ex03b$out02[outcome02 == "Failure"] <- 1
detach(e_ex03b)

Solution to Exercise 3: Multivariable analysis in R part 1: Logistic
regression

Key points:
a. Logistic regression is the standard and most commonly used approach to

multivariable analysis if the questions cannot be answered by adjusting in a
stratified analysis using Mantel-Haenszel estimation of the odds ratio

b. Use stepwise exclusion of variables to improve the model fit, by observing p
values and the AIC summary for quality of model fit

c. Beware of heterogeneity, test formally for heterogeneity using Woolf’s test

e_ex03c <- data.frame(e_ex03b)
write.table(e_ex03c, file="e_ex03c", row.names=TRUE)
attach(e_ex03c)
names(e_ex03c)
table(agecat, out02)

Logistic regression with AGE as categorical variable
mylogit2 <- glm(formula = out02 ~ factor(fq02) + factor(sex) + factor(agecat), data=

e_ex03c, family=binomial)
summary(mylogit2)
lreg.or <-exp(cbind(OR = coef(mylogit2), confint(mylogit2)))
round(lreg.or, digits=4)

Full model logistic regression
attach(e_ex03c)
e_ex03c$fq03[fq04 == "Susceptible"] <- "1-Susceptible"
e_ex03c$fq03[fq04 == "Low-level resistance"] <- "2-Low-level resistance"
e_ex03c$fq03[fq04 == "High-level resistance"] <- "3-High-level resistance"

detach(e_ex03c)
e_ex03d <- data.frame(e_ex03c)
write.table(e_ex03d, file="e_ex03d", row.names=TRUE)
e_ex03e <- read.table("e_ex03d")

Full model
mylogit3 <- glm(formula = out02 ~ factor(fq03) + factor(sex) + age + factor(pza02) +

factor(kmy02) + factor(pth02) + factor(cxr02), data=e_ex03e, family=binomial)
summary(mylogit3)
AIC 407.95

Remove kmy02
mylogit3 <- glm(formula = out02 ~ factor(fq03) + factor(sex) + age + factor(pza02) +

factor(pth02) + factor(cxr02), data=e_ex03e, family=binomial)
summary(mylogit3)
AIC 405.96

Remove cxr02
mylogit3 <- glm(formula = out02 ~ factor(fq03) + factor(sex) + age + factor(pza02) +

factor(pth02), data=e_ex03e, family=binomial)
summary(mylogit3)
AIC 403.99

Remove pth02
mylogit3 <- glm(formula = out02 ~ factor(fq03) + factor(sex) + age + factor(pza02),

data=e_ex03e, family=binomial)
summary(mylogit3)
AIC 402.54

Remove pza02
mylogit3 <- glm(formula = out02 ~ factor(fq03) + factor(sex) + age, data=e_ex03e,

family=binomial)
summary(mylogit3)
AIC 401.55

Test for interaction, using the script for
Woolf's test provided by Mark Myatt
load("c:/epidata_course/woolf.test.r")
attach(e_ex03e)
tabofl <- table(fq03, out02, sex)
woolf.test(tabofl)
p-value : 0.6336425
tabofl <- table(fq03, out02, agecat)
woolf.test(tabofl)
p-value : 0.9898
tabofl <- table(sex, out02, agecat)

course_e_ex03_solution

Page 2 of 3

woolf.test(tabofl)
p-value : 0.5075

Put in the interaction term anyhow
mylogit3 <- glm(formula = out02 ~ factor(fq03) + factor(sex) + age +

factor(sex):factor(fq03), data=e_ex03e, family=binomial)
summary(mylogit3)
AIC 405.45
=> AIC worsens

Final model:
mylogit3 <- glm(formula = out02 ~ factor(fq03) + factor(sex) + age, data=e_ex03e,

family=binomial)
summary(mylogit3)

The Woolf’s test for heterogeneity:
tabofl <- table(fq03, out02, sex)
woolf.test(tabofl)
tabofl <- table(fq03, out02, agecat)
woolf.test(tabofl)
tabofl <- table(sex, out02, agecat)
woolf.test(tabofl)

tabofl <- table(fq03, out02, sex)
Woolf's X2 : 0.2271536
p-value : 0.6336425

tabofl <- table(fq03, out02, agecat)
Woolf's X2 : 0.115918
p-value : 0.9898611

tabofl <- table(sex, out02, agecat)
Woolf's X2 : 2.326063
p-value : 0.5075462

Conclusion:
No interaction between fluoroquinolone resistance and sex, fluoroquinolone resistance and age,
nor sex and age. Therfore the final model does not need an interaction term.

course_e_ex03_solution

Page 3 of 3

Often the results of the logistic regression are the culminating final summary of your analysis.
In our specific setting, the logistic regression was an intermediate step to an adjusted form of a
survival analysis. You have learned the principle of using a Kaplan-Meier survival analysis in
an earlier Exercise. We extend on this approach and look at factors that determine the binary
outcome in the treatment of multidrug-resistant tuberculosis. A Kaplan-Meier analysis would
get us quite far, but we would face the problem of adjustment and the problem of dealing with
continuous predictor variables such as age. While categorizing age is an option, it might be
arbitrary and not the most satisfactory solution. We could end up with multiple small groups if
values from more than one variable are made strata of a combining new variable. Almost
inevitably, differences might become meaningless with the loss of power.
There are several techniques of multivariate analysis. Principally all do the same thing –
simultaneous adjustment for multiple variables and providing independent effect estimates for
each exposure variable in the model on the outcome. Depending on the type of outcome
variable, different techniques are used.
If the outcome is a continuous variable, we use linear regression. If the outcome is categorical,
we use logistic regression. If the outcome is ‘time to event’, we use a Cox proportional hazard
model. If the outcome is ‘number of events’ (discrete numeric), then we use Poisson regression.
Here, the outcome measure is ‘time to event’, and hence we use Kaplan-Meier analysis for
univariate analysis and the Cox proportional hazard model for multivariate analysis.
In our approach to the analysis of the dataset on multidrug-resistant tuberculosis we combine
the two techniques of logistic regression modeling and the Cox proportional hazard model in a
way that is quite common: logistic regression is used first to evaluate and determine which
variables have to be considered. There are alternative approaches, including determining the
factors within the Cox model itself. In our case, we had isolated three factors, initial
fluoroquinolone resistance, age, and sex. After fitting the Cox proportional hazard model
including these three variables, we test whether any of the variables grossly violates the
assumption of proportionality of hazards (which must be met). If there is such a variable, it
must be removed from the adjustment and instead stratification by this variable is indicated.
Then each of the strata are adjusted for the remaining variables and it is checked again whether
anything remains that violates the proportionality assumption, and so on, until the final model
emerges. This is the procedure we are going to apply.

Exercise 4: Multivariable analysis in R part 2: Cox proportional hazard
model

At the end of this exercise you should be able to:
a. Use the Cox proportional hazard model
b. Test the assumption for proportionality and if violated, carry out a stratified

analysis

course_e_ex04_task

Page 1 of 8

The R survival package
The base package of R does not include survival analysis, and the package “survival” must thus
be installed (see lower right quadrant in RStudio):

The “survival” package was written by Terry Therneau from the Mayo Clinic. The procedure
is the same as we used before for the “foreign” package. Open a new file in the Source editor
and save it as e_ex04.r file. Analogous to calling “foreign” from the library, we also need
to be calling “survival” from the library. We are going to use the e_ex02_02.dat as our
starting dataset. Thus, make sure that it is attached before we start doing anything.
* Exercise 4: Multivariable analysis in R part 2: Cox proportional hazard

model
library(survival)
rm(list=ls())
e_ex04 <- read.table("e_ex02_02.dat")
names(e_ex04a)
The last line gives us the variables:

We need only AGE, FQ04, SEX, TOTOBSTIME, and OUTCOME02, thus:
e_ex04b <- e_ex04a[c(1:4, 8)]

(It is not just to repeat what was learnt before, there is also some reason to reduce datasets: like
EpiData Analysis, R works in the memory which makes it a relatively “slow processor”). We
then make the same modification we discussed and did in Exercise 3, attach the file and check
the names:
attach (e_ex04b)
e_ex04b$fq03[fq04 == "Susceptible"] <- "1-Susceptible"
e_ex04b$fq03[fq04 == "Low-level resistance"] <- "2-Low-level resistance"
e_ex04b$fq03[fq04 == "High-level resistance"] <- "3-High-level resistance"
e_ex04b$out02[outcome02 == "Success"] <- 0
e_ex04b$out02[outcome02 == "Failure"] <- 1
detach(e_ex04b)
names(e_ex04b)
e_ex04c <- e_ex04b[c(1, 3:4, 6:7)]
attach(e_ex04c)
names(e_ex04c)
The last line shows:

We have thus reduced our dataset to the bare essential minimum with which we can work.

Kaplan-Meier survival analysis

course_e_ex04_task

Page 2 of 8

Let’s first compare notes, i.e. check whether we get identical survival probabilities using the
Kaplan-Meier method in EpiData Analysis and in R. In EpiData Analysis, we would use:
lifetable out02 totobstime /by=fq03 /i=b30 /adj \
 /ymin=0.30 /ymax=1 /NG /e3 \
 /ti="KM successful outcome probability" \
 /sub="by intitial fluoroquinolone susceptibility" \
 /t
We get:

Survival probability for susceptible: 0.865
Survival probability for low-level resistance: 0.909
Survival probability for high-level resistance: 0.480

The model commands in R:
fit1 <- survfit(formula=Surv(totobstime, out02) ~ fq03, data=e_ex04c)

We want to add a simple plot:
plot(fit1, col = c(1, 2, 4), ymin=0.45)
colors: 1=black; 2=red, 4=blue

which gives us the plot in the lower-right quadrant:

Remember that initially we defined R as a “language and environment for statistical computing
and graphing”. The graphics capabilities of R are enormous but it will take time to learn and
acquire them (see more information in the text by Thomas Lumley). As it is not our primary
purpose to evaluate the graphics capabilities of R, we leave that for the time being. We must
see the statistical output, however, so we add a third command line:
fit1 <- survfit(formula=Surv(totobstime, out02) ~ fq03, data=e_ex04c)
plot(fit1, col = c(1, 2, 4), ymin=0.45)
colors: 1=black; 2=red, 4=blue
summary(fit1, times = seq(0, 2000, 30))

course_e_ex04_task

Page 3 of 8

We get exactly the same survival probabilities as with the lifetable in EpiData Analysis.
This should strengthen our confidence in both software and our skills. We note, however, that
the confidence intervals are different. In EpiData Analysis, events change the survival
probability but censored observations do not. This is identical in R and it is what we expect.
In EpiData analysis, the 95% confidence interval, however, continues to widen as observations
with the passage of time become censored, while this is not the case in R. EpiData Analysis
uses the philosophy that smaller numbers lead to larger uncertainty, while R focuses on the
importance of uncertainty at the point of the last event. Comparison shows that Stata and R get
the same results. EpiData Analysis has adapted the approach proposed by Altman, and this will
be reviewed during the re-writing of the EpiData Analysis module. In any case, we can
reproduce the survival probability in the Kaplan-Meier approach.

The Cox proportional hazard model
The proportional hazards model allows the analysis of survival data by regression modeling.
Linearity is assumed on the log scale of the hazard. Relative to a referent, say the rate of death
among a control group, the rate of death among the experimental group might be half that of
the control group and the hazard ratio is thus 0.5. In contrast to relative risks which are
cumulative over observation time, hazard ratios reflect an instantaneous risk over the study
period or a subset of the period. Hazard ratios suffer therefore somewhat less from possible
selection bias introduced by endpoints. Under the Cox proportional hazard model, the hazard
ratio is constant. The Cox model thus assumes an underlying hazard function with a
corresponding survival curve. In a stratified analysis, there will be one such curve for each
stratum.
The command lines for the Cox model are:
mdrcox <- coxph(Surv(totobstime, out02) ~ factor(fq03) + factor(sex) + age,

data=e_ex04c)
summary(mdrcox)

where totobstime is the variable for the total observation time from treatment start until the
event occurs or the observation time is censored (be it e.g. to loss from follow-up after treatment
cessation or reaching the end of the observation time). Note that “Surv” is capitalized (R is
case-sensitive). The second line gives the output:

course_e_ex04_task

Page 4 of 8

As it should be, the three variables are significantly associated. The exp(coef), i.e. the
exponent of the coefficient is the hazard ratio.
As mentioned above, the Cox proportional hazard model requires that the assumption of
proportionality is met, that is the survival function for different factors are required to change
proportionately and do not, for instance cross each other.
The test diagnostic to evaluate whether the assumption of proportionality is met is:
cox.zph(mdrcox)

gives:

The global chi-square test is highly significant, that is the assumption of proportionality is
violated. The most important culprit is seemingly the variable fq03. AGE is also significant
but not that grossly and sex not at all. The way to resolve it is stratification, that is fq03 must
be taken out and the model must be stratified by fq03. R makes it easy for us to do that with
the following modification:
mdrcox <- coxph(Surv(totobstime, out02) ~ strata(fq03) + factor(sex) + age,

data=e_ex04c)
summary(mdrcox)

This gives:

We have now the hazard of sex and age but not anymore of fluoroquinolone resistance
because the latter was not a constant hazard and was thus taken out by stratification.
Testing the assumption for proportionality and plotting the test result:

course_e_ex04_task

Page 5 of 8

cox.zph(mdrcox)
plot(cox.zph(mdrcox))

and

This indicates that the model is not ideal for the variable age, but with a bit lenience and the
more or less regular graphical test we will allow it to pass without further more complex
stratification. The interpretation of the graph in its most simplest way is how curved it is: if it
is fairly flat (as we think it is here), the assumption of proportionality is not (much) violated. If
it is decidedly different from flat, then the assumption is violated as in this example:

Copied from:
http://stats.stackexchange.com/questions/15114/how-to-
understand-the-plotting-of-the-cox-zph-function-in-r

help(plot.survfit)

gives us information on how to plot it. It can get elaborate, of course, but here just a bare-bone
sequence of commands:
p <- plot(survfit(mdrcox), ylim=c(.45, 1), xlab="Days since treatment start",

mark.time=F, ylab="Probability of a successful outcome", col=c(1, 2, 4),
main="Cox proportional hazard model by initial fluoroquinolone
resistance")

course_e_ex04_task

Page 6 of 8

http://stats.stackexchange.com/questions/15114/how-to-understand-the-plotting-of-the-cox-zph-function-in-r
http://stats.stackexchange.com/questions/15114/how-to-understand-the-plotting-of-the-cox-zph-function-in-r

Our main interest is in the numeric output quantification of survival probability:
print(p)

Thus, our main result, the survival probabilities among patients with initial fluoroquinolone
susceptibility, low-, and high-level resistance, adjusted for age and sex are:

Survival probability susceptible: 0.874
Survival probability low-level resistant: 0.905
Survival probability high-level resistant: 0.510

To obtain the detailed data:
mdrcox2 <- survfit(mdrcox)
summary(mdrcox2, times = seq(0, 3000, 30))

gives (just the first 150 days for susceptible, low-level resistant, and high-level resistant):

course_e_ex04_task

Page 7 of 8

Here, we show it for 30-day intervals, out for up to 3000 days but we could also just get it for
the first 5 days, but daily:
summary(mdrcox2, times = seq(0, 5, 1))

R is indeed powerful through flexibility.

Task:
This analysis shows that low-level fluoroquinolone resistance has seemingly no influence on
the outcome while in contrast high-level fluoroquinolone resistance is a powerful predictor
for an adverse outcome. Nevertheless, even with high-level fluoroquinolone resistance, a
remarkable 51% still had a successful outcome. Unsuccessful here also included death and
default. What is of key interest with resistance to the core drug fluoroquinolone is whether
the outcome is bacteriologically favorable or unfavorable.
o The first task is to identify factors that are predictors for an unsuccessful bacteriological

outcome (failure or relapse) versus a bacteriologically favorable outcome (completion and
relapse-free cure) among cases with any type of fluoroquinolone resistance (low-level or
high-level) and who did neither die nor default.

o Summarize your analysis in a table showing numbers, odds ratios and 95% confidence
intervals both univariate and adjusted multivariate for the factors identified in your
regression analysis.

course_e_ex04_task

Page 8 of 8

Solution:

The e_ex04.r script from Exercise 4:
Exercise 4: Multivariable analysis in R part 2: Cox proportional hazard

model

library(survival)
rm(list=ls())
e_ex04a <- read.table("e_ex02_02.dat")
names(e_ex04a)

e_ex04b <- e_ex04a[c(1:4, 8)]

attach(e_ex04b)
e_ex04b$fq03[fq04 == "Susceptible"] <- "1-Susceptible"
e_ex04b$fq03[fq04 == "Low-level resistance"] <- "2-Low-level resistance"
e_ex04b$fq03[fq04 == "High-level resistance"] <- "3-High-level resistance"
e_ex04b$out02[outcome02 == "Success"] <- 0
e_ex04b$out02[outcome02 == "Failure"] <- 1
detach(e_ex04b)
names(e_ex04b)
e_ex04c <- e_ex04b[c(1, 3:4, 6:7)]
attach(e_ex04c)
names(e_ex04c)

Reproducing the Kaplan-Meier lifetable analysis from EpiData Analysis
fit1 <- survfit(formula=Surv(totobstime, out02) ~ fq03, data=e_ex04c)
plot(fit1, col = c(1, 2, 4), ymin=0.45)
colors: 1=black; 2=red, 4=blue
summary(fit1, times = seq(0, 2000, 30))

Cox proportional hazard model
mdrcox <- coxph(Surv(totobstime, out02) ~ factor(fq03) + factor(sex) + age,

data=e_ex04c)
summary(mdrcox)
cox.zph(mdrcox)

mdrcox <- coxph(Surv(totobstime, out02) ~ strata(fq03) + factor(sex) + age,

data=e_ex04c)
summary(mdrcox)
cox.zph(mdrcox)
plot(cox.zph(mdrcox))

Solution to Exercise 4: Multivariable analysis in R part 2: Cox
proportional hazard model

At the end of this exercise you should be able to:
a. Use stepwise logistic regression to determine risk factors for a

bacteriologically adverse outcome among patients with initial fluoroquinolone
resistance who neither defaulted nor died

b. Summarize you findings in a table

p <- plot(survfit(mdrcox), ylim=c(.45, 1), xlab="Days since treatment start",

mark.time=F, ylab="Proportion without adverse event", col=c(1, 2, 4),
main="Cox proportional hazard model by initial fluoroquinolone
resistance")

print(p)

mdrcox2 <- survfit(mdrcox)
summary(mdrcox2, times = seq(0, 3000, 30))
summary(mdrcox2, times = seq(0, 5, 1))

The e_ex04_solution.r script for the task:
Exercise 4 Solution: Logistic regression to identify risk factors for

failure

library(survival)
rm(list=ls())
e_ex04a_task <- read.table("e_ex02_03.dat")
names(e_ex04a_task)

e_ex04b_task <- e_ex04a_task[c(1:3, 8:11)]

attach(e_ex04b_task)
e_ex04b_task$fq03[fq04 == "Low-level resistance"] <- "1-Low-level

resistance"
e_ex04b_task$fq03[fq04 == "High-level resistance"] <- "2-High-level

resistance"
e_ex04b_task$out02[outcome02 == "Success"] <- 0
e_ex04b_task$out02[outcome02 == "Failure"] <- 1
detach(e_ex04b_task)
names(e_ex04b_task)
e_ex04c_task <- e_ex04b_task[c(1, 3, 5:9)]
attach(e_ex04c_task)
names(e_ex04c_task)

Logistic regression
mylogit<- glm(formula = out02 ~ factor(fq03) + factor(sex) + factor(pza02) +

factor(kmy02) + factor(pth02) + age, data=e_ex04c_task, family=binomial)
summary(mylogit)

Remove KMY02
mylogit<- glm(formula = out02 ~ factor(fq03) + factor(sex) + factor(pza02) +

factor(pth02) + age, data=e_ex04c_task, family=binomial)
summary(mylogit)

Remove PTH02
mylogit<- glm(formula = out02 ~ factor(fq03) + factor(sex) + factor(pza02) +

age, data=e_ex04c_task, family=binomial)
summary(mylogit)

Remove SEX
mylogit<- glm(formula = out02 ~ factor(fq03) + factor(pza02) + age,

data=e_ex04c_task, family=binomial)
summary(mylogit)

Remove AGE

course_e_ex04_solution

Page 2 of 3

mylogit<- glm(formula = out02 ~ factor(fq03) + factor(pza02),
data=e_ex04c_task, family=binomial)

summary(mylogit)

=> PZA just not significant with p=0.5468, leave it in
Final model
mylogit<- glm(formula = out02 ~ factor(fq03) + factor(pza02),

data=e_ex04c_task, family=binomial)
summary(mylogit)
lreg.or <-exp(cbind(OR = coef(mylogit), confint(mylogit)))
round(lreg.or, digits=4)

load("c:/epidata_course/woolf.test.r")
tab <- table(fq03, out02, pza02)
woolf.test(tab)
P=0.936 => no interaction

Univariate analysis
load("c:/epidata_course/tab2by2.r")
tab2by2(fq03, out02)
tab2by2(pza02, out02)

Successful Not

successful Total Crude odds ratio Adjusted odds ratio*

 n n % Point
CI

low
CI

high Point
CI

low
CI

high
P

value
Total 44 9 17.0 53
Fluoroquinolone resistance
 Low level 30 1 3.2 31 Ref
 High level 14 8 36.4 22 17.1 2.0 150.7 13.0 1.9 262.1 0.025
Pyrazinamide resistance
 Not known * 27 1 3.6 28 Ref
 Resistant 17 8 32.0 25 12.7 1.5 110.8 9.2 1.3 187.0 0.055

CI 95% confidence interval
* By logistic regression
** Susceptible or not tested

course_e_ex04_solution

Page 3 of 3

	course_0-3_preparatory.pdf
	Download EpiData Manager, EpiData EntryClient, and EpiData Analysis

	course_c.pdf
	course_c_ex02_task.pdf
	Examinee Other variables Res 1 Res 2 Res 3
	Examinee Other variables Res 1 Res 2 Res 3
	Exercise 2: Variability in serial smear results

	course_c_ex02_solution.pdf
	Solution to Exercise 2: Variability in serial smear results

	course_c_ex03_task.pdf
	Exercise 3: Incremental yield from serial smears

	course_c_ex03_solution.pdf
	Solution to Exercise 3: Incremental yield from serial smears

	course_c_ex04_task.pdf
	Exercise 4: Confirmatory results in serial smears

	course_c_ex04_solution.pdf
	Solution to Exercise 4: Confirmatory results in serial smears

	course_c_ex02_task.pdf
	Examinee Other variables Res 1 Res 2 Res 3
	Examinee Other variables Res 1 Res 2 Res 3
	Exercise 2: Variability in serial smear results

	course_c_ex02_solution.pdf
	Solution to Exercise 2: Variability in serial smear results

	course_c_ex03_task.pdf
	Exercise 3: Incremental yield from serial smears

	course_c_ex03_solution.pdf
	Solution to Exercise 3: Incremental yield from serial smears

	course_c_ex04_task.pdf
	Exercise 4: Confirmatory results in serial smears

	course_c_ex04_solution.pdf
	Solution to Exercise 4: Confirmatory results in serial smears

	course_d.pdf
	course_d_ex05_solution.pdf
	test.pdf
	output

	course_e.pdf
	The starting point on the internet is the “The R Project for Statistical Computing” at its web site: http://www.r-project.org/. This is from where you access one if its mirror sites to download the software.
	In tandem with R, we will also use RStudio, also open-source and free, a powerful and productive user interface for R. It can be found for download at its web site: http://www.rstudio.com/.
	course_e_ex01_task.pdf
	The starting point on the internet is the “The R Project for Statistical Computing” at its web site: http://www.r-project.org/. This is from where you access one if its mirror sites to download the software.
	In tandem with R, we will also use RStudio, also open-source and free, a powerful and productive user interface for R. It can be found for download at its web site: http://www.rstudio.com/.

