
course_b_ex01_task
Page 1 of 20

Part B. EpiData Analysis

Part B: EpiData Analysis
Exercise 1 An introduction to EpiData Analysis
Exercise 2 More on EpiData Analysis
Exercise 3 Aggregating data and saving the summary data in a file
Exercise 4 From a spreadsheet to an EpiData file

course_b_ex01_task
Page 2 of 20

The image below shows the EpiData Analysis interface with all components open:

The screen shot shows the various windows:
On the right:

• With F2 (toggle key) you access various Commands

• With F3 (toggle key) you see information on field names, types, and labels

• With F7 (toggle key) you display the History of commands in the current session
(which you can paste into the Editor which you access with F5 (center).

In the center:

• With F5 you access the Editor in which we will be writing our program (script) which
can be run as a batch and will produce output in the Results window (the Viewer)

On the left:

At the end of this exercise you should be able to:
a. Do some analyses using the commands on the menu bar.
b. Use the ‘Editor’ to write commands into a program that can be saved to

make a permanent record.
c. Do some calculations.
d. Create new variables.

Exercise 1: An introduction to EpiData Analysis

Results Window
(Viewer)

Editor
(F5)

Commands (F2)

Variables (F3)

History (F7)

Command prompt (F4)

course_b_ex01_task
Page 3 of 20

• The Viewer or the Results window, here after running the program shown in the Editor.
On the top you see in black the commands interspersed with green information on
what is being done / has been done and finally the requested output table of a
frequency for the variable sex.

At the bottom:

• Accessible with mouse-click or F4 is the Command line into which you can type any
command (we could have written FREQ sex here instead of into the Editor, provided
that the file was open). Below the Command line, from left to right, you see the
current folder including the path to it, a green button indicating readiness, the number
of records (75) and that all of them from the dataset a.epx have been selected. That
the open data file is the a.epx can be seen at the very top of the screen.

If we look at more details, we find on top of the screen:

Top row: EpiData version (important to specify when reporting bugs) and path and currently
open file name.
Center row: Menu bar
Bottom row: Work tool bar

If you select in the Menu bar Windows you get a drop-down menu:

This gives you spelled out the names of the various command and
windows and the shortcuts F1 ,…, F7 that can be used to access
them.

If we open a file, the Viewer (Results window) gives information (written in green) on
File name, File label, number of Fields and number of Records:

At the bottom of the screen (below the command line) we find the location (path) on the very
left, in the center the green bullet indicating readiness, and right to it the number of records

course_b_ex01_task
Page 4 of 20

(75 here) available, further to the right that the entire dataset is available (All selected), and at
the very right that EpiData Analysis has opened an output file EAoutput.htm:

We can double-click on the path (c:\epidata_course here) if we wish to change it and
get a pop-up box to Browse for the desired data Folder (see more on that below).

We can only summarize some basic essentials in the approach to the use of EpiData Analysis
and we will split it into the following components:

• Using the menu interactively

• Writing a script (program) to execute a series of commands

• Analysis of continuous variables

• Analysis of categorical variables

Using the menu interactively
When you open EpiData Analysis, you see information on Version and currently open dataset
in the top row, the Menu bar in the second and the Work tool bar in the third row:

For beginners, it is best to use the Menu and Work tool bars. Before anything else, we need
to tell EpiData where our data files are located. This can be done in different ways. The
simplest way is probably to double-click at the bottom left on the path that is there:

This will open an Explorer-like window:

allowing searching for the desired folder. This folder selection will persist during the current
session (unless you change it during the session), but once you exit and re-enter EpiData
Analysis, the path will again be the default path. Therefore, it is desirable to get a bit more
control over the default path and folder that is opened when you start EpiData Analysis.
Commonly, one works in project folders like we do here where the:

course_b_ex01_task
Page 5 of 20

..\epidata_course

is our project folder. On the top you have Edit with a pop-up menu:

If you open Edit Setup (EpiDataStat.ini), you get the file opened in the Editor allowing us to
customizing it to our needs:

In lines 4 to 16 above we set font sizes, font types and other things (that can be changed
according to your needs). It is lines 18 to 20 that are of interest here for the data folder. We
start in line 19 with:
[drive name]:\folder in the PC root\subfolder\sub-sub-folder

You note specifically in line 20 cd c:\epidata_course. It is this line which directs
EpiData Analysis to open at start-up in that folder. If we had not customized the starting
folder in this EpiDataStat.ini file, EpiData Analysis would start in its program file
folder.
In both lines 19 and 20 above you find the command “cd”. “CD” denotes “Change Directory”
(a term formerly used to denote for what Microsoft denotes now as “folder”). In line 19,
EpiData is instructed to go to a folder temp (and will do so if it exists, but stops if it doesn’t).
In line 20, the previous instruction is overridden and it will end up (the last instruction sets the

course_b_ex01_task
Page 6 of 20

final destination) in the epidata_course folder. We can thus list our different working
folders and just rearrange them so that the currently desired is the last one. Note though that
each of the listed folders must exist, else you get an error message at the start of EpiData
Analysis and it will stop at the last “legal” folder found in the list of folders you may have:

Opening an EpiData data set

The command to open an EpiData EPX or REC file is Read which can be accessed by clicking
on the respective icon in the menu (or with the short-cut ALT+R). Make sure (the first time)
that you are in the right folder “c:\epidata_course” to choose the file:
a.epx

from the [C:]\epidata_course folder. In the Viewer window you should then get:

Below the command line you note:

that all of the 75 records are selected. You will see later that any selections you make are
listed here and the remaining number of records is shown.

 Browsing the EpiData data set

Clicking on Browse (or short-cut ALT+B) gives a menu box:

course_b_ex01_task
Page 7 of 20

where you can choose All or ticking which ones you need specifically. Note at the bottom the
possibilities Run and Execute (circled above in blue and red respectively). The difference is
that Run shows the results and simultaneously closes this selection box. If you change your
mind, you have to reopen it and start again from scratch. In contrast, with Execute this
window with all selections stays open and you can modify easily if you dislike what you got:

Note the “switch” (toggle key) box Values/Labels. If you click on it you get:

If the toggle key is on the Values, the information in the older EpiData file format comes from
the *.REC file, if on the Labels, it comes from the *.CHK file, in the *.EPX file format,
there is only one file. Thus, if the *.CHK was not in the folder, the toggle key would not
work and only the Values would be seen. You can thus BROWSE either the Field values or the
Field labels.
If you right-click on the field name (e.g., sex):

You can Copy the column (you can also copy one or more cells or rows) to Clipboard, or you
can Sort the data set on the chosen field.

If you go to the command line (F4), and use the up-arrow key, you get the last command:

course_b_ex01_task
Page 8 of 20

Now you know that the actual syntax to browse is the command BROWSE followed by the
variable(s). Note that as in EpiData Entry, the capitalizing is just the way that EpiData shows
the commands, it is not something you are required to use.
The use of the interactive approach with clicking can thus be used to see the actual commands
that are behind the clicking which will come in handy when we start writing a program. All
what we do is also written into the history which can be accessed from Windows or with the
short-cut key F7, where the last lines read:
Read
Read "C:\epidata_course\a.epx"
BROWSE id serno labcode regdate age sex reason res1 res2 res3
BROWSE id age sex

Again, to make life easier for the beginner, the history can be invoked and pasted into the
Editor, and then edited for the program.
Browsing allows seeing variables and their values for each record, but one would also like to
know all possible values and labels for a given variable. In the Menu bar, choose Variable
definitions from the drop-down menu of Data:

and in the Viewer you get (beginning only shown):

Note at the very beginning var which is the command equivalent to the selection from the
Menu and which you can type into the command line to clicking on the menu.

If you are only interested in one specific variable, for instant the variable reason, you can
right-click on it in the variables window:

course_b_ex01_task
Page 9 of 20

and you get to see what the label block looked like during data entry.

Making a graph

To make for instance a bar graph (or any other), open the graph dialogue by clicking on
Graph (ALT+G) and pick for instance the field sex:

and modify the lines for Title and Sub-Title if you wish:

then click Execute get:

Note that you not only get the graph you asked for but above it in this instance also the syntax
required to get it which you can copy and paste into your program.

Interactive analysis

Clicking on Analysis (ALT+A) give a drop-down menu:

course_b_ex01_task
Page 10 of 20

Let’s use the first one, Describe to describe the content of a numeric field such as age and get:

We will come back later to the error of including here examinees with an age coded as
missing (99) and how to fix that.

In the Results menu, you can clear the Viewer output (and memory) with Clear screen (short
cut function key F12):

Writing a script (program) to execute a series of commands
This is all good and fine. It is what might be called “interactive analysis”. The advantage is
that you can very quickly “fish” in your dataset and familiarize yourself with it. The
disadvantage of interactive analysis is that everything is lost once you leave EpiData Analysis.
It defies thus the underwritten purpose that everything you do in research must be thoroughly
documented.

The solution of EpiData Analysis to documentation is to use:

(Function key F5 also opens the Editor)
It opens a new window which is simply a text editor for EpiData Analysis programs that take
the extension *.PGM. There are many different ways to do it, but things become more
quickly automated if done always in the same way. We propose that the first few command
lines have the following content:

course_b_ex01_task
Page 11 of 20

Save the program immediately as “b_ex01.pgm” (the extension is supplied automatically)
in our working folder and verify at the top that this is so:

It is always a good idea to make comments on what you do. Comments in EpiData Analysis
are written by putting an asterisk * as the first thing on a line like in:
* The title of my program

If you want a command to be executed but would like to write a comment, you may do this
with a double forward slash (“//”) after the command:
cls // This will clear the screen and free memory

It is also a good idea to write the date of the first version, lesser so of subsequent versions,
because the original date will disappear from the file information once you update and save
while one is often interested when it was started. It is also helpful to state who wrote the first
draft, and add names if it is a collaborative work. We cannot overemphasize the importance
of thorough annotations.
In lines 6 to 8 we start with a clean slate:
cls // CLS clears the screen (identical to the interactive F12)
close // CLOSE closes any open data (*.REC) file
logclose // LOGCLOSE closes any open log file

While cls and close are usually easily understood, the concept of “logclose” is perhaps
intuitively not equally clear. When we opened EpiData Analysis and read the “a.epx,
EpiData Analysis gave the following information below the command line:

On the very right, the EAoutput.htm is the log file that EpiData Analysis opens and in
which it records our doings and at which we can look (after quitting EpiData Analysis). We
recognize some of the things we just did if we open it in our browser (the extension *.htm
identifies it as a file to be examined in a browser):

course_b_ex01_task
Page 12 of 20

With our command “logclose”, this file is closed (and its name disappears from the line
below the command line) and we are ready to write another log file (into which we perhaps
wish to write specifically a table output or record anything else). We close it because like
with data files only one log file can be open at a time. We could of course close it just before
opening another one, but we propose to start with a clean slate where everything is closed, the
screen is empty and the memory free.
We propose the above to be a standard approach to start any program: identifying, labeling
and dating, followed by making a clean slate.
As we can work (and have open) only one data file at a time and we have closed any other
that might be open with the above command, we can now open the file to analyze, with the
command:
read “a.epx”

This does the same thing as we did above interactively when pressing the button Read: it
opens an EpiData data file. The next three lines:
append /file="b.epx"
append /file="c.epx"
append /file="d.epx"

do something that is often required: we have several files with the same data structure and we
wish to combine them vertically (“append”) to have a single data set for analysis. In this
case, the four *.EPX files a, b, c, and d contain each 75 records from four different
tuberculosis sputum smear microscopy laboratories (these are real data from Yangon, data
courtesy Dr Ti Ti). Finally, we save the data in a new file, and thus have now:
read "a.epx"
append /file="b.epx"
append /file="c.epx"
append /file="d.epx"
savedata "abcd.rec" /replace

Without the /replace, this would run once, but give an error the second time:
DataFile and/or Chk file exists.
Add /REPLACE or erase

Important Note: The current version of EpiData Analysis (Build 2.2.2.183) can read
*.EPX files, but it cannot yet save files in this format: any file you save will have the
EpiData Entry 3.1 format with a *.REC file extension. Simultaneously, a paired *.CHK
file containing the metadata will be saved.

course_b_ex01_task
Page 13 of 20

c:\epidata_course\abcd.rec
c:\epidata_course\abcd.chk
Exception occured: Operation aborted
Failed to save data to c:\epidata_course\abcd.rec

Creating a new *.REC file (as here) with “savedata” also creates an accompanying
*.CHK file as we see from the error message.

This requirement is a precaution to prevent the inadvertent overwriting of an existing file.
The option /replace gives the explicit permission to overwrite the file in case it exists.

Finally, we close the file (a.epx) which is still open (the file that was read last is always
the file that is open) and we need to close it first before we can open the newly created
abcd.rec:
close
read "abcd.rec"

Now we are ready to analyze the data.

First run what we have. At the top of the Editor you see Run with two options:

F9 runs the entire program and F8 whatever command line(s) you selected. To run a single
command line, there is no need to mark it, just place the cursor anywhere onto it and press F8.

Analysis of continuous variables
We have one continuous variable in this data set, age in years (at last birthday). What you
cannot know without a data documentation sheet is that examinees with unknown age were
given a value 99 for age.

It is of course possible to make a frequency of age but this could give us up to 100 different
values for a 2-digit field like age. Frequencies are better used for categorical variables while
for continuous variables we use other methods to describe them. As is a common standard in
any analysis package, we give a command followed by the name of the variable(s) on which
the command should be executed. Type (on two lines):

describe age
means age

We get:

course_b_ex01_task
Page 14 of 20

The first output is from “describe”, the second from “means”. Comparison shows that
means is more informative than describe. We also note that the maximum is 99.00,
meaning that at least one person had a unknown age coded as 99. Thus, our calculations are
incorrect: we need to exclude the unknowns before calculating this kind of statistics:
select age<>99

The command to select a subset is select followed by the variable var01 in question,
followed by an operator and the value. You may need these operators:
= Equal to
< Less than
> Greater than
>= Greater or equal to
<= Less or equal to
<> Unequal

There are more operators which you may look up in the Help file (F1).

Repeat means age after the appropriate selection and get:

Note at the bottom of the EpiData Analysis screen:

Apparently, our selection led to the exclusion of 3 examinees from the set of 300. Often we
wish to compare a continuous variable in subgroups, for instance sex. The command is:
means age /by=sex

which gives us:

Please note that the stratifying variable (sex, in this case) has to be a numeric variable for
this command to work, another reason why we prefer numeric variables with value labels to
text variables. The output shows that there is a small difference in the mean age between
females and males. To know if this difference was just by chance or is statistically significant,

course_b_ex01_task
Page 15 of 20

we may wish to do an unpaired t test. We then simply add the option /T (capitalization not
required):
means age /by=sex /T

which gives us (only the lower part shown here):

The p value of 0.846 (being more than 0.05, the level used conventionally to assess statistical
significance) here thus tells that the difference between mean ages of males and females is not
statistically significant. Please note that this also gives the results of Bartlett’s test of
homogeneity of variance at the bottom of the output, one of the assumptions to be satisfied
before using the t test. If the p value of Bartlett’s test is <0.05, then the assumption of
homogeneity of variance is violated and it suggests to use one of the non-parametric tests for
assessing statistical significance. (Read about a non-parametric test called Kruskal-Wallis test
and the command kwallis in the help file)

Note:
• If there are paired observations for the same individuals, then the paired t test is

recommended. To calculate this in EpiData, calculate the difference in paired values in
a new variable (let us say “diff”) and run the command line means diff /t.

• If there are more than two means to be compared, then we use ANOVA (Analysis of
Variance), though the EpiData command to achieve it will be the same /t.

In addition to the numeric output, one might like to see it graphically represented with a
boxplot:
boxplot age /by=sex

The command to de-select is simply SELECT. You thus select (one or more selections),
execute a program and then deselect to return to the full data set:
select age<>99
boxplot age /by=sex

course_b_ex01_task
Page 16 of 20

select

Sometimes, we wish to categorize a continuous variable. For age, a common categorization is
“WHO age groups”. This is how we would write the commands:
cls
select
define agegrp #
if age>=00 and age<15 then agegrp=1
if age>=15 and age<25 then agegrp=2
if age>=25 and age<35 then agegrp=3
if age>=35 and age<45 then agegrp=4
if age>=45 and age<55 then agegrp=5
if age>=55 and age<65 then agegrp=6
if age>=65 and age<99 then agegrp=7
if age =99 then agegrp=9
label agegrp "WHO standard age groups"
labelvalue agegrp /1="0- to 14-yr-old"
labelvalue agegrp /2="15- to 24-yr-old"
labelvalue agegrp /3="25- to 34-yr-old"
labelvalue agegrp /4="35- to 44-yr-old"
labelvalue agegrp /5="45- to 54-yr-old"
labelvalue agegrp /6="55- to 64-yr-old"
labelvalue agegrp /7="65-yr-old and older"
labelvalue agegrp /9="Unknown age"

After ensuring that we have the full data set (“SELECT”), we define a new integer variable
agegrp and categorize the patients’ age into the seven WHO age groups plus one for those
with no age recorded. After categorization, we give a Field label and then Value labels.
Looking at how to use this new variable leads us over to the analysis of categorical variables.
Because “CLS” does more than just clearing the screen – it also frees memory – we tend to
write frequently a cls into the program. You can also manually, while a program runs, press
F12, and it will do the same thing, speeding up the running of the program.
We could have defined a text variable:
define agegrptxt1 _________
define agegrptxt2 <AAAAAAAAA>

Analysis of categorical variables
The most frequent command we use for a categorical variable is, well, frequencies:
cls
freq agegrp

course_b_ex01_task
Page 17 of 20

The output displays thus the Value labels we wrote, not the values, but we can have both with
the option /vl:
freq agegrp /vl

This is important to know if we want to make a selection like for instance including those in
the category “Unknown age” by writing “select agegrp<>9”. With frequencies we
often want to know the percentage distribution:
freq agegrp /c

The option “/c” is thus for column percent, while an option “/r” would be for row percent
(not applicable here but in tables). With frequencies, one can also get 95% confidence
intervals (not very sensible here, just shown for the principle):
freq agegrp /c /ci

If you use more than one variable:
freq sex reason

you get frequencies for each of the (as many as you like) variables:

course_b_ex01_task
Page 18 of 20

Let’s make one more new variable for a case definition. The dataset is, as mentioned above,
from laboratory registers. Each examinee can have up to three sequential examinations. Let’s
define that an examinee is a “case” if any of the three possible examinations has at least 1
acid-fast bacillus (a proxy for tubercle bacilli) in it. If we make a frequency of the first result
and also ask for the display of the values (not just the value labels):
freq res1 /vl

We get something, but not quite what we need. What we need is to know what values were
possible, not just which values were actually present. We can obtain that information by
typing var (as explained above) into the command line and we get the coding for the entire
dataset. Alternatively, for just one categorical variable, we can right-click the variable in the
variable (F3, if not open) window (see above).
We can repeat this for each of the three result variables and we see that all use the same label
block. Based on this information, we can now safely define a case:
define case #
 let case=0
if res1>0 and res1<9 then case=1
if res2>0 and res2<9 then case=1
if res3>0 and res3<9 then case=1
label case "Smear microscopy defined case"
labelvalue case /0="Non-case"
labelvalue case /1="Case"

and try:
tables case sex /r /c /tp /pct

course_b_ex01_task
Page 19 of 20

This gives us row (/r), column (/c), and total (/tp) percentages. The /pct aligns them
properly in separate columns.
Note that in the command, whichever variable you write first after the command tables is the
column variable (outcome variable in epidemiologic terms) and the second variable is the row
variable (exposure variable).
Meanwhile you have noted that EpiData Analysis gives just the raw numbers as default output
in a frequency or table, but you can add multiple options, and combine them as needed.
Options are preceded by the forward slash (/).
tables case sex /r /t

shows us with the option “/t” (for performing the Chi-square test) that there is no significant
difference between males and females in being a case. In some instances, when the expected
cell value of a 2-by-2 table is less than 5, it is recommended to use Fischer’s exact test instead
of the Chi-square test. For Fischer’s exact test, use the option “/ex”. This is indicated by
EpiData automatically. We could make 95% confidence intervals with frequencies, but we
cannot use the “/ci” option for tables. We need a little trick to get that, and that is with the
confidence interval plot:
ciplot case sex

And if we don’t want to see the graph, only the table we use the option “/ng” (“no graph”)
ciplot case sex /ng

By default, the higher value of the variable is considered as outcome. In case you want to
change that, use the option “/O=value” (O for outcome).

Tasks:

course_b_ex01_task
Page 20 of 20

o Determine the year of birth (new variable created from age and date of registration),
then make groups of examinees (another variable) born respectively before 1930, from
1930 to including 1949, 1950 and later, and those without known year of birth.

o Use two approaches, one with text field coding and the other with numeric coding and
value labels.

course_b_ex01_solution
Page 1 of 2

Tasks:
o Determine the year of birth (new variable created from age and date of registration),

then make groups of examinees (another variable) born respectively before 1930, from
1930 to including 1949, 1950 and later, and those without known year of birth.

o Use two approaches, one with text field coding and the other with numeric coding and
value labels.

Solution:
The output solution is as follows:

The “Task” part of program B_EX01.PGM might look as follows:
**
* Part B, Exercise 1
* Task
**

cls
close
logclose

Solution to Exercise 1: An introduction to EpiData Analysis

Key Point(s):
• It is important to make a comment first in the program. This preferably is what

you want to do in that program. Comments are preceded by an asterisk and are
bypassed by the analysis program.

• The F9 key runs the whole program whilst the F8 key runs only the selected part
of the program.

course_b_ex01_solution
Page 2 of 2

read "a.epx"
append /file="b.epx"
append /file="c.epx"
append /file="d.epx"
savedata "abcd.rec" /replace

close
read "abcd.rec"

* Define the year of birth
define birthyr ####
birthyr=year(regdate)-age
if age=99 or year(regdate)=1900 then birthyr=9999

* Using text variables
* define groupings for birth years
define birthgrp1 _______________
 let birthgrp1="other"
if birthyr <1930 then birthgrp1="1929 and before"
if birthyr>1929 and birthyr<1950 then birthgrp1="1930-1949"
if birthyr>1949 then birthgrp1="1950 and later"
if birthyr=9999 then birthgrp1="Unknown"
label birthgrp1 "Exercise birth years text coding"

* Using numeric variables
* define groupings for birth years
define birthgrp2 #
 let birthgrp2=8
if birthyr <1930 then birthgrp2=1
if birthyr>1929 and birthyr<1950 then birthgrp2=2
if birthyr>1949 then birthgrp2=3
if birthyr=9999 then birthgrp2=9
label birthgrp2 "Exercise birth years numeric coding"
labelvalue birthgrp2 /1="Born before 1930"
labelvalue birthgrp2 /2="Born 1930 to 1949"
labelvalue birthgrp2 /3="Born after 1950"
labelvalue birthgrp2 /8="Unaccounted for"
labelvalue birthgrp2 /9="Unknown birth year"

cls
tables sex birthgrp1
tables sex birthgrp2

course_b_ex02_task
Page 1 of 16

More about data set manipulation
Merge and append

In the first exercise of Part B you learned to append files. It was said then that you append
files if the files have the same structure. That is not exactly necessary. You can append files
with different structures as long as you ensure 1) that the file that is read contains all the same
variables as the file(s) you plan to append to it, and 2) that the variables have the same
definitions. Let’s show an example of two data sets, Set A and Set B, each with three records,
where id is the unique identifier in each set:

Set A Set B

Note, that the identifiers in Set A are all different from the identifiers in Set B, the
information in the two sets belongs thus to a total of six different individuals. We can append
the two files if we first create the same variables in the file we read (let’s say Set A) before we
append Set B:
cls
close
read "b_ex02_01.rec"
define bs #.#
define ht ###
append /file="b_ex02_02.rec"
We get correctly a file with six records:

Exercise 2: More on EpiData Analysis

At the end of this exercise you should be able to:
a. Know more about data set and variable manipulation
b. Know more about tables
c. Know more about graphs

course_b_ex02_task
Page 2 of 16

We could have gone the way with merge. Merge requires the identifier to be unique within
a set which is the case for id within Set A and within Set B. If we use merge, there is no
need to first ensure that all variables exist in the set that is read:
cls
close
read "b_ex02_01.rec"
merge id /file="b_ex02_02.rec"

We get:

In other words, we get exactly the same thing, except that EpiData Analysis added a variable
MergeVar which can take 3 values:
Only in memory (Original)
Only in external file
In both [not existing here]

If the two data sets thus contain different individuals, we can choose either append or
merge as long as we ensure that (if we choose append) the read file has all the variables
that the appended file has. If one or more individuals are identical in Set A and set B, then
using append becomes wrong because we would get two records from the same individual.
In such a case, we must use merge. To exemplify this, we saved the above data Set B as
b_ex02_03.rec, after changing the value for id=d to id=c. In other words, person “c”
is in both data sets. If we juxtapose the results from appending and merging:

Appending Merging

The file resulting from appending has 6 records, two of which belong to individual “c”, the
result is thus wrong. Conversely, the file resulting from merging has only 5 records
corresponding to the total of 5 individuals and is thus correct. EpiData Analysis gives us with
the automatically created field MergeVar also the relevant information about the source of
the data.
In a later exercise you will learn about important options (look-up table) that you may need
when merging data files.

course_b_ex02_task
Page 3 of 16

Select

We used select as follows:
read “abcd.rec”
select age<>99
means age /by=sex
select
freq sex

We selected a subset, then carried out the command, and finally used select again to obtain
back the full data set. Thus, before we wrote select again, we kept the reduced data set.
Sometimes it is desirable to make a selection only for a specific command as in the above
example. A powerful possibility in EpiData Analysis is to do precisely that by writing the
condition for which a command is to be executed onto the same line as the command. Instead
of the above, we thus write:
read “abcd.rec”
means age /by=sex if age<>99
freq sex

Drop and Keep

Select reduced the number of records in a data set. Sometimes it is useful to reduce the
number of variables, not the number of records in a data set. This is where drop and keep
come in. The two are complementary. We have identifier field id and serno in the data
set abcd.rec. If we don’t want to keep them, we would write:
cls
close
read "abcd.rec"
drop id serno
savedata "abcd_temp_01.rec" /replace

This is more efficient than the complementary approach with keep:
cls
close
read "abcd.rec"
keep labcode regdate age sex reason \
 res1 res2 res3
savedata "abcd_temp_02.rec" /replace

Note here also in passing that you can use the backslash \ to continue a command on the
following line (this was not possible in the CHK file).

Sort
Sorting a dataset on one or more variables is a key component in programming. For instance,
if you would like to sort our data set abcd.rec on the laboratory, you would write:
cls
close
read "abcd.rec"
sort labcode

and within each laboratory by registration date:

course_b_ex02_task
Page 4 of 16

sort labcode regdate

…

The last sorting command overrides any previous sorting command. Note that saving a data
set after sorting will save it in the last sort order.

Define and gen

We used so far define to create a variable in the memory exactly as we did in the CHK file
for temporary variables. For instance, if we create a new field case to define a sputum-smear
positive case:
define case #
case=0
if res1>0 and res1<9 then case=1
if res2>0 and res2<9 then case=1
if res3>0 and res3<9 then case=1
label case "Microscopy case definition"
labelvalue case /0="Non-case"
labelvalue case /1="Case"

There is an alternative in EpiData Analysis, gen for generating a new variable. Be careful
though to use “gen” and not “generate” because the latter is also a legitimate command,
but with an entirely different meaning (it creates empty records). We would thus write
instead of the above:
cls
gen i case2=0
if res1>0 and res1<9 then case2=1
if res2>0 and res2<9 then case2=1
if res3>0 and res3<9 then case2=1
label case2 "Microscopy case definition"
labelvalue case2 /0="Non-case"
labelvalue case2 /1="Case"

We don’t have to assign it a value (as we do here with “=0”). If we don’t, the value is set to
missing with a period. With define we defined at the same time with the field name also
both its type and length. An integer variable created with gen will automatically get a field
length of 9.
There are other field types we can create this way:
gen d copydate=regdate
gen f agedays=age*365.25
gen s(2) labsex=labcode+sex

If you create a float field, it will have the length 12, including 4 decimal points. This could
be inconvenient, if we create a label block for instance (like we had for the results) as we must
pay attention that there is full compatibility. There is no option to change this default.

course_b_ex02_task
Page 5 of 16

Wonderfully, we can change the default length (of 20) for string fields, in the non-sensical
example here defined as having a length of 2.

Note that “gen” is a bit faster to code, “define” runs faster. This becomes important in
large datasets. For date and string fields “gen” is virtually always preferable, for integer
fields “define” is perhaps preferable if you know the expected length of the field, and for
float fields, “define” is probably almost always preferable.

Recode

We had used DEFINE and / or GEN go make new variables. If we have a continuous variable
from which we wish to make a categorical one, like converting the variable AGE to age
groups, EpiData offers RECODE, as shown in this example:
define agegrp2 #
recode age to agegrp2 00-14=1 15-24=2 25-34=3 35-44=4 45-54=5 \
 55-64=6 65-98=7 99=9
freq agegrp2

gives:
agegrp2
 N
00-14 6
15-24 57
25-34 84
35-44 67
45-54 28
55-64 25
65-98 30
.99 3
Total 300

Thus, the groupings become the labels. Of course, one can override these default value labels.

String fields and substrings
Let’s assume we wish to make a string field for each microscopy result, which can take on the
three values “N” (for negative), “P” (for any positive), and “9” (for not available). We thus
write:
cls
close
read "abcd.rec"

 gen s(1) result1="P"
if res1=0 then result1="N"
if res1=9 then result1="9"
cls
 gen s(1) result2="P"
if res2=0 then result2="N"
if res2=9 then result2="9"
cls
 gen s(1) result3="P"
if res3=0 then result3="N"
if res3=9 then result3="9"

course_b_ex02_task
Page 6 of 16

We then wish to combine the three results into one single string to obtain the pattern:
cls
gen s(3) pattern=result1+result2+result3
label pattern "Pattern of 3 serial smears"
freq pattern

and get:

Finally, we can extract a subset of a string field:
cls
gen s(1) firstres=substr(pattern,1,1)
label firstres "Result of 1st smear"
freq firstres /c /ci

and get:

Admittedly, not the most efficient approach to something that could have been obtained
directly from the original field res1, but the point here is to show the way how to extract a
substring from a text field:

SUBSTR (fieldname, start position, number of characters including start position)

Thus:
cls
gen s(2) res12=substr(pattern,1,2)
gen s(2) res23=substr(pattern,2,2)
freq res12 res23

gives:

Date fields
We know that date fields are a hassle because they don’t fit our decimal system and people
use different ways to write dates. To further complicate matters, EpiData Analysis deals

course_b_ex02_task
Page 7 of 16

somewhat differently with date definitions than we learned in the CHK file. There are
different ways of doing it, but it might be best to learn one and learn to master it. Let’s
assume, we wish to calculate the number of years elapsed since the registration of the
examinee in our data set and 1 January 2013. The syntax to accomplish this is:
cls
close
read "abcd.rec"
gen f intyrs=(dmy(01,01,2013)-regdate)/365.25

We thus tell EpiData Analysis 1) that it is a date and 2) the format of our date with dmy
followed by the values for the three date components in parenthesis, separated by commas.

Results variables
If we execute certain commands, EpiData Analysis will produce variables in memory that
keep temporarily certain values which we can visualize with the command result. For
example:
cls
close
read "abcd.rec"

means age if (age<>99) and (sex=1)
result

produces:

Our interest here is in the Temporary Variables Value. We can use them and save
the values of any of them into another variable. For instance:
means age if (age<>99) and (sex=1)
result
gen meanfem=$mean1

means age if (age<>99) and (sex=2)
result
gen meanmal=$mean1

course_b_ex02_task
Page 8 of 16

We don’t even need to write the line “result” if we know how EpiData Analysis defines
the variable we require.

Visualizing with BROWSE:

It is not of particular value here (every record has the same values), but this is a potentially
very powerful tool to further process data.

Writing output into a file

You learned perhaps a bit mechanically to start every program with a command “logclose”
to close any log file that might be open, but you haven’t quite tested the opposite, the opening
of a log file. You can write any output into three types of files, text, HTML, or Excel. We
strongly discourage Excel, because for proprietary reasons EpiData is forced to use an
outdated format. If you need your output in a spreadsheet program, it is way preferable to
save the output into a text file and then open the text file in your spreadsheet application
software.
The commands are straight forward:
logopen “my_output.txt” /replace
* Some EpiData Analysis commands
logclose

Specifically, if we write:
cls
close
read "abcd.rec"

logopen "output_01.txt" /replace
tables sex reason
logclose

If we look at the output_01.txt file in our text editor, we see:
Logopen output_01.txt
 EpiData Analysis V2.2.2.180 27-Apr-13 17:45
. tables sex reason
Examination reason Female Male Total
Diagnosis 52 82 134
Follow-up at 2 months 18 22 40
Follow-up at 3 months 4 8 12
Follow-up at 4 months 0 3 3
Follow-up at 5 months 13 22 35
Follow-up at 6 months 11 20 31
Follow-up at 7 months or later 3 13 16
Follow-up, month not stated 8 19 27
Reason not stated 0 2 2
Total 109 191 300

course_b_ex02_task
Page 9 of 16

. logclose
Apart from the “ragged” appearance, there is also too much superfluous output there, if we
only want the table. We can greatly improve it by setting the echo first off before opening the
log file and then setting it on again after it has been closed:
set echo=off
logopen "output_01.txt" /replace
tables sex reason
logclose
set echo=on

This way, we get it trimmed down:
Examination reason Female Male Total
Diagnosis 52 82 134
Follow-up at 2 months 18 22 40
Follow-up at 3 months 4 8 12
Follow-up at 4 months 0 3 3
Follow-up at 5 months 13 22 35
Follow-up at 6 months 11 20 31
Follow-up at 7 months or later 3 13 16
Follow-up, month not stated 8 19 27
Reason not stated 0 2 2
Total 109 191 300

If we go now to our spreadsheet program and open it as a delimited text file:

it will come out nicely as intended:

course_b_ex02_task
Page 10 of 16

More about tables
Let’s first copy our case definition from above:
cls
close
read "abcd.rec"

define case #
case=0
if res1>0 and res1<9 then case=1
if res2>0 and res2<9 then case=1
if res3>0 and res3<9 then case=1
label case "Microscopy case definition"
labelvalue case /0="Non-case"
labelvalue case /1="Case"

and then make another categorical variable from the categorical variable reason to get only
three levels and verify that we got what we intended to get, making a cross-table between the
old variable (reason) and the new one (reason2) derived from it:
cls
gen i reason2=2
if reason=0 then reason2=1
if reason=9 then reason2=9
label reason2 "Reason for examination"
labelvalue reason2 /1="Diagnosis"
labelvalue reason2 /2="Follow-up"
labelvalue reason2 /9="Reason unknown"
tables reason2 reason

Previously when we made a table also showing the values with:
tables case sex /vl

we got:

If we look at the sorting sequence, we see that the sequence is ascending by value (not
ascending by label alphabet, see labels for case definition). We can invert the sequence with:
tables case sex /vl /sd

course_b_ex02_task
Page 11 of 16

There are multiple sorting options but one should take note that some more complex sorting
options do not deliver what we expect, thus always check carefully. For simple sorting like
ascending on values (/sa) or descending on values (/sd) as we just did, we usually get what
we want.
Important to note is what happens if we like to get an odds ratio, compare the two outputs:
cls
tables case sex
tables case sex /o

“Plain” “Epidemiologic”

This is a reflection of the fact that EpiData Analysis is truly an epidemiologist’s tool: most
commonly in outbreak investigations or case-control studies we show the cases to the left and
the non-cases to the right of the column, and show the exposure on top and the non-exposure
at the bottom of the row.
If we now want to switch these, then we have to check carefully whether we get what we want,
but one or the other options will give us what we need. Let’s try then with our logic from
above telling us that we should probably sort in ascending order:
tables case sex /o /sa

Indeed, it did invert it. If we wish to invert only one of the two, say keep the “epidemiologic”
presentation for cases and non-cases, but change it for sex, then we might need to do some
recoding:
cls
gen i sexinvert=1
if sex=1 then sexinvert=2
label sexinvert "Sex of person"
labelvalue sexinvert /1="Male"
labelvalue sexinvert /2="Female"
tables case sexinvert /o

and we get:

course_b_ex02_task
Page 12 of 16

Again, be sure to always check that what you get is what you need and learn creatively to
approach things as you need them to be.

Stratification
So far, we have dealt with two-by-two tables, but one of the common requirements is a
stratified analysis. EpiData Analysis makes it easy for us in that we just list the variables in a
tables command, though we must pay attention to the sequence of the variables. If we
need to look at cases versus non-cases by sex, stratified by the (summary) reason, we write:
tables case sex reason2 if reason2<>9

and get:

The first table is the crude, unstratified table, the following table(s) are the results of case by
sex in the different strata. Of course, the interest here is commonly a summary odds ratio
calculated by the Mantel-Haenszel procedure:
tables case sex reason2 /o if reason2<>9

We get more output here: first the “epidemiologic” table with crude odds ratios and 95%
confidence intervals followed by these measures of association in the strata:

course_b_ex02_task
Page 13 of 16

After these tables, we get the summary of the adjusted analysis:

Note also the all-important information at the bottom to help us ensuring that we got what we
wanted:

More about graphs
In the previous exercise, we did:
select age<>99
boxplot age /by=sex

and got this graph:

To explore the options a bit more without first taking recourse to the Help file, we will
approach it by using the menu interactively:

We will use Execute (not Run) to progressively edit the graph to our liking, completing the
first tab “Variables”:

course_b_ex02_task
Page 14 of 16

Then we refine the tab “Graph/Axis”:

then “Titles”:

and finally “Misc”:

course_b_ex02_task
Page 15 of 16

The most important part comes now in that we go to the command line (F4) and use the up
cursor to get the entire list of commands, mark it, and paste it into our PGM file, making back
slashes where appropriate and then have:
cls
BOXPLOT age /By=sex \
 /SizeX=600 /SizeY=400 \
 /Noxtick \
 /Ymin=0 /Ymax=90 /Yinc=10 \
 /Ti="Tuberculosis Microscopy Register" \
 /Sub="Age of examinees in years by sex" \
 /Fn="Graph for exercise 2, Part B" \
 /Save="b_ex02"

We do some additional editing, like allowing replacement of the graph (which is necessary if
we name the output), and look some additional things up in the Help file, and finally have it
refined to:

Note the difference in quality if we replace:
 /Save="b_ex02" /replace \

with:
 /Save="b_ex02.wmf" /replace \

We note:

Tuberculosis Microscopy Register
Age of examinees in years by sex

Graph for exercise 2, Part B

Examinee's sex
Female Male

90
80
70
60
50
40
30
20
10
0

course_b_ex02_task
Page 16 of 16

o If we save the graph as *.wmf (Microscoft metafile, a vector graph), it does not show
up in the Results window

o Vector graphs are crisp and sharp and retain this irrespective of changing the graph
size

o The result is not a faithful reproduction of the default *.png graph.

Sometimes the title gets too large in the metafile. This can be remediated by adding the SET
to change the default font size from 10 to 9:
set graph font size=9

Task:

o Write a program B_EX02.PGM using the data set “abcd.rec”. Limit your analysis
to patients with a diagnostic sputum smear examination. Create an output that shows
the incremental yield of cases from the first, second and third of three serial smears.
With incremental yield we mean determining the proportion of examinees who are
positive already on the first, patients who are negative on the first, but positive on the
second, and examinees who are negative on the first two but positive on the third serial
smear examination. The denominator should be those who have had the required
number of smears to determine the yield.

Tuberculosis Microscopy Register
Age of examinees in years by sex

Graph for exercise 2, Part B

Examinee's sex
Female Male

90
80
70
60
50
40
30
20
10
0

Task:

o Write a program B_EX02.PGM using the data set “abcd.rec”. Limit your analysis
to patients with a diagnostic sputum smear examination. Create an output that shows
the incremental yield of cases from the first, second and third of three serial smears.
With incremental yield we mean determining the proportion of examinees who are
positive already on the first, patients who are negative on the first, but positive on the
second, and examinees who are negative on the first two but positive on the third serial
smear examination. The denominator should be those who have had the required
number of smears to determine the yield.

Solution:
The desired output is:

Solution to Exercise 2: More on EpiData Analysis

Key point(s):
a) EpiData Analysis is a powerful tool to manipulate and restructure data sets
b) Tabular outputs can be customized to specific needs
c) To evaluate graph options, one may best use first the visual menu-driven

interface and then copy and paste the resulting options into a program for
permanent reproduction.

course_b_ex02_solution
Page 1 of 2

The part of the program B_EX02.PGM which gave this output:
* Task Exercise 2, Part B

cls
close
read "abcd.rec"

define case #
case=0
if res1>0 and res1<9 then case=1
if res2>0 and res2<9 then case=1
if res3>0 and res3<9 then case=1
label case "Microscopy case definition"
labelvalue case /0="Non-case"
labelvalue case /1="Case"

cls
gen s(3) esspattern="NNN"
if res3=9 then esspattern="NN9"
if res2=9 then esspattern="N99"
if res3>0 and res3<9 then esspattern="NNP"
if res2>0 and res2<9 then esspattern="NPx"
if res1>0 and res1<9 then esspattern="Px"
label esspattern "Six essential patterns"

set echo=off
select reason=0
cls
type "Yield of first smear: Px [exclude none]" /h2
freq esspattern /c /ci
type "Yield of second smear: NPx [exclude: N99]" /h2
freq esspattern /c /ci if esspattern<>"N99"
type "Yield of third smear: NNP [exclude: N99, NN9]" /h2
freq esspattern /c /ci if esspattern<>"NN9" and esspattern<>"N99"
select
set echo=on

course_b_ex02_solution
Page 2 of 2

course_b_ex03_task
Page 1 of 4

We are quite familiar with:
cls
close
logclose

read "abcd.rec"

freq sex

getting as result:

If we replace “freq” with “agg” (short for aggregate):
agg sex

we get essentially the same information (without the marginal, i.e. here the total):

Making a frequency of a variable is nothing other than aggregating the values of that variable
to the smallest common denominator and the same thing is done with aggregate. We can
do it analogously for a table:
tables sex labcode

This gives (discounting the marginal) 8 inner cells for the 2 by 4 possibilities:

If we replace tables by aggregate:
agg sex labcode

we get the 8 inner cells listed in a column sorted by sex then by labcode:

Exercise 3: Aggregating data and saving the summary data in a file

At the end of this exercise you should be able to:
a. Understand “Aggregate” data and apply it to a specific task

course_b_ex03_task
Page 2 of 4

As an option we can close the file that was open (the abcd.rec):
agg sex labcode /close

and we can see what remains in the Variables window:

We can browse it as it has been written to an EpiData REC file, aggregated into 8 records:

As an additional option we can save this aggregation to a REC file (note that the option is
“/save”, not “/savedata”:
agg sex labcode /close /save="labsex_set.rec" /replace

then close everything and re-open either file.

The first property of the aggregate command is thus that it can replace the summary of a
tables command and save the cells of the table (made from 1, 2, or more variables) in a
REC file.

The second property of the aggregate command is related to the power it provides with
options. For example:
cls
close
logclose
read "abcd.rec"
agg sex /mean=age if age<>99

gives:

course_b_ex03_task
Page 3 of 4

We have now the mean age by sex, but we could also get the mean age by sex and
laboratory:
agg sex labcode /mean=age if age<>99

and as above, all can be written into a REC file:
agg sex labcode /mean=age /close /save="labsex_set_2.rec" /replace \
 if age<>99
cls
close
read "labsex_set_2.rec"

The automatically created variable N denotes the number of records in the original file, Nage
the number of records in the original file with non-missing information on age, and MEAage,
the mean age in the aggregated stratum.

There are more options of this kind, like:
/min
/max
/stat
/sum

You can also cumulate different options, and you can use the same option for different
variables, e.g. “/sum=var1 /sum=var2 /min=var3”.

It is the option /sum we are particularly interested here to apply. We can sum up all the
values of a given variable across all records aggregated within a stratum. For instance, in the
following task you will need to count the number of smears each examinee had, and then you
can sum up all the smears within each stratum resulting from your aggregation.

Workload in the laboratory

course_b_ex03_task
Page 4 of 4

One measure of the workload in laboratories is the number of smears they have to examine
per day. Even the busiest laboratories do not work every day, they may close on weekends
and public holidays. One may get some approximate estimate of the number of working days,
but a much cleaner way is to count the actual working days. The tuberculosis laboratory
register gives a possible good approximation with the date of registration. While smears are
also examined on other than the registration date (the first specimen defines that date, and a
patient gives the first specimen on the spot but brings in an early morning specimen one day
later), this is a reasonably good approximation to the number of days work was actually
carried out, certainly better than some other approximation without a good data basis.
We provide a data set “b_ex03_workload.rec” from three laboratories in Zimbabwe
(data courtesy Dr Biggie Mabaera), each complete but also limited to during one calendar
year.

Task:
o The B_EX03_WORKLOAD.REC has been edited to contain only three laboratories

(out of the original 30) and only the year 2002. Nonsensical results (e.g., first
examination not recorded, followed by a valid result) have been excluded. Create a
program B_EX03.PGM to provide the mean number of smears examined per
registration day in each of the three laboratories.

Task:
o The B_EX03_WORKLOAD.REC has been edited to contain only three laboratories

(out of the original 30) and only the year 2002. Nonsensical results (e.g., first
examination not recorded, followed by a valid result) have been excluded. Create a
program B_EX03.PGM to provide the mean number of smears examined per
registration day in each of the three laboratories.

The result:

The program B_EX03.PGM is very simple in the end (but admittedly it took us a while to get
to this level of efficiency):
cls
close
logclose

read "b_ex03_workload.rec"

* Determine the number of smears for each examinee
gen i smears=1
if result2<>9 then smears=2
if result3<>9 then smears=3

* Sum up the number of smears done on each
* working day in each laboratory
aggregate regdate laboratory /sum=smears /close

* Calculate the average number of smears done
* each working day in each laboratory
cls
means sumsmears /by=laboratory

Solution to Exercise 3: Aggregating data and saving the summary data

Key point(s);
a) Aggregate is a powerful tool to summarize the analogue to a tabular output

in a REC file and to make calculations on the vertical for each stratum thus
obtained.

course_b_ex03_solution
Page 1 of 1

course_b_ex04_task
Page 1 of 13

Quite often data are captured in a spreadsheet. When trying to then analyze these data, the
substantial limitations to the use of spreadsheet software in this respect become recognized.
We are then compelled to import the spreadsheet data into a data file format more amenable
to analysis. An EpiData file is an appealing solution as the software also disposes of powerful
restructuring tools permitting reshaping the data into a format that is convenient for analysis
using EpiData Analysis.
There are two approaches which are the same in principle: 1) copying the spreadsheet content
to the clipboard, or 2) exporting the spreadsheet content to a delimited text file. EpiData
Analysis is given a respective command to either read the clipboard content or the text file.
We will demonstrate both approaches with two simple examples and then provide for the task
a real dataset of somewhat more complexity.

Formatting the spreadsheet correctly
In the required files, you find the workbook “b_ex04_spreadsheet_data_1_original.xlsx” with
8 records (data rows) and 6 variables (column headings):

The workbook has this single sheet labeled “original”. Under no circumstance do we wish to
make any alteration whatsoever to the original. We therefore make as the first thing a copy of
this content into a new sheet in the same workbook. We create a new sheet and label it
“epidata”. We don’t want to copy and paste but we rather resolve the copying by using a
formula.
In the new sheet “epidata” in cell A1 we type the “=” sign (no quotes) and then place the
cursor into cell A1 in the “original” sheet and press the Enter key. This gets us back to cell
A1 in the “epidata” sheet in which we now find written:

Exercise 4: From a spreadsheet to an EpiData file

At the end of this exercise you should be able to:
a. Master the import of spreadsheet content into an EpiData file
b. Recode the imported content to an analyzable file

course_b_ex04_task
Page 2 of 13

Copy cell A1 in “epidata” to the first two rows, columns A to F and get:

There are 3 rules that must be followed else the transfer of data from spreadsheet to EpiData
will either not function or it will contain errors:
1) The variable names must be valid EpiData names i.e. a) single word, b) length not
exceeding 10 characters, c) not beginning with a number.
2) The first row of data cannot contain any empty cell.
3) The data for a given variable must all be of the same type.
We thus overwrite the first row containing the variable names with valid EpiData names.
Doing this, we remember that EpiData is not case sensitive, but many other analysis software
is (like Stata or R). Despite EpiData not being case sensitive for variable names, we will
make it always strictly unambiguous with a simple rule: we recommend and use only lower-
case letters for variable names. Thus, we might write:

While a length of up to 10 characters is allowed for EpiData variable names, we prefer to
have the names even shorter: our longest names here have 7 characters. We will later make
explicit variable labels so that it is unambiguously clear what the variable names refer to.
Next we modify the formula for the cells A1 to F1 in a way to take care of two things at the
same time, i.e. providing a value for a given cell in case it is empty and defining the type of
variable the column contains. We assume that column A with the identifier always contains a
value (else we will discard records without identifier later in EpiData Analysis). Thus, cell
A1 is left untouched. Column B is a string (text) field and it has length 1. Accordingly, we
modify the current formula from:

to:

If you are not familiar with the “IF” statements in spreadsheet syntax, you may consult the
help file. Basically it is:
IF(logical test, if true write this, else write that)

course_b_ex04_task
Page 3 of 13

We thus evaluate with the logical test whether the content of the cell in the sheet “original” is
not empty (denoted as opening and closing double-quote “”), and if it is not empty, then we
take that value, else an x is written (denoted as a string by surrounding it with double-quotes
“x”).

We copy the thus revised formula of cell B2 to cell C2. “x” is obviously erroneous, because
this is a date field, not a string field. It probably depends on the language of your spreadsheet
software how a date is written, thus check first in the help file. In our English version it
becomes:

We need to choose a legal date, but one that obviously cannot be a genuine date of birth in our
data set. We chose the earliest possible date in the spreadsheet after the anchor date (which is
31 Dec 1899, in EpiData it is 31 Dec 1799), thus the choice of 1 Jan 1900: it’s legal, it is
written as an actual date, and it is obviously not a genuine date of birth in the context of the
data set.
Cell D2 is a string analogous to cell B2 which we thus copy to here, but make perhaps 3 x’s
as it is a longer field than just length 1:

Cell E2 is actually the same as D2, so we copy cell D2 to cell E2. We introduce something
more here. While it is actually not relevant for this specific case here, it can become relevant
with text fields like comments: in EpiData a text field cannot exceed a length of 80 characters,
else an error occurs when attempting to read a field with a larger length. To prevent that the
value in such a string field exceeds the permissible length, we tell the spreadsheet that it
should cut off anything beyond a certain length. We choose here (arbitrarily) that critical
length to be 50 characters after which the rest is cut off and write:

The function in the spreadsheet software is “MID” and it requires three arguments, 1) the cell
name, 2) the starting character position (1), and 3) the ending character position (50).

The final variable sqmeter (first data cell F2) is an integer field of a length 3, thus the
formula becomes a copy of D2, yet the value for missing doesn’t have quotes and must be a
number (because the variable is an integer field):

As the first two rows are now complete, row 2 can be copied up to and including row 9 and
we get:

course_b_ex04_task
Page 4 of 13

If we mark the data rectangle A1:F9, copy it to clipboard and then paste it into our text editor,
we get:

This suggests that the clipboard memory content has a Tab-delimited format. You can test this
assumption by placing your cursor after the “A” and then move the cursor: it jumps to before
“m”. In Notepad++ text editor (available on the course web) you can choose View=>Show
symbol=>Show white space and TAB and you actually see spaces as points and TABs as →
arrows:

EpiData will correctly interpret the difference between a TAB delimiter and one or more
space characters.

Reading data from clipboard into EpiData Analysis and save it as an EpiData file
In EpiData Analysis we prepare the basics to read data from clipboard and save them to an
EpiData *.REC file:
cls
close
logclose

course_b_ex04_task
Page 5 of 13

read /cb
savedata "spreadsheet_data_1.rec" /replace

The command is remarkably simple: read with the option /cb (for clipboard). It makes of
course sense to save it right away from memory to a data file with an intermediary name of
your choice. Also, save the program as “b_ex04_task.pgm”.

Switch to the sheet “epidata” and copy the rectangular data A1:F9 to the clipboard, then
switch back to EpiData analysis and run all with F9. The output should then read:

If we browse, we get:

From the Variables window (press F3, if not shown spontaneously), we check whether all the
variables are of the type that we wanted them to be, most notably that dates are date variables
and numbers are integer or float variables:

This is the case here, but this should not just be assumed: we may encounter that a date field
has become a text field because the spreadsheet column hadn’t been formatted correctly or
that one single date among all had a wrong format. It is crucial to ensure that all is in order in
respect to the type of variable.

course_b_ex04_task
Page 6 of 13

It is immediately apparent in the small dataset here that all records have an identifier.
However, we better check it formally as we cannot use records that cannot be checked against
the original. We make a binary variable:
cls
close
read "spreadsheet_data_1.rec"

cls
gen i hasid=1
if id=. then hasid=0
freq hasid /m

and get:

We are thus satisfied that all records have an identifier. That none is a duplicate will be done
later again in another form, but this is how we would do that:
cls
sort id
gen i seq=1
if id=id[_n-1] then seq=seq[_n-1]+1
freq seq

and we get:

No identifier occurs more than once and every record has an identifier. What we did here was
to sort the records by ID to ensure that any identical identifiers would be next to each other.
Then we make a variable SEQ and give it in every record the default value 1. A powerful
capability of EpiData Analysis is to look at records before or after the current position of the
process. EpiData Analysis proceeds record by record through a data file, from top to bottom.
The current record has the position [_n]. There is no need to give the designation for the
current record, but in fact id and id[_n] are both valid designations for the identifier in the
current position. id[_n-1] designates the identifier of the record immediately preceding
that of the current record, while id[_n+5] would be the identifier of the fifth record forward
from the current one. Our commands above thus say “if the record before the current one has
the same identifier as the current one, then add 1 to the value of seq in the current record to
the value that seq has in the record before the current record”. As a result, all seq values
must be 1 if there are no multiples of the identifier. We will make extensive use of this
positioning when we deal with the analysis of a relational database. For the time being we

course_b_ex04_task
Page 7 of 13

can asterisk the frequencies and drop the two variables we just created, and give a label to the
variable ID:
cls
close
read "spreadsheet_data_1.rec"

cls
gen i hasid=1
if id=. then hasid=0
* freq hasid /m

cls
sort id
gen i seq=1
if id=id[_n-1] then seq=seq[_n-1]+1
* freq seq

drop hasid seq

label id "Unique identifier"

It is still common practice to use string (text) fields for the values of categorical variables like
sex or housing arrangement, etc, as was also done here in the spreadsheet. For instance, a
frequency of the variable SEX gives here:

The value “x” was our doing to denote the value in records with no information on the
variable SEX. In this spreadsheet, there was no control over the way how the value should be
written and we have thus 4 instead of the 2 known sexes. Of course, in EpiData it is easy to
exert control to avoid such errors (it’s also possible in a spreadsheet). In any case, there are
issues with using text values for categorical variables. There are good reasons why it is
nowadays standard to use systematically numeric coding for all variables unless there is a
compelling reason to use a string (such as always for identifiers as nobody uses them to count
something). The main reason for numeric coding is efficiency. Evaluation of text fields in
analysis is “expensive” as text must be evaluated, then converted into numbers internally:
computers don’t add up letters, they add up numbers. Text values take processing time in
excess of what is required if all calculation can be done directly with numbers. Numeric
coding is also efficient for file size and thus another factor for processing speed: to be
unambiguous and clear, the required length of a field containing a text value for a categorical
field is often more than 1, while with numeric coding it can commonly be just 1 (allowing up
to 10 strata).
In the following, we will convert all categorical text fields to fields with numeric coding with
unambiguous metadata for the labels.

course_b_ex04_task
Page 8 of 13

Starting with the variable SEX, we can use the EpiData function to convert all text values (m
and M, and f and F) to lower case to get more swiftly from the current 5 to the desired 3
required values:
cls
freq sex
define sexn #
sexn=9
if lower(sex)="f" then sexn=1
if lower(sex)="m" then sexn=2
tables sexn sex

The function is LOWER(variablename). To do this systematically, we start with a
frequency of the current variable, and end with a cross-tabulation of the new against the old
variable to check that all assignments are correct. We could then drop the two respective
commands, but we prefer to leave them with a preceding asterisk denoting it as a comment.
This is a comment in the script to assure ourselves that we had checked. Then we drop the
old variable and label the new one properly, followed by a final frequency of the new variable
to assure ourselves that all is in order:
cls
* freq sex
define sexn #
sexn=9
if lower(sex)="f" then sexn=1
if lower(sex)="m" then sexn=2
* tables sexn sex
drop sex
rename sexn to sex
label sex "Patient's sex"
labelvalue sex /1="Female"
labelvalue sex /2="Male"
labelvalue sex /9="Not recorded"
* freq sex

The output is now neat and clean without ambiguity:

The variable DOB only needs a proper variable label:
label dob "Date of birth"

The variable LIVING has obviously been made free text with the resulting short-comings:

course_b_ex04_task
Page 9 of 13

We have 7 values in 8 records. Such coding could be very tedious and is obviously pretty
useless for analysis as such. There is no other way than actually going through the actual
original values one by one and trying to put them into reasonable categories. We could be
forgetting one or the other value as it is so tedious. To have an alert for omissions, we make a
default value (choosing here “8”) that should not remain if all re-assignments are proper. We
also make use of the function SUBSTR(variablename, beginning position,
ending position) to avoid copying all of it. The latter is unfortunately often required,
but not in the relatively simple case here:
cls
* freq living
define livingn #
livingn=8
if living="xxx" then livingn=9
if substr(living,1,4) ="apar" then livingn=1
if substr(living,1,4) ="appa" then livingn=1
if substr(living,12,4)="apar" then livingn=1
if substr(living,1,4) ="hous" then livingn=2
if substr(living,5,4) ="hous" then livingn=2
if substr(living,13,4)="pare" then livingn=3
if substr(living,8,4) ="alon" then livingn=4
* tables livingn living
drop living
rename livingn to living
label living "Housing arrangements"
labelvalue living /1="Apartment"
labelvalue living /2="House"
labelvalue living /3="Parents"
labelvalue living /4="Other"
labelvalue living /9="Not recorded"

The recoded field has somewhat more appeal than the original:

course_b_ex04_task
Page 10 of 13

We finalize recoding with the field MARITAL analogously and provide the field SQMETER
with just a variable label so that in the end we have a neatly recoded dataset:

Exporting the spreadsheet to a delimited text file and importing that file into EpiData
We mentioned above that copying the data in the spreadsheet to clipboard and exporting the
data to a delimited text file is essentially the same approach. We showed that the copying to
the clipboard is copying a tab-delimited file to the clipboard that EpiData Analysis
understands to be of this format with the option /cb. EpiData Analysis also allows importing
text files that are physically on disk and have a name and an extension that identifies them as
a text file. Text files have the extension *.txt, but this extension does not define the nature
of the delimiter, i.e. the separator between the values for separate variables. In EpiData Entry
3.1 we can import files with the extension *.txt and tell the software which delimiter the
file actually has (i.e. Tab, comma, semi-colon). The issue is of importance because the choice
of the delimiter must always be something that is not used in the data: for instance, a tab will
not be used between words of the value in a text field, as we use a space character to separate
words. In the US and many other countries, the decimal separator is the full stop. In many
other countries, the decimal separator is a comma. In our Windows® software we make in
our set-up the definitions and our spreadsheet software will then adhere to these rules. Not
everybody actually makes the effort to properly set up the display rules for the display of
numbers. As a result, we must be very careful to check whether what we demand is then
actually what we get.
A point in case is the most commonly used delimited text file format, the comma-separated
values, with the extension *.csv. Fortunately, it seems, the issue is solved correctly by
spreadsheet software such as Excel® or LibreOffice Calc:

- If the Windows set-up is to use a full stop as the decimal separator, then the delimiter
between variables will be a comma when exporting to *.csv.

- If the Windows set-up is to use a comma as the decimal separator, then the delimiter
between variables will be a semicolon when exporting to *.csv.

EpiData Analysis will be able to correctly identify the delimiter either way (but always
check!). We will thus export to *.csv. Once you have exported, examine it in the text
editor.

course_b_ex04_task
Page 11 of 13

When using a full stop as decimal separator, we get:

When using a comma as decimal separator, we get:

We note that this works correctly even if – like in our case – there is not even a real number
(float variable) in the data set. Important is here to note again that the two approaches are the
same, except that one is tab-limited, the other comma (or semicolon) delimited. Neither will
work if the content is not properly formatted!

More complexity: two specimens with a discordant result taken at the same time
In the workbook “b_ex04_2_original.xlsx” we have a bit added complexity. The unit of
observation here is not one patient but one specimen. Specimens are taken at different visits
of individual patients. Furthermore, it is possible that more than one specimen is taken at one
given visit. We added the case where two different specimens yield a different result at one
given visit. What we wish to do is to 1) import the data from the spreadsheet and then 2)
manipulate the EpiData file so that each observation time per patient has a single
hierarchically dominant result and that the way to go about it would not be limited to just two
specimens as in our example.
We proceed as before by creating a second sheet “epidata” in the workbook that contains the
EpiData-compatible reformatted data from the “original” sheet. It is easiest to open the
“b_ex04_1.pgm” program in EpiData Analysis and save it right away as “b_ex04_2.pgm”.
The rectangular file is then copied to clipboard and read and saved in EpiData Analysis as
before. All the variable manipulations that exist are retained with perhaps minor
modifications, and the additional ones are added.
Special consideration is given to the recoding of the specimen result. We have more that one
specimen in a given month per patient and they may be discordant such as in:
PATID MM SPECSEQ RESULT
A 1 1 negative
A 1 2 positive
A 1 3 no result

course_b_ex04_task
Page 12 of 13

What we want to have is a single RESULT per patient-month. We also want this to be
hierarchical, i.e. that any result overrides no result, and a positive result overrides a negative
result, and that at the end of our procedure the hierarchically highest result is written into the
first of the sequences, i.e. that the above becomes:
PATID MM SPECSEQ RESULTN
A 1 1 positive
A 1 2 positive
A 1 3 no result

Then we can retain only the first record in the sequence, i.e. SPECSEQ=1 to have only one
result per patient-month. There are of course different approaches to solving this, but we
propose hierarchical numeric recoding, i.e.:
Result Value
No result 0
Negative 1
Positive 2

We make first a variable that combines patient identifier and month to a new identifier (e.g.
PATMMID):
gen s(3) patmmid=patid+“-”+mm
label patmmid "Patient-month identifier"

We then sort by this new identifier and within it by month, and number the sequence similar
as we did before, i.e.:
sort patmmid mm
gen i seq=1
if patmmid[_n-1]=patmmid then seq=seq[_n-1]+1

Thus, we should get something of the type:
PATMMID SEQ MM SPECID RESULT
A-1 1 1 X123 negative
A-1 2 1 Y321 positive
A-1 3 1 A412 no result
A-2 1 2 B123 negative
B-0 1 0 C123 positive

The sequence of the RESULT is irrelevant as the hierarchical coding suffices to get things
right in the next step. In this next step we reshuffle the hierarchically highest to the first in the
sequence:
define resultn #
resultn=result
if result[_n+1]>result then resultn=result[_n+1]
drop result
rename resultn to result
label result "DST result"
labelvalue result /0="No result"
labelvalue result /1="Susceptible"
labelvalue result /2="Resistant"

and we will get something of the type:

course_b_ex04_task
Page 13 of 13

PATMMID SEQ MM SPECID RESULT
A-1 1 1 X123 positive
A-1 2 1 Y321 positive
A-1 3 1 A412 no result
A-2 1 2 B123 negative
B-0 1 0 C123 positive

After this the specimen identifier is incorrectly paired with the result and can be dropped
together with the sequence counter and we have a data set in which PATMMID is a unique
identifier for patient-month (which we must check).

Tasks:
o The B_EX04_TASK.XLSX is a real data set from a study on laboratory drug

susceptibility test results from several countries / jurisdictions. Create a sheet satisfying
EpiData format requirements. Copy the rectangular selection to the clipboard and read
it into EpiData Analysis and save it to an EpiData *.REC file. Note that it might be tricky
to deal properly with some variables that may prevent correct reading of the rectangular
file!

o The data set has a patient identifier, IDCODE. This identifier is unique for the patient
in a given jurisdiction, but it is not unique for the data set. Specimens might be taken
at the start of treatment or at any month on treatment. One patient in the data set thus
may have several results. Make a variable IDCODE2 by adding the month to IDCODE.
This will make it unique for a given patient in a given month. Actually – not quite: there
may be more than one specimen in a given month, but only one result should count.
The IDCODE2 could also come from two different patients if they are from a different
jurisdiction. Make a third identifier so that you get in total three: 1) taking jurisdiction,
patient and month of treatment, 2) taking jurisdiction and patient and 3) taking patient
into account.

o Sort the data set so that all specimens for a given patient-month are next to each other,
then recode all variable pertaining to isoniazid in a hierarchical manner, so that it
becomes easy to assign the value that will be retained to the first specimen for that
patient-month. Hierarchy: high-level resistance>low-level resistance>susceptible>no
result. Then select to retain only the first specimen per patient-month.

o Recode the various variables for isoniazid drug susceptibility test results (phenotypic
and genotypic results). Recode to a single variable for the isoniazid result. Discuss the
hierarchy that you wish to assign to this end.

course_b_ex04_solution
Page 1 of 13

Task:
o The B_EX04_TASK.XLSX is a real data set from a study on laboratory drug

susceptibility test results from several countries / jurisdictions. Create a sheet satisfying
EpiData format requirements. Copy the rectangular selection to the clipboard and read
it into EpiData Analysis and save it to an EpiData *.REC file. Note that it might be tricky
to deal properly with some variables that may prevent correct reading of the rectangular
file!

Solution:
The tricky part was perhaps to deal with the original sheet variable IDCODE. If the values were
left unchanged, EpiData may misread it as a date variable with erroneous dates that did not exist
and in consequence the import failed. We solved it by unambiguously making it to a text field.
The value:
2014-01-006

was made to be:
x-2014-01-006

by the following code:
=IF(original!G2<>"",CONCATENATE("x-", original!G2),"xxx")

The preceding “x-” identified the value unambiguously to a string field for EpiData Analysis.
The extraneous “x-” was then easily stripped in EpiData Analysis with:
gen s(11) idcode0=substr(idcode2,3,11)

Task:
o The data set has a patient identifier, IDCODE. This identifier is unique for the patient

in a given jurisdiction, but it is not unique for the data set. Specimens might be taken
at the start of treatment or at any month on treatment. One patient in the data set thus
may have several results. Make a variable IDCODE2 by adding the month to IDCODE.
This will make it unique for a given patient in a given month. Actually – not quite: there
may be more than one specimen in a given month, but only one result should count.

Solution to Exercise 4: From a spreadsheet to an EpiData file

At the end of this exercise you should be able to:
a. Master the import of spreadsheet content into an EpiData file
b. Recode the imported content to an analyzable file

course_b_ex04_task
Page 2 of 13

The IDCODE2 could also come from two different patients if they are from a different
jurisdiction. Make a third identifier so that you get in total three: 1) taking jurisdiction,
patient and month of treatment, 2) taking jurisdiction and patient and 3) taking patient
into account.

Solution:
This is relatively simple to accomplish. We chose this approach:
cls
* freq country
define countryn #
if country="A" then countryn=1
if country="B" then countryn=2
if country="C" then countryn=3
if country="D" then countryn=4
if country="E" then countryn=5
if country="F" then countryn=6
if country="G" then countryn=7
if country="H" then countryn=8
drop country
rename countryn to country
label country "Name of country / jurisdiction"
labelvalue country /1="Jurisdiction A"
labelvalue country /2="Jurisdiction B"
labelvalue country /3="Jurisdiction C"
labelvalue country /4="Jurisdiction D"
labelvalue country /5="Jurisdiction E"
labelvalue country /6="Jurisdiction F"
labelvalue country /7="Jurisdiction G"
labelvalue country /8="Jurisdiction H"

cls
* Create derived identifiers
gen s(16) idcoden=country+substr(idcode,2,12)+"-"+mmtxt
drop idcode2 idcode
rename idcoden to idcode2
label idcode2 "Country-patient-month identifier"
cls
gen s(13) idcode=substr(idcode2,1,13)
label idcode "Country-patient identifier"
cls
gen s(11) idcode0=substr(idcode2,3,11)
label idcode0 "Patient identifier"

Task:
o Sort the data set so that all specimens for a given patient-month are next to each other,

then recode all variable pertaining to isoniazid in a hierarchical manner, so that it
becomes easy to assign the value that will be retained to the first specimen for that
patient-month. Hierarchy: high-level resistance>low-level resistance>susceptible>no
result. Then select to retain only the first specimen per patient-month.

course_b_ex04_task
Page 3 of 13

Solution:
First, we determined the frequency of the number of specimens per patient-month, using a
standard approach which you will be using very often as this question arises very frequently:
cls
* Identify multiple specimens per patient-month
sort idcode2 mm
gen i specseq=1
if idcode2=idcode2[_n-1] then specseq=specseq[_n-1]+1
* freq specseq
* =>
* N
* 1 582
* 2 26
* 3 5
* 4 4
* 5 2
* 6 2
* Total 621
* => Up to 6 specimens for 1 patient in 1 month

It is not necessary to know in this specific situation that at most 6 specimens are available per
patient months, but it will be of key importance to know it for the next step. We show this here
for isoniazid phenotypic result at 0.2 mg/L, i.e. the variable H02. Currently, these are the
original (spreadsheet-coded) results:
NT 490
R 126
S 5
Total 621

As we recommended a hierarchical numerical coding, we create a new numeric variable H02N
and then “reshuffle the values” hierarchically to the first record within IDCODE2:
cls
define h02n #
h02n=0
if h02="S" then h02n=1
if h02="R" then h02n=2
if idcode2[_n+1]=idcode2 and h02n[_n+1]>h02n then h02n=h02n[_n+1]
if idcode2[_n+2]=idcode2 and h02n[_n+2]>h02n then h02n=h02n[_n+2]
if idcode2[_n+3]=idcode2 and h02n[_n+3]>h02n then h02n=h02n[_n+3]
if idcode2[_n+4]=idcode2 and h02n[_n+4]>h02n then h02n=h02n[_n+4]
if idcode2[_n+5]=idcode2 and h02n[_n+5]>h02n then h02n=h02n[_n+5]
drop h02
rename h02n to h02
label h02 "INH result at 0.2 mg/L"

Before we drop h02 we browse to see all relevant variables, picking the case with 6 specimens
in a given patient-month:

course_b_ex04_task
Page 4 of 13

Note that the importance is that the first line of data (that is the record with SPECSEQ=1) must
be correct in that it takes the hierarchically highest among all results from the total of specimens
for the given patient-month. The highest value for H02 is R which translates numerically to 2
and this is correctly appearing in the first record of the sequence. It is thereby irrelevant that
the last value is 0 (it is logical that it retains the default because there is no other record
afterwards with the same IDCODE2) because after completing this approach for each variable
(on isoniazid, then other drugs), all that is retained are the records in which SPECSEQ=1:
select specseq=1

Task:
o Recode the various variables for isoniazid drug susceptibility test results (phenotypic

and genotypic results). Recode to a single variable for the isoniazid result. Discuss the
hierarchy that you wish to assign to this end.

Solution:
This might be a somewhat arbitrary classification and will surely required expert input. We
chose here the following hierarchy (this is specific for isoniazid, but must be defined for each
individual drug, and for other drugs this may differ):
Phenotypic result > genotypic result
In the absence of a phenotypic result, the genotypic result counts
If there are genotypically mutations in both the katG and inhA promoter gene, then the
resistance is high-level, whatever the result of phenotypic testing may be. Thus, we coded:
define inh #
inh=9
if inhlevel=0 then inh=inhmolsum
if inhlevel=1 then inh=1
if inhlevel=2 then inh=2
if inhlevel=3 then inh=2
if inhlevel=4 then inh=3
if inhmolsum=3 then inh=3
if inha=2 and katg=2 then inh=3 // already done, but make sure
label inh "Resistance to INH"

course_b_ex04_task
Page 5 of 13

labelvalue inh /0="No result"
labelvalue inh /1="Susceptible"
labelvalue inh /2="Low-level resistance"
labelvalue inh /3="High-level resistance"

course_b_ex04_task
Page 6 of 13

The entire b_ex04_solution.pgm reads as:
* Part B, Exercise 4
* Import spreadsheet data and create identifiers
* EpiData course
* Author: Hans L Rieder
* First version: 05 Feb 2018
* Current version: 02 Mar 2018

* 1) Read data from spreadsheet and save to EpiData file
cls
close
logclose

* read /cb
* savedata "b_ex04_task_in.rec" /replace

* 2) Read EpiData file, make basic checks and create new
* identifiers:
* idcode : idcode [original, derived]
* idcode0: country-idcode [original extended]
* idcode2: country-idcode-month [original extended]
cls
close
logclose

read "b_ex04_task_in.rec"

cls
* Manually inspect for typing errors and correct
if substr(idcode,1,4)="x- 2" then \
 idcode=substr(idcode,1,2)+substr(idcode,4,11)
if substr(idcode,7,1)<>"-" then \
 idcode=substr(idcode,1,6)+"-"+substr(idcode,7,6)

cls
* Exclude records without valid identifier
* <= they cannot be used
gen i hasid=1
if lower(substr(idcode, 1,3))="xxx" then hasid=0
if lower(substr(idcode,11,3))="xxx" then hasid=0
select hasid=1
drop hasid

cls
* freq mm /m
define mmn ##
mmn=99
mmn=integer(mm) if mm<>"Unknown"
drop mm
rename mmn to mm
label mm "Month of treatment"

course_b_ex04_task
Page 7 of 13

cls
* Create text month with leading zero
* to allow correct alphabetical sorting
gen s(2) mmtxt=mm
if mm<10 then mmtxt="0"+mm
select mm<>99

cls
* freq country
define countryn #
if country="A" then countryn=1
if country="B" then countryn=2
if country="C" then countryn=3
if country="D" then countryn=4
if country="E" then countryn=5
if country="F" then countryn=6
if country="G" then countryn=7
if country="H" then countryn=8
drop country
rename countryn to country
label country "Name of country / jurisdiction"
labelvalue country /1="Jurisdiction A"
labelvalue country /2="Jurisdiction B"
labelvalue country /3="Jurisdiction C"
labelvalue country /4="Jurisdiction D"
labelvalue country /5="Jurisdiction E"
labelvalue country /6="Jurisdiction F"
labelvalue country /7="Jurisdiction G"
labelvalue country /8="Jurisdiction H"

cls
* Create derived identifiers
gen s(16) idcoden=country+substr(idcode,2,12)+"-"+mmtxt
drop idcode2 idcode
rename idcoden to idcode2
label idcode2 "Country-patient-month identifier"
cls
gen s(13) idcode=substr(idcode2,1,13)
label idcode "Country-patient identifier"
cls
gen s(11) idcode0=substr(idcode2,3,11)
label idcode0 "Patient identifier"

label spnr "Specimen number"

cls
* Reduce dataset size for faster processing
keep idcode0 idcode idcode2 country mm spnr \
 h02 h10 h50 inhlevel katg inha inhmol inhmolsum

cls
* Identify multiple specimens per patient-month
sort idcode2 mm
gen i specseq=1
if idcode2=idcode2[_n-1] then specseq=specseq[_n-1]+1

course_b_ex04_task
Page 8 of 13

* freq specseq
* =>
* N
* 1 582
* 2 26
* 3 5
* 4 4
* 5 2
* 6 2
* Total 621
* => Up to 6 specimens for 1 patient in 1 month

savedata "temp_01.rec" /replace

* 3) Recode to priority on first of multiple specimens
* => Isoniazid

* Hierarchy (code numerically from 0 to highest):
* High level resistance > low level resistance
* Resistant > Susceptible
* Susceptible > No result

cls
close
logclose

read "temp_01.rec"

cls
define h02n #
h02n=0
if h02="S" then h02n=1
if h02="R" then h02n=2
if idcode2[_n+1]=idcode2 and h02n[_n+1]>h02n then h02n=h02n[_n+1]
if idcode2[_n+2]=idcode2 and h02n[_n+2]>h02n then h02n=h02n[_n+2]
if idcode2[_n+3]=idcode2 and h02n[_n+3]>h02n then h02n=h02n[_n+3]
if idcode2[_n+4]=idcode2 and h02n[_n+4]>h02n then h02n=h02n[_n+4]
if idcode2[_n+5]=idcode2 and h02n[_n+5]>h02n then h02n=h02n[_n+5]
drop h02
rename h02n to h02
label h02 "INH result at 0.2 mg/L"

cls
define h10n #
h10n=0
if h10="S" then h10n=1
if h10="R" then h10n=2
if idcode2[_n+1]=idcode2 and h10n[_n+1]>h10n then h10n=h10n[_n+1]
if idcode2[_n+2]=idcode2 and h10n[_n+2]>h10n then h10n=h10n[_n+2]
if idcode2[_n+3]=idcode2 and h10n[_n+3]>h10n then h10n=h10n[_n+3]
if idcode2[_n+4]=idcode2 and h10n[_n+4]>h10n then h10n=h10n[_n+4]
if idcode2[_n+5]=idcode2 and h10n[_n+5]>h10n then h10n=h10n[_n+5]
drop h10
rename h10n to h10

course_b_ex04_task
Page 9 of 13

label h10 "INH result at 1.0 mg/L"

cls
define h50n #
h50n=0
if h50="S" then h50n=1
if h50="R" then h50n=2
if idcode2[_n+1]=idcode2 and h50n[_n+1]>h50n then h50n=h50n[_n+1]
if idcode2[_n+2]=idcode2 and h50n[_n+2]>h50n then h50n=h50n[_n+2]
if idcode2[_n+3]=idcode2 and h50n[_n+3]>h50n then h50n=h50n[_n+3]
if idcode2[_n+4]=idcode2 and h50n[_n+4]>h50n then h50n=h50n[_n+4]
if idcode2[_n+5]=idcode2 and h50n[_n+5]>h50n then h50n=h50n[_n+5]
drop h50
rename h50n to h50
label h50 "INH result at 5.0 mg/L"

labelvalue h02-h50 /0="No result"
labelvalue h02-h50 /1="Susceptible"
labelvalue h02-h50 /2="Resistant"

cls
define inhleveln #
inhleveln=0
if inhlevel="-" then inhleveln=1 // Susceptible!
if inhlevel="S" then inhleveln=1 // Susceptible!
if inhlevel="H0,2" then inhleveln=2
if inhlevel="H1" then inhleveln=3
if inhlevel="H5" then inhleveln=4
if idcode2[_n+1]=idcode2 and inhleveln[_n+1]>inhleveln then
inhleveln=inhleveln[_n+1]
if idcode2[_n+2]=idcode2 and inhleveln[_n+2]>inhleveln then
inhleveln=inhleveln[_n+2]
if idcode2[_n+3]=idcode2 and inhleveln[_n+3]>inhleveln then
inhleveln=inhleveln[_n+3]
if idcode2[_n+4]=idcode2 and inhleveln[_n+4]>inhleveln then
inhleveln=inhleveln[_n+4]
if idcode2[_n+5]=idcode2 and inhleveln[_n+5]>inhleveln then
inhleveln=inhleveln[_n+5]
drop inhlevel
rename inhleveln to inhlevel
label inhlevel "INH result summary level"
labelvalue inhlevel /0="No result"
labelvalue inhlevel /1="Susceptible"
labelvalue inhlevel /2="Resistant at 0.2 mg/L"
labelvalue inhlevel /3="Resistant at 1.0 mg/L"
labelvalue inhlevel /4="Resistant at 5.0 mg/L"

cls
define katgn #
katgn=0
if katg="-" then katgn=1
if lower(substr(katg,1,4))="wild" then katgn=1
if lower(substr(katg,1,3))="del" then katgn=2
if (substr(katg,1,3)) ="315" then katgn=2
if lower(substr(katg,1,3))="mix" then katgn=2
if lower(substr(katg,1,3))="mut" then katgn=2

course_b_ex04_task
Page 10 of 13

if idcode2[_n+1]=idcode2 and katgn[_n+1]>katgn then katgn=katgn[_n+1]
if idcode2[_n+2]=idcode2 and katgn[_n+2]>katgn then katgn=katgn[_n+2]
if idcode2[_n+3]=idcode2 and katgn[_n+3]>katgn then katgn=katgn[_n+3]
if idcode2[_n+4]=idcode2 and katgn[_n+4]>katgn then katgn=katgn[_n+4]
if idcode2[_n+5]=idcode2 and katgn[_n+5]>katgn then katgn=katgn[_n+5]
drop katg
rename katgn to katg
label katg "INH katG result"
labelvalue katg /0="No result"
labelvalue katg /1="No mutation"
labelvalue katg /2="Mutation"

cls
define inhan #
inhan=0
if lower(substr(inha,11,4))="wild" then inhan=1
if lower(substr(inha,15,4))="wild" then inhan=1
if lower(substr(inha, 1,1))="c" then inhan=2
if lower(substr(inha, 1,1))="g" then inhan=2
if lower(substr(inha, 1,3))="del" then inhan=2
if lower(substr(inha, 1,3))="mut" then inhan=2
if lower(substr(inha,11,3))="mut" then inhan=2
if idcode2[_n+1]=idcode2 and inhan[_n+1]>inhan then inhan=inhan[_n+1]
if idcode2[_n+2]=idcode2 and inhan[_n+2]>inhan then inhan=inhan[_n+2]
if idcode2[_n+3]=idcode2 and inhan[_n+3]>inhan then inhan=inhan[_n+3]
if idcode2[_n+4]=idcode2 and inhan[_n+4]>inhan then inhan=inhan[_n+4]
if idcode2[_n+5]=idcode2 and inhan[_n+5]>inhan then inhan=inhan[_n+5]
drop inha
rename inhan to inha
label inha "INH inha result"
labelvalue inha /0="No result"
labelvalue inha /1="No mutation"
labelvalue inha /2="Mutation"

cls
define inhmoln #
inhmoln=0
if lower(substr(inhmol,1,1))="s" then inhmoln=1
if lower(substr(inhmol,1,1))="s?" then inhmoln=0
if lower(substr(inhmol,1,2))="rb" then inhmoln=2
if lower(substr(inhmol,1,2))="rh" then inhmoln=3
if idcode2[_n+1]=idcode2 and inhmoln[_n+1]>inhmoln then
inhmoln=inhmoln[_n+1]
if idcode2[_n+2]=idcode2 and inhmoln[_n+2]>inhmoln then
inhmoln=inhmoln[_n+2]
if idcode2[_n+3]=idcode2 and inhmoln[_n+3]>inhmoln then
inhmoln=inhmoln[_n+3]
if idcode2[_n+4]=idcode2 and inhmoln[_n+4]>inhmoln then
inhmoln=inhmoln[_n+4]
if idcode2[_n+5]=idcode2 and inhmoln[_n+5]>inhmoln then
inhmoln=inhmoln[_n+5]
drop inhmol
rename inhmoln to inhmol
label inhmol "INH inhmol result"
labelvalue inhmol /0="No result"
labelvalue inhmol /1="Susceptible"

course_b_ex04_task
Page 11 of 13

labelvalue inhmol /2="Low level resistance"
labelvalue inhmol /3="High level resistance"

cls
define inhmolsumn #
inhmolsumn=0
if lower(substr(inhmolsum,1,1))="-" then inhmolsumn=1
if lower(substr(inhmolsum,1,2))="hb" then inhmolsumn=2
if lower(substr(inhmolsum,1,2))="hh" then inhmolsumn=3
if idcode2[_n+1]=idcode2 and inhmolsumn[_n+1]>inhmolsumn then
inhmolsumn=inhmolsumn[_n+1]
if idcode2[_n+2]=idcode2 and inhmolsumn[_n+2]>inhmolsumn then
inhmolsumn=inhmolsumn[_n+2]
if idcode2[_n+3]=idcode2 and inhmolsumn[_n+3]>inhmolsumn then
inhmolsumn=inhmolsumn[_n+3]
if idcode2[_n+4]=idcode2 and inhmolsumn[_n+4]>inhmolsumn then
inhmolsumn=inhmolsumn[_n+4]
if idcode2[_n+5]=idcode2 and inhmolsumn[_n+5]>inhmolsumn then
inhmolsumn=inhmolsumn[_n+5]
drop inhmolsum
rename inhmolsumn to inhmolsum
label inhmolsum "INH inhmolsum result"
labelvalue inhmolsum /0="No result"
labelvalue inhmolsum /1="Susceptible"
labelvalue inhmolsum /2="Low level resistance"
labelvalue inhmolsum /3="High level resistance"

savedata "temp_02.rec" /replace

* 4) Recode to priority on first of multiple specimens
* => Next drug

cls
close
logclose
read "temp_02.rec"

* Do this for each drug
* At the end of the process, the hierarchically
* highest value will be in the sequentially
* first SPNR if there are multiple SPNRs
* => keeping only the first SPNR suffices:

select specseq=1

* Create a single result for isoniazid

define inh #
inh=9
if inhlevel=0 then inh=inhmolsum
if inhlevel=1 then inh=1
if inhlevel=2 then inh=2
if inhlevel=3 then inh=2
if inhlevel=4 then inh=3

course_b_ex04_task
Page 12 of 13

if inhmolsum=3 then inh=3
if inha=2 and katg=2 then inh=3 // already done, but make sure
label inh "Resistance to INH"
labelvalue inh /0="No result"
labelvalue inh /1="Susceptible"
labelvalue inh /2="Low-level resistance"
labelvalue inh /3="High-level resistance"

savedata "temp_03.rec" /replace

* 5) Any other recoding

cls
close
logclose
read "temp_03.rec"

* xxx

drop spnr specseq idcode0 idcode2
drop h02 h10 h50 inhlevel
drop katg inha inhmol inhmolsum

sort country idcode mm

savedata "b_ex04_task_out.rec" /replace

* Clean up and erase temporary session files

set echo=off
close
define yesno # global
yesno=?Delete all temporary files: 1=yes 0=no?
imif yesno=1 then
cls
type "Be patient ... you will be alerted upon completion" /h2
 erase "temp_01.chk"
 erase "temp_01.rec"
 erase "temp_02.chk"
 erase "temp_02.rec"
 erase "temp_03.chk"
 erase "temp_03.rec"
 cls
 type "All temporary files erased" /h2
 else
 type "All temporary files retained" /h2
endif
set echo=on

cls

course_b_ex04_task
Page 13 of 13

close
read "b_ex04_task_out.rec"

