
course_b_ex02_task
Page 1 of 16

More about data set manipulation
Merge and append

In the first exercise of Part B you learned to append files. It was said then that you append
files if the files have the same structure. That is not exactly necessary. You can append files
with different structures as long as you ensure 1) that the file that is read contains all the same
variables as the file(s) you plan to append to it, and 2) that the variables have the same
definitions. Let’s show an example of two data sets, Set A and Set B, each with three records,
where id is the unique identifier in each set:

Set A Set B

Note, that the identifiers in Set A are all different from the identifiers in Set B, the
information in the two sets belongs thus to a total of six different individuals. We can append
the two files if we first create the same variables in the file we read (let’s say Set A) before we
append Set B:
cls
close
read "b_ex02_01.rec"
define bs #.#
define ht ###
append /file="b_ex02_02.rec"
We get correctly a file with six records:

Exercise 2: More on EpiData Analysis

At the end of this exercise you should be able to:
a. Know more about data set and variable manipulation
b. Know more about tables
c. Know more about graphs

course_b_ex02_task
Page 2 of 16

We could have gone the way with merge. Merge requires the identifier to be unique within
a set which is the case for id within Set A and within Set B. If we use merge, there is no
need to first ensure that all variables exist in the set that is read:
cls
close
read "b_ex02_01.rec"
merge id /file="b_ex02_02.rec"

We get:

In other words, we get exactly the same thing, except that EpiData Analysis added a variable
MergeVar which can take 3 values:
Only in memory (Original)
Only in external file
In both [not existing here]

If the two data sets thus contain different individuals, we can choose either append or
merge as long as we ensure that (if we choose append) the read file has all the variables
that the appended file has. If one or more individuals are identical in Set A and set B, then
using append becomes wrong because we would get two records from the same individual.
In such a case, we must use merge. To exemplify this, we saved the above data Set B as
b_ex02_03.rec, after changing the value for id=d to id=c. In other words, person “c”
is in both data sets. If we juxtapose the results from appending and merging:

Appending Merging

The file resulting from appending has 6 records, two of which belong to individual “c”, the
result is thus wrong. Conversely, the file resulting from merging has only 5 records
corresponding to the total of 5 individuals and is thus correct. EpiData Analysis gives us with
the automatically created field MergeVar also the relevant information about the source of
the data.
In a later exercise you will learn about important options (look-up table) that you may need
when merging data files.

course_b_ex02_task
Page 3 of 16

Select

We used select as follows:
read “abcd.rec”
select age<>99
means age /by=sex
select
freq sex

We selected a subset, then carried out the command, and finally used select again to obtain
back the full data set. Thus, before we wrote select again, we kept the reduced data set.
Sometimes it is desirable to make a selection only for a specific command as in the above
example. A powerful possibility in EpiData Analysis is to do precisely that by writing the
condition for which a command is to be executed onto the same line as the command. Instead
of the above, we thus write:
read “abcd.rec”
means age /by=sex if age<>99
freq sex

Drop and Keep

Select reduced the number of records in a data set. Sometimes it is useful to reduce the
number of variables, not the number of records in a data set. This is where drop and keep
come in. The two are complementary. We have identifier field id and serno in the data
set abcd.rec. If we don’t want to keep them, we would write:
cls
close
read "abcd.rec"
drop id serno
savedata "abcd_temp_01.rec" /replace

This is more efficient than the complementary approach with keep:
cls
close
read "abcd.rec"
keep labcode regdate age sex reason \
 res1 res2 res3
savedata "abcd_temp_02.rec" /replace

Note here also in passing that you can use the backslash \ to continue a command on the
following line (this was not possible in the CHK file).

Sort
Sorting a dataset on one or more variables is a key component in programming. For instance,
if you would like to sort our data set abcd.rec on the laboratory, you would write:
cls
close
read "abcd.rec"
sort labcode

and within each laboratory by registration date:

course_b_ex02_task
Page 4 of 16

sort labcode regdate

…

The last sorting command overrides any previous sorting command. Note that saving a data
set after sorting will save it in the last sort order.

Define and gen

We used so far define to create a variable in the memory exactly as we did in the CHK file
for temporary variables. For instance, if we create a new field case to define a sputum-smear
positive case:
define case #
case=0
if res1>0 and res1<9 then case=1
if res2>0 and res2<9 then case=1
if res3>0 and res3<9 then case=1
label case "Microscopy case definition"
labelvalue case /0="Non-case"
labelvalue case /1="Case"

There is an alternative in EpiData Analysis, gen for generating a new variable. Be careful
though to use “gen” and not “generate” because the latter is also a legitimate command,
but with an entirely different meaning (it creates empty records). We would thus write
instead of the above:
cls
gen i case2=0
if res1>0 and res1<9 then case2=1
if res2>0 and res2<9 then case2=1
if res3>0 and res3<9 then case2=1
label case2 "Microscopy case definition"
labelvalue case2 /0="Non-case"
labelvalue case2 /1="Case"

We don’t have to assign it a value (as we do here with “=0”). If we don’t, the value is set to
missing with a period. With define we defined at the same time with the field name also
both its type and length. An integer variable created with gen will automatically get a field
length of 9.
There are other field types we can create this way:
gen d copydate=regdate
gen f agedays=age*365.25
gen s(2) labsex=labcode+sex

If you create a float field, it will have the length 12, including 4 decimal points. This could
be inconvenient, if we create a label block for instance (like we had for the results) as we must
pay attention that there is full compatibility. There is no option to change this default.

course_b_ex02_task
Page 5 of 16

Wonderfully, we can change the default length (of 20) for string fields, in the non-sensical
example here defined as having a length of 2.

Note that “gen” is a bit faster to code, “define” runs faster. This becomes important in
large datasets. For date and string fields “gen” is virtually always preferable, for integer
fields “define” is perhaps preferable if you know the expected length of the field, and for
float fields, “define” is probably almost always preferable.

Recode

We had used DEFINE and / or GEN go make new variables. If we have a continuous variable
from which we wish to make a categorical one, like converting the variable AGE to age
groups, EpiData offers RECODE, as shown in this example:
define agegrp2 #
recode age to agegrp2 00-14=1 15-24=2 25-34=3 35-44=4 45-54=5 \
 55-64=6 65-98=7 99=9
freq agegrp2

gives:
agegrp2
 N
00-14 6
15-24 57
25-34 84
35-44 67
45-54 28
55-64 25
65-98 30
.99 3
Total 300

Thus, the groupings become the labels. Of course, one can override these default value labels.

String fields and substrings
Let’s assume we wish to make a string field for each microscopy result, which can take on the
three values “N” (for negative), “P” (for any positive), and “9” (for not available). We thus
write:
cls
close
read "abcd.rec"

 gen s(1) result1="P"
if res1=0 then result1="N"
if res1=9 then result1="9"
cls
 gen s(1) result2="P"
if res2=0 then result2="N"
if res2=9 then result2="9"
cls
 gen s(1) result3="P"
if res3=0 then result3="N"
if res3=9 then result3="9"

course_b_ex02_task
Page 6 of 16

We then wish to combine the three results into one single string to obtain the pattern:
cls
gen s(3) pattern=result1+result2+result3
label pattern "Pattern of 3 serial smears"
freq pattern

and get:

Finally, we can extract a subset of a string field:
cls
gen s(1) firstres=substr(pattern,1,1)
label firstres "Result of 1st smear"
freq firstres /c /ci

and get:

Admittedly, not the most efficient approach to something that could have been obtained
directly from the original field res1, but the point here is to show the way how to extract a
substring from a text field:

SUBSTR (fieldname, start position, number of characters including start position)

Thus:
cls
gen s(2) res12=substr(pattern,1,2)
gen s(2) res23=substr(pattern,2,2)
freq res12 res23

gives:

Date fields
We know that date fields are a hassle because they don’t fit our decimal system and people
use different ways to write dates. To further complicate matters, EpiData Analysis deals

course_b_ex02_task
Page 7 of 16

somewhat differently with date definitions than we learned in the CHK file. There are
different ways of doing it, but it might be best to learn one and learn to master it. Let’s
assume, we wish to calculate the number of years elapsed since the registration of the
examinee in our data set and 1 January 2013. The syntax to accomplish this is:
cls
close
read "abcd.rec"
gen f intyrs=(dmy(01,01,2013)-regdate)/365.25

We thus tell EpiData Analysis 1) that it is a date and 2) the format of our date with dmy
followed by the values for the three date components in parenthesis, separated by commas.

Results variables
If we execute certain commands, EpiData Analysis will produce variables in memory that
keep temporarily certain values which we can visualize with the command result. For
example:
cls
close
read "abcd.rec"

means age if (age<>99) and (sex=1)
result

produces:

Our interest here is in the Temporary Variables Value. We can use them and save
the values of any of them into another variable. For instance:
means age if (age<>99) and (sex=1)
result
gen meanfem=$mean1

means age if (age<>99) and (sex=2)
result
gen meanmal=$mean1

course_b_ex02_task
Page 8 of 16

We don’t even need to write the line “result” if we know how EpiData Analysis defines
the variable we require.

Visualizing with BROWSE:

It is not of particular value here (every record has the same values), but this is a potentially
very powerful tool to further process data.

Writing output into a file

You learned perhaps a bit mechanically to start every program with a command “logclose”
to close any log file that might be open, but you haven’t quite tested the opposite, the opening
of a log file. You can write any output into three types of files, text, HTML, or Excel. We
strongly discourage Excel, because for proprietary reasons EpiData is forced to use an
outdated format. If you need your output in a spreadsheet program, it is way preferable to
save the output into a text file and then open the text file in your spreadsheet application
software.
The commands are straight forward:
logopen “my_output.txt” /replace
* Some EpiData Analysis commands
logclose

Specifically, if we write:
cls
close
read "abcd.rec"

logopen "output_01.txt" /replace
tables sex reason
logclose

If we look at the output_01.txt file in our text editor, we see:
Logopen output_01.txt
 EpiData Analysis V2.2.2.180 27-Apr-13 17:45
. tables sex reason
Examination reason Female Male Total
Diagnosis 52 82 134
Follow-up at 2 months 18 22 40
Follow-up at 3 months 4 8 12
Follow-up at 4 months 0 3 3
Follow-up at 5 months 13 22 35
Follow-up at 6 months 11 20 31
Follow-up at 7 months or later 3 13 16
Follow-up, month not stated 8 19 27
Reason not stated 0 2 2
Total 109 191 300

course_b_ex02_task
Page 9 of 16

. logclose
Apart from the “ragged” appearance, there is also too much superfluous output there, if we
only want the table. We can greatly improve it by setting the echo first off before opening the
log file and then setting it on again after it has been closed:
set echo=off
logopen "output_01.txt" /replace
tables sex reason
logclose
set echo=on

This way, we get it trimmed down:
Examination reason Female Male Total
Diagnosis 52 82 134
Follow-up at 2 months 18 22 40
Follow-up at 3 months 4 8 12
Follow-up at 4 months 0 3 3
Follow-up at 5 months 13 22 35
Follow-up at 6 months 11 20 31
Follow-up at 7 months or later 3 13 16
Follow-up, month not stated 8 19 27
Reason not stated 0 2 2
Total 109 191 300

If we go now to our spreadsheet program and open it as a delimited text file:

it will come out nicely as intended:

course_b_ex02_task
Page 10 of 16

More about tables
Let’s first copy our case definition from above:
cls
close
read "abcd.rec"

define case #
case=0
if res1>0 and res1<9 then case=1
if res2>0 and res2<9 then case=1
if res3>0 and res3<9 then case=1
label case "Microscopy case definition"
labelvalue case /0="Non-case"
labelvalue case /1="Case"

and then make another categorical variable from the categorical variable reason to get only
three levels and verify that we got what we intended to get, making a cross-table between the
old variable (reason) and the new one (reason2) derived from it:
cls
gen i reason2=2
if reason=0 then reason2=1
if reason=9 then reason2=9
label reason2 "Reason for examination"
labelvalue reason2 /1="Diagnosis"
labelvalue reason2 /2="Follow-up"
labelvalue reason2 /9="Reason unknown"
tables reason2 reason

Previously when we made a table also showing the values with:
tables case sex /vl

we got:

If we look at the sorting sequence, we see that the sequence is ascending by value (not
ascending by label alphabet, see labels for case definition). We can invert the sequence with:
tables case sex /vl /sd

course_b_ex02_task
Page 11 of 16

There are multiple sorting options but one should take note that some more complex sorting
options do not deliver what we expect, thus always check carefully. For simple sorting like
ascending on values (/sa) or descending on values (/sd) as we just did, we usually get what
we want.
Important to note is what happens if we like to get an odds ratio, compare the two outputs:
cls
tables case sex
tables case sex /o

“Plain” “Epidemiologic”

This is a reflection of the fact that EpiData Analysis is truly an epidemiologist’s tool: most
commonly in outbreak investigations or case-control studies we show the cases to the left and
the non-cases to the right of the column, and show the exposure on top and the non-exposure
at the bottom of the row.
If we now want to switch these, then we have to check carefully whether we get what we want,
but one or the other options will give us what we need. Let’s try then with our logic from
above telling us that we should probably sort in ascending order:
tables case sex /o /sa

Indeed, it did invert it. If we wish to invert only one of the two, say keep the “epidemiologic”
presentation for cases and non-cases, but change it for sex, then we might need to do some
recoding:
cls
gen i sexinvert=1
if sex=1 then sexinvert=2
label sexinvert "Sex of person"
labelvalue sexinvert /1="Male"
labelvalue sexinvert /2="Female"
tables case sexinvert /o

and we get:

course_b_ex02_task
Page 12 of 16

Again, be sure to always check that what you get is what you need and learn creatively to
approach things as you need them to be.

Stratification
So far, we have dealt with two-by-two tables, but one of the common requirements is a
stratified analysis. EpiData Analysis makes it easy for us in that we just list the variables in a
tables command, though we must pay attention to the sequence of the variables. If we
need to look at cases versus non-cases by sex, stratified by the (summary) reason, we write:
tables case sex reason2 if reason2<>9

and get:

The first table is the crude, unstratified table, the following table(s) are the results of case by
sex in the different strata. Of course, the interest here is commonly a summary odds ratio
calculated by the Mantel-Haenszel procedure:
tables case sex reason2 /o if reason2<>9

We get more output here: first the “epidemiologic” table with crude odds ratios and 95%
confidence intervals followed by these measures of association in the strata:

course_b_ex02_task
Page 13 of 16

After these tables, we get the summary of the adjusted analysis:

Note also the all-important information at the bottom to help us ensuring that we got what we
wanted:

More about graphs
In the previous exercise, we did:
select age<>99
boxplot age /by=sex

and got this graph:

To explore the options a bit more without first taking recourse to the Help file, we will
approach it by using the menu interactively:

We will use Execute (not Run) to progressively edit the graph to our liking, completing the
first tab “Variables”:

course_b_ex02_task
Page 14 of 16

Then we refine the tab “Graph/Axis”:

then “Titles”:

and finally “Misc”:

course_b_ex02_task
Page 15 of 16

The most important part comes now in that we go to the command line (F4) and use the up
cursor to get the entire list of commands, mark it, and paste it into our PGM file, making back
slashes where appropriate and then have:
cls
BOXPLOT age /By=sex \
 /SizeX=600 /SizeY=400 \
 /Noxtick \
 /Ymin=0 /Ymax=90 /Yinc=10 \
 /Ti="Tuberculosis Microscopy Register" \
 /Sub="Age of examinees in years by sex" \
 /Fn="Graph for exercise 2, Part B" \
 /Save="b_ex02"

We do some additional editing, like allowing replacement of the graph (which is necessary if
we name the output), and look some additional things up in the Help file, and finally have it
refined to:

Note the difference in quality if we replace:
 /Save="b_ex02" /replace \

with:
 /Save="b_ex02.wmf" /replace \

We note:

Tuberculosis Microscopy Register
Age of examinees in years by sex

Graph for exercise 2, Part B

Examinee's sex
Female Male

90
80
70
60
50
40
30
20
10
0

course_b_ex02_task
Page 16 of 16

o If we save the graph as *.wmf (Microscoft metafile, a vector graph), it does not show
up in the Results window

o Vector graphs are crisp and sharp and retain this irrespective of changing the graph
size

o The result is not a faithful reproduction of the default *.png graph.

Sometimes the title gets too large in the metafile. This can be remediated by adding the SET
to change the default font size from 10 to 9:
set graph font size=9

Task:

o Write a program B_EX02.PGM using the data set “abcd.rec”. Limit your analysis
to patients with a diagnostic sputum smear examination. Create an output that shows
the incremental yield of cases from the first, second and third of three serial smears.
With incremental yield we mean determining the proportion of examinees who are
positive already on the first, patients who are negative on the first, but positive on the
second, and examinees who are negative on the first two but positive on the third serial
smear examination. The denominator should be those who have had the required
number of smears to determine the yield.

Tuberculosis Microscopy Register
Age of examinees in years by sex

Graph for exercise 2, Part B

Examinee's sex
Female Male

90
80
70
60
50
40
30
20
10
0

