
course_d_ex01_task
Page 1 of 11

Part D. More on EpiData software

Part D: More on EpiData software
Exercise 1: Relational database and aggregating vs from “Long-to-wide”
Exercise 2: A statistical process control chart
Exercise 3: A simplified survival analysis
Exercise 4: Creating a menu for standard reports
Exercise 5: Formatting standardized analysis output in a spreadsheet

Introductory note
Part D will address operationally relevant concepts in data collection and data analysis:

• How do we deal with a situation, where each individual has a varying number of
observations?

• How do we determine statistically relevant deviations from a proportion over an
observation period when the denominator varies with each time unit over the observation
period?

• What is survival analysis and how to deal with it in EpiData Analysis?

• How to make a menu-driven, HTML-based EpiData Analysis interface to run standard
reports?

course_d_ex01_task
Page 2 of 11

Not all laboratories keep their registers as The Union and WHO recommend for the
Tuberculosis Laboratory Register, where 1 line corresponds to 1 examinee rather than to 1
examination. In fact, many laboratories enter the results for each examination on one line. If
such an approach is chosen, we may find a register as follows:

Patient Date of exam Sex Marital status Blood sugar Sputum Result
A 24-Mar-2007 Male Married 6.3 Mucoid 1+
B 24-Mar-2007 Male Divorced 4.9 Muco-purulent Neg
C 24-Mar-2007 Female Single 5.2 Purulent Neg
D 24-Mar-2007 Female Widowed 7.3 Blood-tinged 2 per 100
A 25-Mar-2007 Male 7.3 Salivary Neg
D 25-Mar-2007 Female 7.4 Mucoid 2+
A 26-Mar-2007 7.2 Purulent 1+
C 26-Mar-2007 Female 4.8 Muco-purulent Neg
E 27-Mar-2007 Male Married 8.2 1+
F 27-Mar-2007 Female Annulled 7.4 Purulent Neg
G 27-Mar-2007 Male Cohabitating 6.9 Salivary Neg
G 28-Mar-2007 Male 7.2 Mucoid 2+
E 28-Mar-2007 Male 7.9 Purulent 2+
F 31-Mar-2007 Female 7.2 Muco-purulent 3+
H 31-Mar-2007 Married 6.6 Mucoid Neg
I 31-Mar-2007 Male Separated 8.3 Salivary Neg
H 1-Apr-2007 Female 6.9 Muco-purulent 1+
F 1-Apr-2007 Female Engaged 7.7 Purulent 2+
I 1-Apr-2007 Male Single 8.0 Mucoid 8 per 100
G 1-Apr-2007 Male 7.6 Muco-purulent 1+
K 2-Apr-2007 Female Married 4.5 Purulent Neg
I 2-Apr-2007 Male 8.2 Muco-purulent
H 2-Apr-2007 Female 6.6 Mucoid 1+
I 3-Apr-2007 Male 8.1 Mucoid 1+

This type of a register requires a different approach to both data entry and data analysis than
we used before. Two important things need to be considered:

1) The same patient may appear again and again on sequential dates
2) Not every patient has the same number of visits

Exercise 1: A relational database and “Aggregating” vs from “long-to-
wide”

At the end of this exercise you should be able to:
a. Create a relational database for a varying number of observations
b. Merge a child file to the parent file
c. Recognizing when to use “Aggregate” and when to transpose data
d. Transpose multiple observations (columns) into a single record (row)

course_d_ex01_task
Page 3 of 11

Some patient characteristics do not change over time such as, in this example, the identity of
the patient, sex, and marital status (well, perhaps not during these short intervals). Others do
change, such as the date of examination, blood sugar, the aspect of the sputum and the sputum
smear examination result.
To capture such information in a single data entry form would be very inconvenient: 1) one
would have to anticipate the maximum of allowable visits, and 2) if one patient has a single
visit, one would still have to complete all fields with the codes for missing values up to the
maximum allotted if we insist that all fields must be MUSTENTER fields.

Building a relational database requires determining which information is static for an
individual and which changes over repeated observations.

EpiData Manager and EntryClient
You may refer to Exercise 7 “Relational database” in Part A on the principles of and how to
create a relational database.

The working example
You will create an EpiData file:
d_ex01.epx

To get uniform naming during design and entry, we propose the following:

The project is saved as “d_ex01.epx” and the two databases it consists of are the parent
dataset named “patient” and the child set “visit”. When exporting:

EpiData will automatically create the appropriate two files:

Rule: If an individual has a single observation for each variable or a fixed number of
observations for each variable, then a single EpiData entry form is the best solution. If an
individual has a variable number of observations for each variable, the choice is a
relational database.

course_d_ex01_task
Page 4 of 11

d_ex01_patient.epx
d_ex01_visit.epx

These files will be required in EpiData Analysis for merging.

EpiData Analysis
The final result of the analysis will be to obtain the following EpiData Analysis output:

Part 1 with AGGREGATE

Part 2 with transposing values

It doesn’t really look like much. Nevertheless, quite a few steps are needed to get from the
source files D_EX01_PATIENT.EPX and D_EX01_VISIT.EPX to this point. We will
elaborate on some considerations you have to make and offer hints for the sequential
components in EpiData Analysis.

Merging the files
In EpiData Manager you made a relation through a unique identifier from the parent to the
child file. In EpiData Analysis you must now merge these to files to get the following
dataset.
We start by reading the child file:
read "childfile.epx"
merge parentidentifier /file="parentfile.epx" /table

course_d_ex01_task
Page 5 of 11

To each record from the child file, information from the parent file is added repetitively for
each observation for the same individual. In other words, you start from the other way around
than in EpiData EntryClient, starting in EpiData Analysis with the child file and using the
parent as a lookup table.
As a result we get (first 13 records only shown):

A variable MERGEVAR has been created by EpiData Analysis. It can take 3 values:
1 Only in memory (original)
2 Only in external file
3 In both
A frequency helps to identify quickly whether there are for instance any “orphans”, that is
child records which do not find the same identifier in a parent record and are thus useless.

We note in the above that the visit dates are not temporally sequential within each parent
identifier, we need thus sorting, first by parent identifier, then within them by date, thus:
sort idpat visitdate

However, this may not be correct in all circumstances.
Note: We commonly suggested to code unknown dates as “01/01/1800”. With sorting, the
unknown date will thus come first (sorting is ascending by default) and this might not be
desirable. In this dataset we don’t have unknown dates. But only because the small dataset
allows us to see that, you would have to anticipate that possibility with a larger dataset and
thus first make a new date variable where the unknowns take a value for a date in the future,
so they appear with sorting at the end of the information on an individual.
Following the sorting, it might be advantageous to number the visits in order to be able to
make a frequency on them to see what the maximum number of visits is (here we can see that
it is a maximum of 4 visits, but in a large database, it would be more difficult).

To create a new variable EXAM and set its default initially to 1 (each record takes first the
value 1), we have so far used the following grammar:
define exam #
exam=1

course_d_ex01_task
Page 6 of 11

or alternatively the one-line alternative approach which accomplishes exactly the same thing:
gen i exam=1

The command GEN replaces DEFINE and “i” stands for an integer field.

There are other similar commands (see an earlier Exercise):
gen f doorheight=1.85
gen d birthdate=dmy(31,12,1899)
gen s firstname=”john”

for date fields (d) float (real number) fields (f), and string (text) fields (s). Look it up in the
help file (type gen+F1 in the command line).

Now that you have a new variable EXAM, how can you tell EpiData that it should look at the
person (identified by an ID) and number each visit, starting with 1 until the next individual
comes, when it must start again with 1. The command is:
if id=id[_n-1] then visit=visit[_n-1]+1

This looks admittedly complex. Let’s thus take it apart. [_n] identifies the current record
and accordingly [_n-1] the immediately preceding record. Let’s say, EpiData Analysis has
proceeded to record 547 and looks at the ID of this record. It looks whether record 546 had
the same ID as record number 547: if id=id[_n-1]. If that is the case, then it should
take the VISIT number of record 546 and add 1 to it for record 547: visit=visit[_n-
1]+1. If it is not the case, then the default stays (which we defined as 1) and it moves on to
the next record.
As a result, you should get:

the first variable column showing the identifier, the second the date of the examination, and
the third the number of the examination for that individual.

Note: the command GEN will produce integer of length of 9. If you need a shorter and
fixed field length integer, you must utilize DEFINE.

course_d_ex01_task
Page 7 of 11

Aggregating data

If we look at the sex (given the field name SEX), date of visit (given the field name
VISITDATE), and blood sugar (given the field name BS):

SEX remains obviously the same (and is thus from the parent file), and is a categorical
variable unique to the examined person, while BS varies by examination date and is a
continuous variable. If we want to examine blood sugar by sex, there is no need to transpose
the blood sugar values from the vertical to the horizontal as EpiData Analysis has inbuilt a
tool to aggregate the data. For the individual and its sex we would write:
aggregate idpat sex /close

and get with BROWSE the ten individuals and their SEX:

We can expand this command using an option to calculate the MEAN of blood sugar for each
individual:
aggregate idpat sex /mean="bs" /close

and get:

where MEAbs is the calculated mean value of blood sugar for an individual from all the
individual’s measurements. To save the aggregate data in a file, we add another option:
aggregate patid sex /mean="bs" /close /save="d_ex01_aggregate.rec" /replace

course_d_ex01_task
Page 8 of 11

Having accomplished this, it is now straight forward to write:
cls
close
read "d_ex01_aggregate.rec"
boxplot meabs /by=sex

and get:

Default (shown above) Using additional options (see Help file)

From long-to-wide
For showing means, there is thus no need to transpose data from the vertical to the horizontal.
But it is different for the macroscopic aspect of sputum the examination results. We do not
want (nor would we get a sensible result) aggregate sputum smear results. We wish to know
each result from each individual.
The first thing before starting copying results from the vertical to the horizontal, we need to
know the maximum number of examinations an individual had in the data set. We can get
this with a frequency on the VISIT:
freq visit

This shows that the maximum number of examinations an individual had in this dataset was 4.
We need thus to prepare 4 new variables for each field that are in the sequence of the
examination in the vertical but should also become part of each record.

Let’s say we have a variable VAR1 with different values for each visit:
ID VISIT VAR1
B1 1 1
B1 2 3
B1 3 2
B1 4 2
C1 1 3
D1 1 2

course_d_ex01_task
Page 9 of 11

What we need is:
ID VISIT VAR1 VAR11 VAR12 VAR13 VAR14
B1 1 1
B1 2 3
B1 3 6
B1 4 2
C1 1 3
D1 1 2

First, we make these 4 variables and give them all the default value of -1 (the minus one is a
good way to see missing data and helps later in the selection):
gen i var11=-1
gen i var12=-1
gen i var13=-1
gen i var14=-1

After these four command lines, our above dataset becomes:
ID VISIT VAR1 VAR11 VAR12 VAR13 VAR14
B1 1 1 -1 -1 -1 -1
B1 2 3 -1 -1 -1 -1
B1 3 6 -1 -1 -1 -1
B1 4 2 -1 -1 -1 -1
C1 1 3 -1 -1 -1 -1
D1 1 2 -1 -1 -1 -1

and we are ready to copy the values from the vertical to the horizontal by respecting that the
value of VAR1 from VISIT 1 goes to VAR11, the value from VISIT 2 to VAR12, etc.

For VISIT 1, the value for VAR11 is equal to the value of VAR1 and we make it thus the
default:
VAR11=VAR1

Then we use the same approach as above to identify the record:
if id[_n]=id[_n+1) then var12=var1[_n+1]

This means that if the current record [_n] has the same ID as the next record [_n+1], then
VAR12 in the current record should take the value of VAR1 from the next record [_n+1].
Now we do this for all possible 4 records (the maximum of VISITs):
if id[_n]=id[_n+2] then var13=var1[_n+2]
if id[_n]=id[_n+3] then var14=var1[_n+3]

All the lines to be written for this original field VAR1 are thus:
gen i var11=-1
gen i var12=-1
gen i var13=-1
gen i var14=-1
VAR11=VAR1
if id[_n]=id[_n+1] then var12=var1[_n+1]
if id[_n]=id[_n+2] then var13=var1[_n+2]
if id[_n]=id[_n+3] then var14=var1[_n+3]

and we get (assuming that the last patient D1 had only 1 VISIT):

course_d_ex01_task
Page 10 of 11

ID VISIT VAR1 VAR11 VAR12 VAR13 VAR14
B1 1 1 1 3 6 2
B1 2 3 1 3 6 -1
B1 3 6 1 3 -1 -1
B1 4 2 1 -1 -1 -1
C1 1 3 3 -1 -1 -1
D1 1 2 2 -1 -1 -1

You may note that only for VISIT 1 for patient B1 with four visits all new 4 variables have
all respective 4 values from the 4 VISITs.

Now we can safely get rid of the records of VISITs 2, 3, and 4 and we end up just with
individuals who have all information from each VISIT:
select visit=1

and we get:
ID VISIT VAR1 VAR11 VAR12 VAR13 VAR14
B1 1 1 1 3 6 2
C1 1 3 3 -1 -1 -1
D1 1 2 2 -1 -1 -1

The conversion from “Long-to-wide” is thus successfully completed, well, for this variable.
Of course, before you make this selection, you have to repeat the same approach for each
field, so that in the end you get something like:

You have now ten patients and you are at the point where you can continue to work in the
same way as you used to work before. While it is much more complex to get to here from 1
line per examination than from 1 line per examinee, it is also obvious that in the end this is
much more informative.
For each examination we have the date and for each specimen we have the quality of the
sputum. In the Union / WHO approach you have only one date (the date of collection of the
first specimen) for a series of three, and the quality of sputum in the Tuberculosis Laboratory
is not that informative as it is very possible that every day the quality of the specimen is
different, but there is no space allocated to write 3 different ones.

Tasks:
• Prepare a data documentation sheet
• Prepare the EpiData Manager form for the relational database
• Enter the data from the following sample data set:

course_d_ex01_task
Page 11 of 11

Patient Date of exam Sex Marital status Blood sugar Sputum Result
A 24-Mar-2007 Male Married 6.3 Mucoid 1+
B 24-Mar-2007 Male Divorced 4.9 Muco-purulent Neg
C 24-Mar-2007 Female Single 5.2 Purulent Neg
D 24-Mar-2007 Female Widowed 7.3 Blood-tinged 2 per 100
A 25-Mar-2007 Male 7.3 Salivary Neg
D 25-Mar-2007 Female 7.4 Mucoid 2+
A 26-Mar-2007 7.2 Purulent 1+
C 26-Mar-2007 Female 4.8 Muco-purulent Neg
E 27-Mar-2007 Male Married 8.2 1+
F 27-Mar-2007 Female Annulled 7.4 Purulent Neg
G 27-Mar-2007 Male Cohabitating 6.9 Salivary Neg
G 28-Mar-2007 Male 7.2 Mucoid 2+
E 28-Mar-2007 Male 7.9 Purulent 2+
F 31-Mar-2007 Female 7.2 Muco-purulent 3+
H 31-Mar-2007 Married 6.6 Mucoid Neg
I 31-Mar-2007 Male Separated 8.3 Salivary Neg
H 1-Apr-2007 Female 6.9 Muco-purulent 1+
F 1-Apr-2007 Female Engaged 7.7 Purulent 2+
I 1-Apr-2007 Male Single 8.0 Mucoid 8 per 100
G 1-Apr-2007 Male 7.6 Muco-purulent 1+
K 2-Apr-2007 Female Married 4.5 Purulent Neg
I 2-Apr-2007 Male 8.2 Muco-purulent
H 2-Apr-2007 Female 6.6 Mucoid 1+
I 3-Apr-2007 Male 8.1 Mucoid 1+

• Write a program D_EX01.PGM that merges the two files, then prepare sets for the
aggregated data and for the “long-to-wide” transformation to produce the following
output respectively:

From aggregating the data: From transformation “long-to-wide”:

