
Part E. Beyond EpiData Analysis using R

Part E: Beyond EpiData Analysis using R
Exercise 1: Introduction to R software: basics

Exercise 2: Introduction to R software: data bases and functions

Exercise 3: Multivariable analysis in R part 1: A logistic regression

Exercise 4: Multivariable analysis in R part 2: A Cox proportional hazard model

Introductory note
Part E addresses how to conduct a multivariable analysis for two situations for which EpiData
Analysis is not designed to be operational. With our philosophy that there should preference
be given to outstanding freely available software, we chose to introduce the open-source
package R rather than any of the proprietary software solution packages.

The first exercise introduces the bare-bone basics of R software with a few simple exercises to
get a feel for its working. Recommended texts for self-study are (available on the course CD-
ROM):

Aragón T J. Applied epidemiology using R. University of California, Berkeley School of Public Health, and
the San Francisco Department of Public Health. Version 14 October 2013, available from
http://medepi.com/courses/applied-epi-using-r/.

Lumley T and the R Core Development Team and UW Department of Biostatistics. R fundamentals and
programming techniques. Version Birmingham, 2006-2-27/28, available from
http://faculty.washington.edu/tlumley/Rcourse/R-fundamentals.pdf.

Venables W N, Smith D M and the R Core Team. An introduction to R. Notes on R: a programming
environment for data analysis and graphics, Version 3.1.0 (2014-04-10), available from: http://cran.r-
project.org/doc/manuals/R-intro.pdf.

The second exercise extends on the basics by introducing data bases and functions. The
recommended text for self-study is (available on the course CD-ROM):

Myatt M. Open source solutions – R. Nordic School of Public Health and University of Tartu. Computer
software in epidemiology / statistical practice in epidemiology. Version 16 May 2005, available from
http://www.brixtonhealth.com.

The third exercise gives the first application, the use of logistic regression to determine
predictors that include continuous variables and variables with more than two levels. The
recommended text for self-study is (available in the course material):

Manning C. Logistic regression (with R). Version 4 November 2007, available from
http://nlp.stanford.edu/~manning/courses/ling289/logistic.pdf.

The fourth exercise gives the second application, survival analysis where stratification with the
Kaplan-Meier approach does no more suffice and adjustments are preferred by using a Cox

http://medepi.com/courses/applied-epi-using-r/
http://faculty.washington.edu/tlumley/Rcourse/R-fundamentals.pdf
http://cran.r-project.org/doc/manuals/R-intro.pdf
http://cran.r-project.org/doc/manuals/R-intro.pdf
http://www.brixtonhealth.com/
http://nlp.stanford.edu/%7Emanning/courses/ling289/logistic.pdf

proportional hazard model. The recommended texts for self-study are (available in the course
material):

Tableman M. Survival analysis using S/R. Unterlagen für den Weiterbildungsgang in angewandter Statistik
an der ETH Zürich. [Note: despite the German subtitle, the document is entirely in English, except for the
subtitle which refers to the course at the Swiss Federal Institute of Technology in Zurich]. Version August-
September 2012. It is an excerpt from the book Survival Analysis Using S: Analysis of Time-to-Event Data
by Mara Tableman and Jong Sung Kim, published by Chapman & Hall/CRC, Boca Raton, 2004.

Therneau T M. Package ‘survival’. Version 2.37-7, July 2, 2014, available from http://cran.r-
project.org/web/packages/survival/index.html.

Acknowledgments:
We used the following data in the exercises:

In Exercise 1, we use an example given by Altman in:
Altman D G, Machin D, Bryant T N, Gardner M J. Statistics with confidence. 2nd edition. 2 ed. Bristol: BMJ
Group; 2000.

In Exercises 2, 3, and 4 we use data from:
Aung K J M, Van Deun A, Declercq E, Sarker M R, Das P K, Hossain M A, Rieder H L. Successful “9-month
Bangladesh regimen” for multidrug-resistant tuberculosis among over 500 consecutive patients. Int J Tuberc Lung
Dis 2014;18: in press.

We are grateful to Drs Aung, Declercq, and Van Deun to grant permission to use an excerpt of
individual data from the original dataset.

Nguyen Binh Hoa, Ajay M V Kumar, and Zaw Myo Tun went through the first draft of the
exercises and gave valuable input into the development of Part E.

course_e_ex01_task

Page 2 of 14

http://cran.r-project.org/web/packages/survival/index.html
http://cran.r-project.org/web/packages/survival/index.html

R is a language and environment for statistical computing and graphing. It provides a suite of
numerous packages for a virtually unlimited number of applications, including the most
powerful tools that an epidemiologist might need. It has a large community of collaborators
and contributors, it is entirely open to everybody who wants to use it and who wishes to
contribute.

The starting point on the internet is the “The R Project for Statistical
Computing” at its web site: http://www.r-project.org/. This is from
where you access one if its mirror sites to download the software.

In tandem with R, we will also use RStudio, also open-source and free, a
powerful and productive user interface for R. It can be found for download
at its web site: http://www.rstudio.com/.

If your course comes on a CD-ROM, you find the two software packages on your CD-ROM,
but as always with software, we strongly recommend that you obtain it from its original source
on the internet.

Install R on your computer and then install RStudio. If you open RStudio, you see that it is
divided into a left-hand-sided panel, and a split right-handed panel:

In Tools | Options we can adjust to the preferred layout:

Exercise 1: Introduction to R software

At the end of this exercise you should be able to:
a. Have a basic understanding of how R works and to expand on this basis in a

self-learning process
b. Be informed about resources on R software

course_e_ex01_task

Page 3 of 14

http://www.r-project.org/
http://www.rstudio.com/

We chose here (somewhat arbitrarily) to have the Source on the top left, the Console on the top
right, the Environment, History, … on the bottom left, and the Files, Plots, Packages, Help on the
bottom left. and get altogether four quadrants:

So that after these adjustments we get:

course_e_ex01_task

Page 4 of 14

We cleared the screen of the Console by using the shortcut CTRL+L. To switch between the
Console and the Source editor quadrants use CTRL+1 to get to the Source editor, and CTRL+2
to get to the Console.

Of course, you are free to arrange it at your liking, but for the time being in this course, we will
refer to this arrangement.

First we Create project from an Existing directory:

and browse for the EPIDATA_COURSE project folder:

You note on the left top:

and note that the left side has been collapsed to show the environment only and on the right side
we are in Files:

If you click on the toggle icon above Source:

course_e_ex01_task

Page 5 of 14

You see the split screen again.

Note also that RStudio and R use forward slashes “C:/epidata_course/” in the Console. RStudio
actually created a sub-folder “.Rproj.user\” which is not public and by default hidden
from view.

We are therefore all set to go. To introduce the workings of R we will create a two-by-two
table as in a case-control study and calculate the odds ratio with a Woolf confidence interval.

A case-control study example
Our reference text for statistical calculations like for EpiData Analysis is, whenever possible,
the text by Altman and collaborators:
 Altman D G, Machin D, Bryant T N, Gardner M J. Statistics with confidence. 2nd edition. Bristol: BMJ

Group, 2000: pp 61-62.

The odds ratio is defined as the odds of exposure among cases divided by the odds of exposure
among controls. Woolf’s logit method uses normal approximation to the distribution of the
logarithm of the odds ratio in which the standard error is
SE(logeOR) = SQRT(1/a + 1/b + 1/c + 1/d)

To obtain the 95% confidence interval, we calculate the quantities:
95% CI = logeOR ± 1.96 * SE(logeOR)

By exponentiating, we get the 95% confidence interval.

To enable verification of our numbers, we are going to use the same example as Altman uses
in table 7.4 for the worked example:

ABO non-secretor state
Study group

Cases Controls Total

Yes 54 89 143

No 60 245 305

Total 114 334 448

We will be writing our commands into the upper left quadrant (Source editor). When we run
it, it will show in the right upper quadrant (the Console). Objects that we create will be found
in the left lower quadrant.

In the Source editor, you should now have the empty workspace like any text editor:

course_e_ex01_task
Page 6 of 14

Type:
a <- 54

“a” is what we call an “object” to which we assign (using “<-”) the value 54. Some people
say “Everthing is an object in R”. There is (incomplete, though) truth to this. Anything and
everything can be assigned to an object. Here we assign a number to an object “a”. We can
name our objects whatever we want them to be called:
A
a
a.plus.b

but note importantly, they are case-sensitive: “A” is not the same as “a” in R. Another important
note to make is that the value of an object can be overwritten without any warning.

You probably type the lesser sign “<”, followed by the minus sign “-”. RStudio allows you to
use ALT+- alone (the ALT key plus the minus sign) and you get the “assign” symbol
combination including the spaces that we often like to make in R.

Nothing happened when you hit the carriage return key and this is how it is supposed to be in
the Source editor. You only type here your stuff. To execute it, you need to tell it to do it. It
is like writing commands in an EpiData Analysis program, and like in the latter you have:

a Run command: anywhere on a command line, it runs the current line, marking whatever you
wish, it runs the marked section, nothing new here for the seasoned EpiData user. If we run
this line, two things happen: in the right upper quadrant, the Console, you get:

This is confirmation that the command Run was executed. In the left lower quadrant, the
Values, you get:

As we are going to use the Run command often, it is useful to know that the shortcut
CTRL+Enter accomplishes the same thing as Run. CTRL+Shift+Enter runs the entire script.

All objects at your disposal will be listed here. In the Console, the value of object “a” is not
visible. Some things you do will give you the result immediately, others will not, this
assignment obviously belongs to the latter category. But type into the second line below the
assignment:
365/7

and Run it. What you get now in your console is:

course_e_ex01_task
Page 7 of 14

both the command you wrote and the result from the calculation. If you write into your working
space:
a

and Run it you get:

CTRL+L clears the Console.

Let’s do the other assignments, writing each on a separate line:
b <- 89
c <- 60
d <- 245

then Run after marking. You should now have all four objects visible in the lower left quadrant:

While we have our four objects that make up the core of the 2-by-2 table, we would like to have
the complete table including its marginals, and all assigned to one object.

To this end we will first create a vector, that is a one-dimensional object containing the values
of a, b, and their sum. To keep with intuition, we will call this object “ab”. Type:
ab <- c(a, b, a+b)

The “c” stands for “concatenate”, that is putting a string consisting of sub-strings together. The
elements of the vector are in parenthesis, separated by commas. They are, in the order in which
we want to have them, our created two objects a and b, and the third element the sum of the
two.

To see the result, type
ab

on a new line. Alternatively, you could also put a series of commands on one single line,
separated by semi-colons, like in:
ab <- c(a, b, a+b); ab

and you should get:

course_e_ex01_task
Page 8 of 14

Note, that in the left lower quadrant, you get now the object ab and a definition of what it is:

Analogously, we create the second vector for the non-exposed:
cd <- c(c, d, c+d)

and get accordingly:

We have thus two vectors, one for the exposed and another for the non-exposed. Now we want
them to be together in one single object that we will call abcd. The command to “bind” two
rows together is:
abcd <- rbind(ab, cd); abcd

and we get:

The “rbind” is for “row binding”. Of course, if there is “rbind”, there must also be a
“cbind” for column binding. Note also on the top [,1], [,2] and [,3]: R labels (missing
an actual label) things in a Cartesian way as [row, col]. R writes the indices to designate
position in square brackets. As the column headers don’t have a row designation, it is thus the
comma followed by the column number. What might be the internal designation for the location
of the number 54? Yes, it is [1,1] for first row, first column, while 305 is in position [2,3].

We have combined two vectors (one-dimensional objects) and the result is a matrix (a two-
dimensional object). We could have created a matrix directly from the four objects a, b, c, and
d. However, we have to pay attention to the correct the sequence:
abcd_m <- matrix(c(a, c, b, d, a+b, c+d), nrow=2, ncol=3); abcd_m

noting that the matrix function reads the data column-wise (!), we get:

We don’t need to write “nrow=2, ncol=3” to tell R that these 6 objects must be allocated to 2
rows and 3 columns, it suffices to stated:
abcd_m <- matrix(c(a, c, b, d, a+b, c+d), 2, 3); abcd_m

as R understands the first assignment (“2”) to be for the number of rows, and the second (“3”)
for the number of columns. If we don’t pay attention to the default sequence row-column:

course_e_ex01_task

Page 9 of 14

abcd_m <- matrix(c(a, c, b, d, a+b, c+d), 3, 2); abcd_m

we get a solution, but not the intended one:

In contrast, if we specify:
abcd_m <- matrix(c(a, c, b, d, a+b, c+d), ncol=3, nrow=2); abcd_m

we will get what we intend:

Thus, as beginners, not yet fully conscious of default sequences, it is safer to be overly explicit.

To get back to the matrix: A matrix is a “two-dimensional table of like elements” (Aragón).
Remove the object abcd_m as we are not going down this way for the time being:
rm(abcd_m)

where rm is the command to remove an object which is specified within the following
paranethesis.

To complete the table, we need to make a row that is the sum of the first and the second row.
We will call it rtot and it must be:
rtot <- abcd[1,] + abcd[2,]; rtot

because we are adding values of the respective column in row 1 [1,] to the values in row 2
[2,]. The result:

The last thing we have to do to get our complete table with all the marginals is row binding to
an object that we will call tab:
tab <- rbind(abcd, rtot); tab

giving:

Before we lose our hard work, let’s save what we typed so far in our editing window (the Source
as we named the upper left quadrant initially) as “e_ex01_or.r” (by going through File |
Save or by clicking the diskette icon). To our knoweldge, R is not very particular what
extension we give things, but we keep anyhow to what is quite widely common usage, and that
is to give the extension *.r. You note how the file name replaces the Untitled:

course_e_ex01_task

Page 10 of 14

=>

While we have everything we need, we could make it a bit more appealing with appropriate
column an row labeling which is done as:
colnames(tab) <- c(“Case”, “Control”, “Total”)
rownames(tab) <- c(“Exp+”, “Exp-”, “Total”)

and check to verify with:
tab

“colnames” and “rownames” are the respective commands to give labels to columns and
rows, while what follows in the parenthesis (tab) is the object to which the command applies.

We can also label the dimensions:
names(dimnames(tab)) <- c("Exposure", "Status"); tab

and get:

So far so good, but all we have is input, but what we really need are calculations. The odds
ratio should be simple enough, we need to define the location by row and column of a, b, c,
and d to then calculate (a/c)/(b/d), thus:
or <- (tab[1,1]/tab[2,1])/(tab[1,2]/tab[2,2]); or

Note again here the brackets (not parentheses): whenever something needs to be indexed in R,
brackets are used, here for the Cartesian positioning [row, col] but also if one wishes to
describe the position of a record.

We specify the object tab and the position of its numeric elements to get the correct
calculation, and the result should be:
2.477528

For the calculation of the 95% confidence interval (CI) we do this preferably in more than one
step, first calculating the standard error se:
se <- sqrt(1/a+1/b+1/c+1/d)

We take here directly our four input objects as this calculation is independent of the position in
the table. Next, for the lower and upper 95% CI:
or.ci.lower <- exp(log(or)-1.96*se)
or.ci.upper <- exp(log(or)+1.96*se)

Let’s remove the objects that we don’t need, the command to remove objects is rm:

course_e_ex01_task

Page 11 of 14

rm(ab, cd, abcd, rtot, se)

Finally, let’s get an output that summarizes it all together:
print(tab)

cat("\nOR:", round(or, digits=3), "\n95% CI:", round(or.ci.lower,
 digits=3), "to ", round(or.ci.upper, digits=3))

With the function “cat” we avoid quotes where we don’t need them, and then take control by
writing them where we need them:
x <- c("Ajay", "Hoa", "Zaw")
x

gives:
"Ajay" "Hoa" "Zaw"
but
cat(x)

gives:
Ajay Hoa Zaw

The function “\n” is equivalent to a hard carriage return.

The function round is followed by the object, then a comma, then the number of digits to
which it is rounded, all in parentheses as is usual with functions.

Note that it is best if you write everything of the second item (starting with “cat”) on a single
line. We should get:

Verifying by comparison with the results in Altman’s shows that what we obtained is correct.

To make this more generically useful, we remove now all non-essential things, first of all the
input objects a, b, c, and d. While not necessary (any object can be overwritten without
warning), it is intuitively more appealing if we just keep the rest and then enter new values for
a, b, c, and d and then run our “stripped” e_ex01_or.r. Thus, the stripped
e_ex01_or.r may look like (note the hash “#” symbol at the beginning of the line
correspondes to the asterisk “*” in EpiData Analysis denoting a non-executed comment):
Complete 2 by 2 table from
a, b, c, d and calculate odds ratio wih Wolf CI
Assign below values for a, b, c, and d as in:
a <- 100

ab <- c(a, b, a+b)
cd <- c(c, d, c+d)
abcd <- rbind(ab, cd)

course_e_ex01_task

Page 12 of 14

rtot <- abcd[1,]+abcd[2,]
tab <- rbind(abcd, rtot)
colnames(tab) <- cbind("Case", "Control", "Total")
rownames(tab) <- rbind("Exp+", "Exp-", "Total")
names(dimnames(tab)) <- c("Exposure", "Status"); tab
or <- (tab[1,1]/tab[2,1])/(tab[1,2]/tab[2,2])
se <- 1.96*sqrt(1/a+1/b+1/c+1/d)
or.ci.lower <- exp(log(or)-se)
or.ci.upper <- exp(log(or)+se)

print(tab)
cat("\nOR:", round(or, digits=3), "\n95% CI:", round(or.ci.lower,
digits=3), round(or.ci.upper, digits=3), "\n")

You would now assign any value to your input objects a, b, c, and d, for instance directly in
the console and then open this script and Run it, and there it will be.

To quit R, type:
q()

You will be prompted whether you wish to save the workspace image:

to which you can safely answer with “n”: we have saved our scripts and do not need to save
in addition the log file.

Task

In analogy to the calculation of the odds ratio, write an R script e_ex01_rr.r that
calculates the relative risk from two proportions (thus not a ratio of incidence rates, but a
ratio of two prevalence proportions) for a study used in Altman’s textbook. It has the
isolation of Helicobacter pylori as the outcome and the history of an ulcer in the mother as
the exposure. We use the following set-up of notations:

Exposure
Outcome

Ill Healthy Total

Yes A B A+B

No C D C+D

Total A+B B+D A+B+C+D

The data provided by Altman in table 7.2 (page 59) are as follows:

Mother with a
history of ulcer

H pylori isolated

Yes No Total

course_e_ex01_task

Page 13 of 14

Yes 6 16 22

No 112 729 841

Total 118 745 863

The relative risk is calculated by:
 R = [A/(A+B)]/[C/(C+D)]

The standard error of the logeR is:
 se = SQRT(1/A-1/(A+B)+1/C-1/(C+D))

The 95% CI is thus:
 95%CI = exp(logeR ± 1.96*se)

course_e_ex01_task

Page 14 of 14

Task

In analogy to the calculation of the odds ratio, write an R script e_ex01_rr.r that
calculates the relative risk from two proportions (thus not ratio of incidence rates, but ratio
of two prevalence proportions) for a study used in Altman’s textbook. It has the isolation of
Helicobacter pylori as the outcome and the history of an ulcer in the mother as the exposure.
We use the following set-up of notations:

Exposure
Outcome

Ill Healthy Total

Yes A B A+B

No C D C+D

Total A+B B+D A+B+C+D

The data provided by Altman in table 7.2 (page 59) are as follows:

Mother with a
history of ulcer

H pylori isolated

Yes No Total

Yes 6 16 22

No 112 729 841

Total 118 745 863

The relative risk is calculated by:
 R = (A/(A+B))/(C/(C+D))

Solution to Exercise 1: Introduction to R software: basics

Key points:
a. R is both a language and an environment of computing
b. Anything and everything can be assigned to an object
c. Object names are case-sensitive
d. A vector is a one-dimensional object of like elements
e. A matrix is a two-dimensional table (another object) of like elements
f. Vectors can be bound to matrices

The standard error of the logeR is:
 se = SQRT(1/A-1/(A+B)+1/C-(1/(C+D))

The 95% CI is thus:
 95%CI = exp(logeR ± 1.96*se)

Solution:

The solution for the e_ex01_rr.r is a straight forward modification of the
e_ex01_or.r:

Complete 2 by 2 table from
A, B, C, D and calculate relative risk with Wolf CI

A <- 54
B <- 89
C <- 60
D <- 245

AB <- c(A, B, A+B)
CD <- c(C, D, C+D)
ABCD <- rbind(AB, CD)
rtot <- abcd[1,]+abcd[2,]
tab <- rbind(ABCD, rtot)
colnames(tab) <- cbind("Ill", "Healthy", "Total")
rownames(tab) <- rbind("Exp+", "Exp-", "Total")
names(dimnames(tab)) <- c("Exposure", "Status")
se <- sqrt(1/A-1/(A+B)+1/C-1/(C+D))
rr <- (tab[1,1]/tab[1,3])/(tab[2,1]/tab[2,3]); rr
rr.ci.lower <- exp(log(rr)-1.96*se)
rr.ci.upper <- exp(log(rr)+1.96*se)

print(tab)
cat("\nRR:", round(rr, digits=3), "\n95% CI:", round(rr.ci.lower,
digits=3), round(rr.ci.upper, digits=3), "\n")

The result is:

course_e_ex01_solution

Page 2 of 2

What we did in Exercise 1 is unusual in analysis: we entered aggregate data and analyzed them,
while the usual currency of analysis is appropriate aggregation of individual observations.
Commonly, datasets have been entered in other software as R is not a data entry tool. In the
context of this course, data will come as an EpiData dataset with a *.REC and a *.CHK file.
R accepts a multitude of data formats for import. In fact, a package has been developed that
expands on the number of formats of datasets which can be imported into R, including for
instance Epi Info / EpiData *.REC files and Stata *.dta files.

An important part of the versatility of R lies with the system of “packages”. What we have
been using is the basic package, but if we want to utilize the capability of importing EpiData
*.REC files or Stata *.dta files, the package “Foreign” should be added to our existing setup.
In the lower right quadrant in RStudio, you see:

Click on Packages and you get a list of packages that are available with those loaded already
ticked as for e.g. a basic statistical package:

The package we need is called foreign. You have to tick Install to get a menu:

You shouldn’t need to do anything here except typing foreign into the line Packages and
then Install as RStudio knows by definition where you have installed your copy of R. You need
to be on the Internet though to get to the repository:

Alternatively, you can use the included Zip package in the course material, but then you need
to change the Install from and get the downloaded zip file. But as always, to ensure obtaining

Exercise 2: Introduction to R software: data bases and functions

At the end of this exercise you should be able to:
a. Know how to import a data base from another format
b. Create a function and apply it to an analytic problem

the most up-to-date version, get it whenever possible directly from the internet (http://cran.r-
project.org/web/packages/foreign/index.html).

Having installed the package does not automatically put it at your disposal, you will have to
call it. We start a new *.r script that we will name e_ex02.r.

In the required files on the course site you find the EpiData REC/CHK pair e_ex02.rec and
e_ex02.chk. This is an abbreviated set of treatment results among patients with laboratory-
confirmed multidrug resistance in Bangladesh.

The package foreign allows importing *.REC files with the command:
read.epiinfo("c:/epidata_course/e_ex02.rec")

However, this approach disregards the metadata (the *.CHK file) and only imports the field
values from the *.REC file. We can write value labels in R, but we would first need to examine
the *.CHK file and be careful about errors: tedious and error-prone. More efficient and safer
is to use EpiData Entry 3.1 (or the EpiData Manager) to export the e_ex02.* file pair to a
Stata *.dta file that contains both values and labels and then read the Stata file into R. Once
you have exported the EpiData file pair to a Stata e_ex02.dta file, we are ready for import
into R.

Being sticklers in labeling things, we start with a title, followed by actually invoking the now
installed package foreign:
Import an EpiData REC file

library(foreign)
e_ex02.dat <- read.dta("c:/epidata_course/e_ex02.dta")
Because we have made the “epidata_course” our project folder, it suffices to type:
e_ex02.dat <- read.dta("e_ex02.dta")
We read the Stata file by putting file name (and file path) in quotation marks inside a parenthesis
(note the use of forward slashes) as in EpiData. We assign the imported file to an object that
we will call e_ex02.dat. The *.dat is not required, it is just an object after all. We could
call the object “a” if we wished to do so. The period separating the elements “e_ex02” and
“dat” is not designating an extension, it is just one of the many ways R allows giving names
to objects.

In a second step, we write the data to disk:
library(foreign)
e_ex02.dat <- read.dta("c:/epidata_course/e_ex02.dta")
write.table(e_ex02.dat, file="e_ex02.dat", row.names=TRUE)

Perhaps this is as good as any occasion to introduce the Help functions in R. If you know
already “write.table”, then it is easy, type:
help(write.table)

and you get in the lower right-hand corner box quite extensive information (try it out!).

To see what the import did, type:
e_ex02.dat[1:5,]

This gives the first 5 records:

course_e_ex02_task

Page 2 of 19

http://cran.r-project.org/web/packages/foreign/index.html
http://cran.r-project.org/web/packages/foreign/index.html

To see the variable names only, type:
Get the list of variable names only
names(e_ex02.dat)
and get:

R has a special way to deal with missing information. It uses NA to denote any missing value,
be it numeric or text. If NA is the assigned value, then a record in an analysis using the variable
with such a value will be excluded. We will use different approaches to the analysis. In some
analyses, we will include all 515 records – how many records we have, can be seen in the
Environment lower quadrant of the left panel:

In another analysis, we will exclude missing observations. We will create three datasets:

e_ex02_01.dat is the unaltered full set with missing values designated by NA, R’s way to
define missing values.

e_ex02_02.dat is the dataset containing only records with information on initial
fluoroquinolone resistance.

e_ex02_03.dat is the subset of patients with initial ofloxacin resistance with either a
bacteriologically unsuccessful outcome (failure or relapse) or a
bacteriologically successful outcome (relapse-free cure or treatment
completion).

The dataset
To get information on the structure of the dataset:
str(e_ex02.dat)

and we get (top only shown):

course_e_ex02_task

Page 3 of 19

The full dataset thus contains 515 records with 12 variables (rearranged):

AGE: Age in years as an integer.

AGEQUART: Age as a categorical variable in quartiles.

AGEMED: Age as a binary categorical variable (below the median, and median and larger).

SEX: Patient’s sex as categorical variable (Female, Male).

OUTCOME07: 7-level treatment outcome (Cure, Completion, Failure, Death, Default, Relapse,
Reinfection).

OUTCOME02: Outcome as a binary categorical variable, i.e. successful (relapse-free cure or
completion) vs all other outcomes (Success, Failure).

TOTOBSTIME: Time of observation, an integer in days from treatment start until an event
occurred (see later) or the observation time ended because of follow-up completion.

FQ04: Drug susceptibility test result for ofloxacin. If resistant, the minimum inhibitory
concentration to gatifloxacin was determined. This categorical variable has four levels
(Susceptible, Low-level resistance, High-level resistance, Missing).

PZA02: Drug susceptibility test result of molecular (pncA) for pyrazinamide as a categorical
binary variable, resistant vs not known to be resistant (PZA not known resistant, PZA resistant).

KMY02: Drug susceptibility test result of phenotypic testing for kanamycin as a categorical
binary variable, resistant vs not known to be resistant (KM not known resistant, KM resistant).

PTH02: Drug susceptibility test result of phenotypic testing for prothionamide as a categorical
binary variable, resistant vs not known to be resistant (PTH not known resistant, PTH resistant).

CXR02: Radiographic disease extent as a categorical binary variable, bilateral vs not known to
be bilateral (Not known bilateral, Bilateral).

The information for some variables was complete (age and sex), for some very few had missing
information (fluoroquinolone drug susceptibility test result, missing assigned to a defined
category). Some variables had quite a few missing (known pncA sequencing result for
pyrazinamide), others were quite complete (like radiographic disease extent). One could argue
to deal differently with the missing than what was done for this exercise in this simplified
categorization as “not known resistant”. In any case, we chose here certain simplifications that
are unlikely to importantly bias the planned analysis in the wrong direction. For some key
questions, a “purist’s” approach is chosen to deal with missing values.

The easiest to create is the full set: the only manipulation required is an assignment of the only
variable with a missing value, the variable FQ04 for ofloxacin drug susceptibility test result:

course_e_ex02_task

Page 4 of 19

e_ex02.dat[e_ex02.dat$fq04=="Missing", "fluoroquinolone"] <- NA

Several new and important things are seen in this command line. Starting with the outermost
right assignment NA, we note how R deals with missing data. In the data entry exercises with
EpiData software we had taught (a bit dogmatically) that we wish to have a value (commonly
designated as 9, 99, 9.99 etc) for all records with a missing value in a field. But this is by no
means a universal standard. Rather more commonly such a field may remain empty or might
have some value for missing or might be a mixture of both. Dealing correctly with missing
values remains one of the most challenging tasks in any analysis. When we read the dataset
and look at a frequency as follows:
table(e_ex02.dat$fq04)

we get (note the use of “table” rather than “tables” as in EpiData) before and after the NA
assignment above:

Before:

After:

We could deal with the 14 missing as a category and leave it just as it is with these 4 category
levels. In our, we will, however, pay special interest to this variable. As 14 of 515 is just 2.7%
of all observations, there is no important bias if we later simply exclude these 14 cases. There
are different ways to sub-setting, but we assign the R designation for missing, which is NA.

To the very left we have the name of the dataset e_ex02.dat. Inside the brackets we identify
the variable within the dataset as in:
setname$varname

The “==” is new and differs what we learned in EpiData. The following are the logical
operators used in R:

This is from the Quick-R website:

http://www.statmethods.net/

course_e_ex02_task

Page 5 of 19

http://www.statmethods.net/

an extraordinarily useful website to get – as it says – quick answers to questions on R, highly
recommendable! R (and Stata) uses the double == sign for equality rather than the single equal
sign because the latter (=) can be used as “assign” instead of the <- we now got used to (and
will stick to).

Thus, to get back:
e_ex02.dat$fq04=="Missing"

This identifies the variable fq04 within the dataset e_ex02.dat and identifies records in
which the category value is “Missing” (note that the value is not the “value” from the *.REC
file, but the value is the label obtained from the Stata file for easy identification). After the
comma, we state that we retain the variable name fq04:
e_ex02.dat[e_ex02.dat$fq04=="Missing", "fq04"] <- NA

we could check whether we have now records with NAs with the important command:
na.is(x)

which is used to find out which elements of x are recorded as missing (NA), i.e. here:
is.na(e_ex02.dat$fq04)

and we get (an excerpt from the list of all 515 records):

To assign this revised set to the new object with the desired name and to ensure that it is a “data
frame”, we write:
e_ex02_01.dat <- data.frame(e_ex02.dat)

What is called a “data frame” in R is just what we EpiData users call a dataset. “It is a list of
vectors and / or factors of the same length that are related “across” such that data in the same
position come from the same experimental unit” (formulation copied from Peter Dalgaard,
Introductory statistics with R, 2008). The distinction is made because R can deal with other
types of data collection.

Sub-setting
The next dataset is trickier to create. An excellent source on the internet to find quick answers
is Quick-R at http://www.statmethods.net/index.html. If we enter “subsets” into the Search
box, we see among several option, option Nr 1:

Clicking on the link we get all we need to know for starters. To select observations, the full
explicit is:
newdata <- mydata[which(mydata$gender=='F' & mydata$age > 65),]

There is a short-cut allowed:
newdata <- mydata[which(gender=='F' & age > 65),]

course_e_ex02_task

Page 6 of 19

http://www.statmethods.net/index.html

Note here the single quotes to enclose text, but we can also use double quotes. In any case, we
need to know the criteria. We mentioned above that we want to do a sub-analysis on patients
with initial ofloxacin resistance. If we just write some table command, we might have the
problem of ambiguity on which of the currently existing two datasets the command needs to be
executed.

Our dataset to create is to be named “e_ex02_02.dat”. It will only contain records without
missing data for the variable fq04. We are thus making a selection in EpiData language or
sub-setting in R language. If we start from the originally read dataset, we write:
e_ex02_02.dat <- e_ex02.dat[which(e_ex02.dat$fq04 != "Missing"),]

Alternatively, and perhaps simpler, we can use the subset function:
e_ex02_02.dat <- subset(e_ex02.dat, fq04 != "Missing")

Note (and see above) the “!=” denoting “unequal”.

To make the even more complex third dataset, the newcomer might best first stick to the fully
explicit. We thus write three lines, making intermediary datasets, each line being self-
explanatory:

We start with the dataset e_ex02_02.dat which has 501 records. Excluding 26 deaths
defined in the variable outcome07, we get 475 observations in the new dataset
e_ex02_02_03a.dat:
e_ex02_03a.dat <- subset(e_ex02_02.dat, outcome07 != "Death")

Excluding then 40 defaulters defined in the variable outcome07, we get 435 observations in
the new dataset e_ex02_02_03b.dat:
e_ex02_03b.dat <- subset(e_ex02_03a.dat, outcome07 != "Default")

Excluding finally 382 patients with initial fluoroquinolone susceptibility defined in the variable
fq04, we get 53 observations in the final desired dataset e_ex02_02_03.dat:
e_ex02_03.dat <- subset(e_ex02_03b.dat, fq04 != "Susceptible")

Of course, this can all be written into a single command line:
e_ex02_03.dat <- subset(e_ex02_02.dat, outcome07 != "Death" & outcome07 !=

"Default" & fq04 != "Susceptible")

and one gets the same result of 53 observations.

Finally, to save the three datasets to disk, we do as above:
write.table(e_ex02_01.dat, file="e_ex02_01.dat", row.names=TRUE)
write.table(e_ex02_02.dat, file="e_ex02_02.dat", row.names=TRUE)
write.table(e_ex02_03.dat, file="e_ex02_03.dat", row.names=TRUE)

course_e_ex02_task

Page 7 of 19

A generically applicable function for the analysis of a 2-by-2 table

If we had a variable fq02 to denote a binary outcome for initial fluoroquinolone (FQ)
resistance (aggregating low and high resistance) and excluding those with missing
fluoroquinolone test result, an analysis by the binary outcome in EpiData Analysis is as follows:
select fq02<>9 // exclude records with missing FQ result
tables outcome02 fq02 /o

which gives:

Second, we make a stratified analysis to look at the influence of SEX:
tables outcome02 fq02 sex /o

which gives a summary:

by the Mantel-Haenszel procedure.

The first table in R requires that we make a new variable for a binary result of fluoroquinolone
resistance and then create the table:
e_ex02_02.dat[e_ex02_02.dat$fq04=="Susceptible", "fq02"] <- "1-Susceptible"
e_ex02_02.dat[e_ex02_02.dat$fq04=="Low-level resistance", "fq02"] <- "2-Resistant"
e_ex02_02.dat[e_ex02_02.dat$fq04=="High-level resistance", "fq02"] <- "2-Resistant"
e_ex02_fq02.dat <- data.frame(e_ex02_02.dat)

At this point let’s introduce attach. Followed in parenthesis by the dataset name:
attach(e_ex02_02_fq02.dat)

it puts the dataset e_ex02_02_fq02.dat into the search path and we do thus not to need to
repeat the dataset name all the time, it suffices to write the variable names. It is equally
important not to forget to detach a dataset to get it out of the path. Thus, we type here:
detach(e_ex02_02.dat)

If the data set is in the path, what would otherwise be:
table(e_ex02_fq02.dat$fq02, e_ex02_fq02.dat$outcome02)

course_e_ex02_task

Page 8 of 19

becomes simplified:
table(fq02, outcome02)

This gives just the bare bone core of the correct output table:

Note here that for the R command table the sequence is different from EpiData: the first
variable gives the row and the second variable the column. We noted earlier that the default
sequence in R is row, then column. Note also that we numbered “1-Susceptible” and “2-
Resistant” to get these into our preferred alphabetical sequence (the default would be the
inverse).

Could we somehow use what we did in Exercise 1, edit it a bit and get it functional for this
situation? Open the e_ex01_or.r in the text editor and remove everything, except the
following lines:
or <- (tab[1,1]/tab[2,1])/(tab[1,2]/tab[2,2])
se <- sqrt(1/a+1/b+1/c+1/d)
or.ci.lower <- exp(log(or)-1.96*se)
or.ci.upper <- exp(log(or)+1.96*se)
print(tab)
cat("\nOR:", round(or, digits=3), "\n95% CI:", round(or.ci.lower, digits=3),
"to ", round(or.ci.upper, digits=3))

We are going to create a Function that can be applied in the future to the same setting. We
have already used functions, TABLE is a function. To make our own function, type:
tab2by2 <- function(exposure, outcome) {}

This is the framework only, and it doesn’t yet do anything. To put it to useful work, type:
fix(tab2by2)

and a function editor window opens:

Our commands will go between the curly braces {}. It is a custom (but no real need, but we
will faithfully follow customs of those with more experience, they usually have their reasons)
to put the opening brace { on a new line and then the commands after that on new lines, and
have the closing brace } again at the end alone on a line. After we paste from the text editor
what we have, we should thus get:

course_e_ex02_task

Page 9 of 19

It is not yet quite correct, because there is no object tab. Thus type on the line before the
“or”:
tab <- table(exposure, outcome)

That is, we assign the output of any two-by-two table of this format to an object tab. You may
note that the RStudio short-cut key ALT+- to get the assign combination “<-” is non-functional
in functions, you have to type it out. As we are already using a, b, c, and d, we might as well
keep these, and then make in the “or” line assignments to these, so that in the revision we get:
function(exposure, outcome)
 {
 tab <- table(exposure, outcome)
 a <- tab[1,1]; b <- tab[2,1]; c <- tab[1,2]; d <- tab[2,2]
 or <- (a/c)/(b/d)
 se <- sqrt(1/a+1/b+1/c+1/d)
 or.ci.lower <- exp(log(or)-1.96*se)
 or.ci.upper <- exp(log(or)+1.96*se)
 print(tab)
 cat("\nOR:", round(or, digits=3), "\n95% CI:", round(or.ci.lower,

digits=3), "to ", round(or.ci.upper, digits=3))
}

Save it. We could save it later when quitting in the workspace, but it is better to also save in in
a file and doing that now:
save(tab2by2, file = "tab2by2.r")

Conversely, when we open RStudio anew, it can be loaded whenever we need it with:
load(“tab2by2.r”)

Note that you actually need the full path, thus in our case:
load("C:/epidata_course/tab2by2.r")

Also note that this approach results in an *.r file that is not anymore a straight text file (you see
gibberish in the text editor). It seems to be the price that has to be paid for a function we write
by ourselves.

Before we apply it, we need to reopen and Run our e_ex02.r script which should read now:
Exercise 2: Introduction to R software: data bases and functions

####################################
1) Import a Stata file

library(foreign)
e_ex02.dat <- read.dta("e_ex02.dta")
e_ex02.dat <- read.dta("c:/epidata_course/e_ex02.dta")
write.table(e_ex02.dat, file="e_ex02.dat", row.names=TRUE)

course_e_ex02_task

Page 10 of 19

See the first 5 records
e_ex02.dat[1:5,]

Get the list of variable names only
names(e_ex02.dat)

table(e_ex02.dat$fq04)

####################################
2) Create full unaltered set (515 records)
e_ex02.dat[e_ex02.dat$fq04=="Missing", "fq04"] <- NA
is.na(e_ex02.dat$fq04)
e_ex02_01.dat <- data.frame(e_ex02.dat)

####################################
3) Create a subset with records with known FQ DST result (401 records)
e_ex02_02.dat <- e_ex02.dat[which(e_ex02.dat$fq04 != "Missing"),]
or alternatively with the SUBSET function:
e_ex02_02.dat <- subset(e_ex02.dat, fq04 != "Missing")

####################################
4) Create a subset with records with known FQ resistance and
bacteriological success or failure (53 records)
Commands on three lines
e_ex02_03a.dat <- subset(e_ex02_02.dat, outcome07 != "Death")
e_ex02_03b.dat <- subset(e_ex02_03a.dat, outcome07 != "Default")
e_ex02_03.dat <- subset(e_ex02_03b.dat, fq04 != "Susceptible")
Alternatively, commands on single line
e_ex02_03.dat <- subset(e_ex02_02.dat, outcome07 != "Death" & outcome07 != "Default"

& fq04 != "Susceptible")

Table of outcome by FQ resistance
Create first a new variable FQ02

e_ex02_02.dat[e_ex02_02.dat$fq04=="Susceptible", "fq02"] <- "1-Susceptible"
e_ex02_02.dat[e_ex02_02.dat$fq04=="Low-level resistance", "fq02"] <- "2-Resistant"
e_ex02_02.dat[e_ex02_02.dat$fq04=="High-level resistance", "fq02"] <- "2-Resistant"
e_ex02_fq02.dat <- data.frame(e_ex02_02.dat)
table(e_ex02_fq02.dat$fq02, e_ex02_fq02.dat$outcome02)

write.table(e_ex02_01.dat, file="e_ex02_01.dat", row.names=TRUE)
write.table(e_ex02_02.dat, file="e_ex02_02.dat", row.names=TRUE)
write.table(e_ex02_03.dat, file="e_ex02_03.dat", row.names=TRUE)

####################################
5) Make functions: 2-by-2 table
Prepare making a function
tab2by2 <- function(exposure, outcome) {}
fix(tab2by2)
save(tab2by2, file = "tab2by2.r")

attach(e_ex02_fq02.dat)

As the last command is ATTACH the proper file, let’s try to apply it. Type:
load("C:/epidata_course/tab2by2.r")
tab2by2(fq02, outcome02)

and you should get:

course_e_ex02_task

Page 11 of 19

identical to the EpiData Analysis output (see above). Note that the R load function is
necessary only after exiting R and reopening the script. Similarly, the three lines:
tab2by2 <- function(exposure, outcome) {}
fix(tab2by2)
save(tab2by2, file = "tab2by2.r")

have been put as comments as they do not need repeat execution once done.

We can use this function for any other EXPOSURE-OUTCOME pair, such as:
tab2by2(sex, outcome02)

In EpiData Analysis:
tables outcome02 sex /o

We surely have to watch out for the variable SEX. You know from earlier that EpiData Analysis
inverts (by design) the sequence of values for the exposure and outcome variables, while the
net effect on the odds ratio thus remains unaffected.

To summarize: TABLE is an inbuilt function in R which cross tabulates the two variables.
Replacing TABLE by our function ‘tab2by2’ runs our code creating the table and with the
odds ratio and the 95% confidence interval, displayed it in the desired format. There are many
functions that have been created already by R users and collaborators which we can make use
of. Thus, a skill we have to master is to search for a function which suits our purpose and make
correct and careful use of it. This example illustrates the basic mode of using and applying
functions in R.

A generically applicable function for the analysis of a 2-by-2-by-2 table
In the previous paragraph we dealt with a matrix (a two-dimensional object of like elements).
It was the special case of a 2-by-2 matrix. In this part, we move now forward to deal with
arrays. An array is an n-dimensional table of like objects. In particular, we will concern

course_e_ex02_task

Page 12 of 19

ourselves with the special case of a 2-by-2-by-2 table, i.e. a 3-dimensional table. We can
construct such an object in R with the command:
z <- array(1:8, c(2, 2, 2)); z

and get:

What is the location of “7”? Try:
u <- z[1, 2, 2]; u

The third dimension (row is the first, the column the second, the added one the third) is also
indicated by the the two leading commas:
, , 2

We mentioned before that the location [indexing] in R is defined within brackets []. The
default sequence is by dimension, separated by commas, where the first dimension is always
the row, the second the column and here the third is what we epidemiologists call the stratifying
dimension. If we apply this concept of a multidimensional array to epidemiology, we thus have
the concept of stratification.

The generic grammar for a table command for this basic stratification is:
table(exposure, outcome, stratvar)

or
table(rowvar, columnvar, stratvar)

where stratvar is the name of the straifying variable. In our case, specifically, we try:
table(fq02, outcome02, sex)

to get, if the last attach command was attach(e_ex02_fq02.dat):

course_e_ex02_task

Page 13 of 19

In 1959, Mantel and Haenszel proposed an efficient method for estimating a summary odds
ratio from a series of 2 by 2 tables. It is easy to apply and does not require iterative calculations.
In the following introduction, we follow Schlesselman’s explanations and use of example
(Schlesselman J J. Case-control studies. Design, conduct, analysis. New York: Oxford
University Press, 1982).

The Mantel-Haenszel estimate of the odds ratio (ORmh), adjusted for the effects of the
stratification variables is calculated as:
SUM(aidi/ni)/SUM(bici/ni)

An estimate of the variance of the ORmh has been proposed. If we define:
wi = bici/ni

and
vi = (ai + ci)/aici + (bi + di)/bidi

then the variance of the loge ORmh is given by:
var(ln ORmh) ≈ SUMwi2vi/(SUMwi)2

The approximate 95% confidence interval is thus given by:
ln ORmh ± 1.96*SQRT[var(ln ORmh)]

If we apply this to our data:
 Female Male
 Failure Success Failure Success
Resistant 9 10 9 34
Susceptible 21 106 38 274

OR 4.543 1.909
ni 146 355
Wi 1.438 3.639
vi 0.268 0.170
aidi/ni 6.534 6.946
bici/ni 1.438 3.639
SUM(aidi/ni) 13.481
SUM(bici/ni) 5.078
ORmh 2.655
wi^2*vi 0.555 2.258
SUM(wi^2*vi) 2.813
(SUMwi)^2 25.784
SUM(wi^2*vi)/(SUMwi)^2 0.109
var(lnORmh) 0.109
ORmh-lower 1.390
ORmh-upper 5.072

EpiData Analysis gives:
ORmh: 2.65 (1.43-4.93)

The point estimate is the same, but the 95% CI interval is slightly different because EpiData
Analysis uses consistently the Robins, Greenland, Breslow confidence intervals, while we
followed here Schlesselman’s example using Hauck’s interval. As the exercise is about the

course_e_ex02_task

Page 14 of 19

principle of learning on how to go about when creating a function, the choice of the confidence
interval does not really matter here.

We will keep to this most simple example with only 8 cells total among three variables: each
variable is binary.

Let’s best start from scratch and make a new function:
ormh <- function(exposure, outcome, stratvar) {}

We create a function ORMH (short for Mantel-Heanszel odds ratio) that takes three parameters,
in that given sequence.

We propose to draft the content that goes between the curly braces {} in the text editor before
we put into it with fix. We can modify what we had before, just slightly so:
tab <- table(exposure, outcome, stratvar)
a1 <- tab[1,1,1]; b1 <- tab[2,1,1]; c1 <- tab[1,2,1]; d1 <- tab[2,2,1]
a2 <- tab[1,1,2]; b2 <- tab[2,1,2]; c2 <- tab[1,2,2]; d2 <- tab[2,2,2]

This takes into account that we work now with a 3-dimensional array and have a1, a2, and b1,
b2, etc.

We have to create the aidi/ni and the bici/ni for each of the two tables:
adn1 <- (a1*d1)/n1
adn2 <- (a2*d2)/n2
bcn1 <- (b1*c1)/n1
bcn2 <- (b2*c2)/n2

and from these we calculate the object MHOR:
mhor <- (adn1+adn2)/(bcn1+bcn2)

Note that we chose the object name to be mhor to distinguish in from the function name ormh.
Before we get too much carried away in our excitement, we should check whether we are on
the right track:
fix(ormh)

and insert what we currently have:
function(exposure, outcome, stratvar)
 {
 tab <- table(exposure, outcome, stratvar)
 a1 <- tab[1,1,1]; b1 <- tab[2,1,1]; c1 <- tab[1,2,1]; d1 <- tab[2,2,1]
 a2 <- tab[1,1,2]; b2 <- tab[2,1,2]; c2 <- tab[1,2,2]; d2 <- tab[2,2,2]
 n1 <- a1+b1+c1+d1
 n2 <- a2+b2+c2+d2
 adn1 <- (a1*d1)/n1
 adn2 <- (a2*d2)/n2
 bcn1 <- (b1*c1)/n1
 bcn2 <- (b2*c2)/n2
 mhor <- (adn1+adn2)/(bcn1+bcn2)
 print(tab)
 cat("\nOR:", round(mhor, digits=3))
}
and test it with the command:
ormh(fq02, outcome02, sex)

course_e_ex02_task

Page 15 of 19

We get:

We are definitely on the right track! Therefore, we might continue requiring next the two
components w and v that we calculate as intermediate steps for calculation of the variance and
then the variance itself:
w1 <- (b1*c1)/n1
w2 <- (b2*c2)/n2
v1 <- ((a1+c1)/(a1*c1))+((b1+d1)/(b1*d1))
v2 <- ((a2+c2)/(a2*c2))+((b2+d2)/(b2*d2))
varor <- ((w1^2*v1)+(w2^2*v2))/((w1+w2)^2)

Then we calculate the confidence interval:
se <-sqrt(var.mhor)
mhor.lower <-exp(log(mhor)-1.96*se)
mhor.upper <-exp(log(mhor)+1.96*se)

Finally, by adding what is to appear on the screen, we get the full function as:
function(exposure, outcome, stratvar)
{
 tab <- table(exposure, outcome, stratvar)
 a1 <- tab[1,1,1]; b1 <- tab[2,1,1]; c1 <- tab[1,2,1]; d1 <- tab[2,2,1]
 a2 <- tab[1,1,2]; b2 <- tab[2,1,2]; c2 <- tab[1,2,2]; d2 <- tab[2,2,2]
 a <- a1+a2; b <- b1+b2; c <-c1+c2; d <- d1+d2
 or <- (a/c)/(b/d)
 se <- sqrt(1/a+1/b+1/c+1/d)
 or.ci.lower <- exp(log(or)-1.96*se)
 or.ci.upper <- exp(log(or)+1.96*se)
 n1 <- a1+b1+c1+d1
 n2 <- a2+b2+c2+d2
 adn1 <- (a1*d1)/n1
 adn2 <- (a2*d2)/n2
 bcn1 <- (b1*c1)/n1
 bcn2 <- (b2*c2)/n2
 mhor <- (adn1+adn2)/(bcn1+bcn2)
 w1 <- (b1*c1)/n1
 w2 <- (b2*c2)/n2
 v1 <- ((a1+c1)/(a1*c1))+((b1+d1)/(b1*d1))
 v2 <- ((a2+c2)/(a2*c2))+((b2+d2)/(b2*d2))
 var.mhor <- ((w1^2*v1)+(w2^2*v2))/((w1+w2)^2)

course_e_ex02_task

Page 16 of 19

 se <-sqrt(var.mhor)
 mhor.lower <-exp(log(mhor)-1.96*se)
 mhor.upper <-exp(log(mhor)+1.96*se)
 print(tab)
 cat("\nOR adj:", round(mhor, digits=3), "\n95% CI:", round(mhor.lower,

digits=3), "-", round(mhor.upper, digits=3))
}
If we test with:
ormh(oflres, outcome02, sex)

we get:

We can use this generically for other variables, such as:
ormh(fq02, outcome02, cxr02)

and get:

Do not forget to save the function to a file:
save(ormh, file = "ormh.r")

Admittedly, what we have done here is still quite amateurish. Fortunately, more professional
contributors to R have written a function to calculate the Mantel-Haenszel estimate of the odds
ratio. If you just type the function:
mantelhaen.test

course_e_ex02_task

Page 17 of 19

you see the full function. We can use it for our example:
mantelhaen.test(table(fq02, outcome02, sex))

and we get:

To look what the author of that function actually wrote, you can type in analogy of what we did
above:
fix(mantelhaen.test)

We note thereby that the producers of this function that is part of the basic R package has the
same approach to the calculation of the confidence interval as was chosen for EpiData Analysis,
which gave as a summary:

In summary, we have demonstrated that we can create any function in R which has a
generalizable applicability. Fortunately, others have already done most of what is probably
needed and it is thus not usually necessary to write our own functions. This is good news, of
course, as it proves rather tedious and definitely requires sometimes basic, and sometimes more
sophisticated knowledge of statistics. It also requires a thorough knowledge of the S
programming language. Functions abound for R, but one has to look out for them to know how
they are used properly. How did we find that this one exists? At the R prompt, type:
??mantel

and you get in the right lower quadrant of RStudio:

course_e_ex02_task

Page 18 of 19

where you then click on the link for detailed information.

Tasks:

o Append the ormh.r script to calculate and show also the stratum-specific and crude
(unstratified) odds ratioa with 95% confidence intervals (you may use the same type of
confidence interval as we used in the tab2by2.r script)

course_e_ex02_task

Page 19 of 19

Tasks:

o Append the ormh.r script to calculate and show also the stratum-specific and crude
(unstratified) odds ratioa with 95% confidence intervals (you may use the same type of
confidence interval as we used in the tab2by2.r script)

Solution:

The script e_ex02.r:
Exercise 2: Introduction to R software: data bases and functions

####################################
1) Import a Stata file

library(foreign)
e_ex02.dat <- read.dta("e_ex02.dta")
e_ex02.dat <- read.dta("c:/epidata_course/e_ex02.dta")
write.table(e_ex02.dat, file="e_ex02.dat", row.names=TRUE)

See the first 5 records
e_ex02.dat[1:5,]

Get the list of variable names only
names(e_ex02.dat)

table(e_ex02.dat$fq04)

####################################
2) Create full unaltered set (515 records)
e_ex02.dat[e_ex02.dat$fq04=="Missing", "fq04"] <- NA
is.na(e_ex02.dat$fq04)
e_ex02_01.dat <- data.frame(e_ex02.dat)

####################################
3) Create a subset with records with known FQ DST result (401 records)
e_ex02_02.dat <- e_ex02.dat[which(e_ex02.dat$fq04 != "Missing"),]

Solution to Exercise 2: Introduction to R software: data bases and
functions

Key points:
a. The package “foreign” allows importing a variety of data base formats

including EpiData REC files. It will not import any labels
b. “Everything in R is either an object or a function”: in this exercise you

learned creating a generally applicable function for a simple 2-by-2 table,
and for a stratified table to calculate a Mantel-Haenszel estimate of an
adjusted odds ratio with a confidence interval

c. Numerous functions are available already in the base package, you will
have to learn to use the Help file to get the fullest out of these functions

or alternatively with the SUBSET function:
e_ex02_02.dat <- subset(e_ex02.dat, fq04 != "Missing")

####################################
4) Create a subset with records with known FQ resistance and
bacteriological success or failure (53 records)
attach(e_ex02_02.dat)
detach(e_ex02_02.dat)
Commands on three lines
e_ex02_03a.dat <- subset(e_ex02_02.dat, outcome07 != "Death")
e_ex02_03b.dat <- subset(e_ex02_03a.dat, outcome07 != "Default")
e_ex02_03.dat <- subset(e_ex02_03b.dat, fq04 != "Susceptible")
Alternatively, commands on single line
e_ex02_03.dat <- subset(e_ex02_02.dat, outcome07 != "Death" & outcome07 != "Default"

& fq04 != "Susceptible")

Table of outcome by FQ resistance
Create first a new variable FQ02

e_ex02_02.dat[e_ex02_02.dat$fq04=="Susceptible", "fq02"] <- "1-Susceptible"
e_ex02_02.dat[e_ex02_02.dat$fq04=="Low-level resistance", "fq02"] <- "2-Resistant"
e_ex02_02.dat[e_ex02_02.dat$fq04=="High-level resistance", "fq02"] <- "2-Resistant"
e_ex02_fq02.dat <- data.frame(e_ex02_02.dat)
table(e_ex02_fq02.dat$fq02, e_ex02_fq02.dat$outcome02)

write.table(e_ex02_01.dat, file="e_ex02_01.dat", row.names=TRUE)
write.table(e_ex02_02.dat, file="e_ex02_02.dat", row.names=TRUE)
write.table(e_ex02_03.dat, file="e_ex02_03.dat", row.names=TRUE)

####################################
5) Make functions: 2-by-2 table
Prepare making a function
tab2by2 <- function(exposure, outcome) {}
fix(tab2by2)
save(tab2by2, file = "tab2by2.r")

attach(e_ex02_fq02.dat)

load("C:/epidata_course/tab2by2.r")
tab2by2(fq02, outcome02)
tab2by2(sex, outcome02)

####################################
6) Make functions: 2-by-2-by-2 table / Mantel-Heanszel
Arrays for a stratification

table(fq02, outcome02, sex)

ormh <- function(exposure, outcome, startvar) {}
fix(ormh)
save(ormh, file = "ormh.r")
ormh(fq02, outcome02, sex)
ormh(fq02, outcome02, cxr02)

####################################
7) On restart use LOAD to get the funcions
load("C:/epidata_course/ormh.r")
tab2by2(fq02, outcome02)
load("C:/epidata_course/tab2by2.r")
table(fq02, outcome02, sex)
ormh(fq02, outcome02, sex)

mantelhaen.test(table(fq02, outcome02, sex))

course_e_ex02_solution

Page 2 of 4

The script ormh.r:
function(exposure, outcome, stratvar)
{
 tab <- table(exposure, outcome, stratvar)
 a1 <- tab[1,1,1]; b1 <- tab[2,1,1]; c1 <- tab[1,2,1]; d1 <- tab[2,2,1]
 a2 <- tab[1,1,2]; b2 <- tab[2,1,2]; c2 <- tab[1,2,2]; d2 <- tab[2,2,2]
 a <- a1+a2; b <- b1+b2; c <-c1+c2; d <- d1+d2
 or1 <- (a1/c1)/(b1/d1)
 se1 <- sqrt(1/a1+1/b1+1/c1+1/d1)
 or1.ci.lower <- exp(log(or1)-1.96*se1)
 or1.ci.upper <- exp(log(or1)+1.96*se1)
 or2 <- (a2/c2)/(b2/d2)
 se2 <- sqrt(1/a2+1/b2+1/c2+1/d2)
 or2.ci.lower <- exp(log(or2)-1.96*se2)
 or2.ci.upper <- exp(log(or2)+1.96*se2)
 or <- (a/c)/(b/d)
 se <- sqrt(1/a+1/b+1/c+1/d)
 or.ci.lower <- exp(log(or)-1.96*se)
 or.ci.upper <- exp(log(or)+1.96*se)
 n1 <- a1+b1+c1+d1
 n2 <- a2+b2+c2+d2
 adn1 <- (a1*d1)/n1
 adn2 <- (a2*d2)/n2
 bcn1 <- (b1*c1)/n1
 bcn2 <- (b2*c2)/n2
 mhor <- (adn1+adn2)/(bcn1+bcn2)
 w1 <- (b1*c1)/n1
 w2 <- (b2*c2)/n2
 v1 <- ((a1+c1)/(a1*c1))+((b1+d1)/(b1*d1))
 v2 <- ((a2+c2)/(a2*c2))+((b2+d2)/(b2*d2))
 var.mhor <- ((w1^2*v1)+(w2^2*v2))/((w1+w2)^2)
 se <-sqrt(var.mhor)
 mhor.lower <-exp(log(mhor)-1.96*se)
 mhor.upper <-exp(log(mhor)+1.96*se)
 print(tab)
 cat("\nOR stratum 1:", round(or1, digits=3), "\n95% CI:", round(or1.ci.lower,

digits=3), "-", round(or1.ci.upper, digits=3),
 "\n\nOR stratum 2:", round(or2, digits=3), "\n95% CI:", round(or2.ci.lower,

digits=3), "-", round(or2.ci.upper, digits=3),
 "\n\nOR crude:", round(or, digits=3), "\n95% CI:", round(or.ci.lower,

digits=3), "-", round(or.ci.upper, digits=3),
 "\n\nOR adjusted:", round(mhor, digits=3), "\n95% CI:", round(mhor.lower,

digits=3), "-", round(mhor.upper, digits=3))
}

The output:

course_e_ex02_solution

Page 3 of 4

course_e_ex02_solution

Page 4 of 4

In Exercise 1, you learned some basic principles about the R language. As you go along, it will
prove worthwhile to familiarize yourself more and more with the workings of the R / S
language, and we provided you with links to some particularly useful texts that help in
becoming more proficient.

In Exercise 2, you learned how to import a dataset, to assign the special values for missing data
that R recognizes as such, to create data subsets for analysis. Next you learned to write your
own basic function.

For none of the things you learned in Exercises 1 and 2 will we have a need for R. EpiData
delivers all that, and in a very simple and intuitive way. We will take recourse to R only if we
cannot solve a problem analytically with EpiData Analysis. One such application is the logistic
regression analysis which is the subject of this exercise.

Before we get started with the actual work, open a new script page and save it as “e_ex03.r”.
We will use the dataset e_ex02_02.dat as our starting point, that is, the set with 501 cases
with known fluoroquinolone drug susceptibility test result. The simplest way to make a dataset
available in R is with the command read.table:
e_ex03 <- read.table("e_ex02_02.dat")
attach(e_ex03)

We assign its content to an object e_ex03 which we attach, so that it is available in the path.

The indication for a logistic regression
A major challenge in the analysis of epidemiologic data is to avoid falsely inferring causality
between some factor and an outcome. As a simplified example we might find in a given
population that cases of lung cancer occur far more frequently among males than among
females. One would not conclude that being male is a risk factor for lung cancer before first
examining whether smoking might also be a virtually male addiction in that population. For
categorical variables we might use the Mantel-Haenszel stratification approach to adjust for
such confounding. The method has two major limitations. First, the more variables we need
to adjust for, the larger the uncertainty of our estimates and the more likely some strata are left
without counts and making a summary measure becomes impossible. Second, the method is
limited to categorical variables but often we do not wish to categorize a naturally continuous
variable (like age) just to accommodate the method. From various possibilities, one favored
method is logistic regression analysis that overcomes these two major limitations of stratified

Exercise 3: Multivariable analysis in R part 1: Logistic regression

At the end of this exercise you should be able to:
a. Know how to use logistic regression in R
b. Know how to properly remove factors for which most likely adjustment is not

required

course_e_ex03_task

Page 1 of 8

analysis. If carefully done, factors that independently predict a given outcome can be isolated
and thus get the investigator closer to inference of causality.

Logistic regression using R

Logistic regression is part of glm which is used to fit generalized linear models. GLM is part
of the R base package. The basic formulation of the model is simple:
output <- glm(formula = outcome ~ factor(var01) + factor (var02) + var03,

data=datasetname, family=binomial)

where output is the object to which the model results are assigned to, and glm is the actual
function. In parenthesis, one opens with the formula statement and the name of the outcome
variable following the = sign, followed by a tilde ~ and then all the variables in the model.
Specification with factor is required for categorical variables, followed by the variable name
of the variable in parenthesis as with any function (factor being the function here). In the
example var01 and var02 are categorical variables, while var03 is treated as a continuous
variable. All the variables entering the equation are connected by + signs. A comma designates
the end of the variable list and is followed by data= and the name of the dataset. Finally,
family=binomial defines that the logit member of the glm family is to be used.

Why don’t we just enter here for starters an example from our dataset? Please add the following
line (all written onto a single line) at the end of our e_ex03.r:
mylogit <- glm(formula = outcome02 ~ factor(fq02) + factor(sex) + age, data=

e_ex03, family=binomial)

Into the next line type:
summary(mylogit)

and you get:

Let’s examine the output a bit, notably the part that begins with the Coefficients. We
have factor(fq02)2-Resistant and factor(sex)Male. The referent for a variable
is the lowest value. The values for fq02 are 1-Susceptible and 2-Resistant. We

course_e_ex03_task

Page 2 of 8

therefore see factor(fq02)2-Resistant in the line. age is a continuous variable, and
as such it does not have a referent and is shown as it is.

For the numeric output we have the Estimate and Std. Error, and in the last column a
probability Pr(>|z|) for the Estimate. The latter shows that all three variables are highly
significant predictors, but otherwise it is difficult to gauge what these numbers mean. Only by
making this more explicit it becomes more meaningful. The estimate is a logartithm, thus we
do some exponentiation and column binding (cbind):
lreg.or <-exp(cbind(OR = coef(mylogit), confint(mylogit)))
round(lreg.or, digits=4)

and then get more meaningfully:

The two functions coef and confint take the estimate and calculate the confidence interval
from the standard error respectively. cbind “glues” (Dalgaard) the vectors together.
Exponentiating the logarithmic terms gives the odds ratios (labeled here as OR) with the 95%
confidence interval that is more amenable to interpretation. Thus, we need both the summary
and the conversion of the estimates. The former is required to determine how to proceed in the
stepwise exclusion of variables from the model. Intuitively, we correctly use age as a
continuous variable, but it is not certain whether this is actually also analytically correct. We
should at least check first whether the influence of age has continuity as logistic regression will
force a fixed slope.

How should we categorize age? We could follow the standard classification of WHO, but
perhaps a bit less arbitrary is to have the data themselves dictating the categories. In our dataset
we have the variables agequart and agemed. These are indeed data-driven quartiles of age
and the variable age split into a binary variable defined by the median respectively. These
variables were made based on the entire set of 515 records. As we are using a dataset that has
14 records removed, the values are now conceptually if not actually incorrect. We will thus
first remove the two obsolete variables and then create a new variable for quartiles of age based
on the actual 501 records. We used:
names(e_ex03)

before. This gives us the names of the variables and their position in the dataset:

We can see / count that agequart and agemed take positions 5 and 6 respectively in the
sequence of variables. In other words, we need only the variables in positions 1 through 4 and
7 through 13, which we write as:
e_ex03b <- e_ex03[c(1:4, 7:13)]
detach(e_ex03)
attach(e_ex03b)
names(e_ex03b)

where the last line names(e_ex03b) is only to check that we got what we intended to get
and we did:

course_e_ex03_task

Page 3 of 8

Thus here the principle how to drop variables in R. Next we want to create a new variable from
the existing variable age. As the values for the new variable are driven by the data, we need
to know first more about the distribution of age. R has a powerful way of showing quantiles
(look up the Help file by typing ??quantiles). To obtain quartiles, we type:
quantile(age, probs = c(25, 50, 75)/100)

and we get:

To create a new variable agecat from the existing variable age, we ensure (no problem if it
is duplicated from above) that the correct file is in the path and then make the assignments
followed by again detaching the file:
attach(e_ex03b)
e_ex03b$agecat[age >= 00 & age < 23] <- "Q1"
e_ex03b$agecat[age >= 23 & age < 31] <- "Q2"
e_ex03b$agecat[age >= 31 & age < 42] <- "Q3"
e_ex03b$agecat[age >= 42] <- "Q4"
detach(e_ex03b)

We also note that our outcome variable “outcome02” is alphabetically listed as “Failure”
first, then “Success”. Intuitively, we might be more interested in risk factors for “Failure”
rather than in risk factors for “Success”. We thus make a rearrangement to get the order
sequentially such that the odds calculated is Failure / Success, taking into account that R wishes
the outcome to be 0 and 1 (zero and one) and write in full:
attach(e_ex03b)
e_ex03b$agecat[age >= 00 & age < 23] <- "Q1"
e_ex03b$agecat[age >= 23 & age < 31] <- "Q2"
e_ex03b$agecat[age >= 31 & age < 42] <- "Q3"
e_ex03b$agecat[age >= 42] <- "Q4"
e_ex03b$out02[outcome02 == "Success"] <- 0
e_ex03b$out02[outcome02 == "Failure"] <- 1
detach(e_ex03b)
Then we give both new variables new names, write the data to disk, attach the new file, check
the names to verify (not necessary, but it is always a good idea in the beginning to verify), and
then write the output:
e_ex03c <- data.frame(e_ex03b)
write.table(e_ex03c, file="e_ex03c", row.names=TRUE)
attach(e_ex03c)
names(e_ex03c)
table(agecat, out02)

and get:

course_e_ex03_task

Page 4 of 8

This ensures that for the age quartiles Q1 is the referent and for treatment outcome 1-Success
is the referent.

Then we repeat the regression model with the categorized agecat:
Logistic regression with AGE as categorical variable
mylogit2 <- glm(formula = out02 ~ factor(fq02) + factor(sex) + factor(agecat),

data= e_ex03c, family=binomial)
summary(mylogit2)
lreg.or <-exp(cbind(OR = coef(mylogit2), confint(mylogit2)))
round(lreg.or, digits=4)

and get:

The referent is the youngest quartile set to unity. Relative to the referent, the risk of failure
increases in the third and fourth quartile to similar levels and is then highest in the last quartile.
This observation seems to support the treating of age as a continuous variable, or at least not
plainly contradicting it.

This, so far has been “sampling” only. What we really wanted to evaluate is the influence of
several factors that might modify the treatment outcome of multidrug-resistant tuberculosis.
We will be starting with a full model inputting all variables, using instead of the binary fq02
the more detailed fq04, slightly modified. The variable fq04 had originally 4 levels, but in
the source dataset of 501 records we are using in this exercise, the 14 records with a missing
result have been dropped. We will first re-categorize the remaining 3 levels so as to ensure that
the referent is Susceptible. As shown earlier, we do this by adding a sequential number to
the desired sequence to get it alphabetically correct:
attach(e_ex03c)
e_ex03c$fq03[fq04 == "Susceptible"] <- "1-Susceptible"
e_ex03c$fq03[fq04 == "Low-level resistance"] <- "2-Low-level resistance"
e_ex03c$fq03[fq04 == "High-level resistance"] <- "3-High-level resistance"
detach(e_ex03c)

Not that it is essential but for getting things tidy, save the new as a data frame and read it in:
e_ex03d <- data.frame(e_ex03c)
write.table(e_ex03d, file="e_ex03d", row.names=TRUE)
e_ex03e <- read.table("e_ex03d")
and then we are ready for the full model:
mylogit3 <- glm(formula = out02 ~ factor(fq03) + factor(sex) + age +

factor(pza02) + factor(kmy02) + factor(pth02) + factor(cxr02),
data=e_ex03e, family=binomial)

summary(mylogit3)
and we get:

course_e_ex03_task

Page 5 of 8

Note also the “AIC” at the end to which will pay particular attention in the following:
AIC: 407.95

AIC stands for Akaike’s Information Criterion and is a weighted criterion of goodness of fit.
The smaller the value, the better the fit. As we are going with stepwise elimination as one of
the common procedures (Crawley M J. The R book. Second edition, Wiley, Chichester, UK,
2013, 1051 pp), we are checking how the criterion changes. Gauging from the probabilities
above (last column), kanamycin resistance is the first factor to be removed, thus the model is
reduced to:
mylogit3 <- glm(formula = out02 ~ factor(fq03) + factor(sex) + age +

factor(pza02) + factor(pth02) + factor(cxr02), data=e_ex03e,
family=binomial)

summary(mylogit3)
Improving the AIC to 405.96 and putting removal of the chest radiography result as the next.
This removal improves the AIC to 403.99 and suggest removal of prothionamide resistance
next. This removal improves the AIC to 402.54 and suggests removal of pyrazinamide
resistance next. This removal improves the AIC to 401.55. The model is now:
mylogit3 <- glm(formula = out02 ~ factor(fq03) + factor(sex) + age,

data=e_ex03e, family=binomial)
summary(mylogit3)
and gives:

While low-level resistance to the fluoroquinolone is not a predictor, high-level resistance is a
strong predictor, and both sex and age are predictors. Following the rules of being strict,
none of the remaining factors should thus be removed.

If you watched it through the process of elimination, you found:

Modeling step Resulting AIC value

Full model 407.95

Remove kmy02 405.96

Remove cxr02 403.99

Remove pth02 402.54

Remove pza02 401.55

course_e_ex03_task

Page 6 of 8

What we haven’t done yet, but are very much obliged to do is to test whether there is
heterogeneity in the data and we therefore need one or more interaction terms. Woolf's test
for interaction (also known as Woolf's test for the homogeneity of odds ratios) provides a
formal test for Interaction. According to Mark Myatt (see text recommended at the beginning
of Part E), R does not provide Woolf’s test specifically, but the grammar of the function can
be found in the help section on mantelhaen.test which we have used earlier. We use here the
slightly modified script by Myatt (giving the same result), but is slightly more explicit. We
type (perhaps best in the console, so that it does not interfere with our script e_ex03.r:
woolf.test <- function(x) {}
fix(woolf.test)
Then in the editor box:
function(x)
 {
 x <- x + 0.5
 k <- dim(x)[3]
 or <- apply(x, 3, function(x)
 {(x[1, 1] / x[1, 2]) / (x[2, 1] / x[2, 2])})
 w <- apply(x, 3, function(x) {1 / sum(1 / x)})
 chi.sq <- sum(w * (log(or) - weighted.mean(log(or), w))^2)
 p <- pchisq(chi.sq, df = k - 1, lower.tail = FALSE)
 cat("\nWoolf's X2 :", chi.sq, "\np-value :", p, "\n")
}

Finally we save:
save(woolf.test, file = "woolf.test.r")

Back to our e_ex03.r script (not necessary, but no harm either for this time, as it is loaded,
but for the next run after we close, and also that we note where the credit goes to):
Test for interaction, using the script for
Woolf's test provided by Mark Myatt
load("c:/epidata_course/woolf.test.r")

The function requires one parameter, denoted here as x. If we are interested in the interaction
between outcome, ofloxacin resistance, and sex, we could make one object:
tabofl <- table(fq03, out02, sex)

and then:
woolf.test(tabofl)

and we get:

Thus, not to worry about heterogeneity. For the sake of exercise, and also to look what happens,
we will nevertheless put in an interaction term:
mylogit3 <- glm(formula = out02 ~ factor(fq03) + factor(sex) + age +

factor(sex):factor(fq03), data=e_ex03e, family=binomial)
summary(mylogit3)
and we get a poorer AIC of 405.45 and insignificant interaction terms:

course_e_ex03_task

Page 7 of 8

If we find a significant interaction and perhaps even the AIC improves, then the interaction
term must be retained. As you note above, it is simple to write the interaction term which is
writing the two variables connected by a colon as in factor(var1):factor(var2).

We are therefore pretty much assured that this is our final model:
Final model:
mylogit3 <- glm(formula = out02 ~ factor(fq03) + factor(sex) + age,

data=e_ex03e, family=binomial)
summary(mylogit3)
lreg.or <-exp(cbind(OR = coef(mylogit3), confint(mylogit3)))
round(lreg.or, digits=4)

With the following odds ratios and 95% confidence intervals:

Task:
o Examine whether there are interactions between age and sex and fluoroquinolone

resistant and age, so that all possibilities have been checked before we accept the model.

course_e_ex03_task

Page 8 of 8

Task:
o Examine whether there are interactions between age and sex and fluoroquinolone

resistant and age, so that all possibilities have been checked before we accept the model.

Solution:
The e_ex03.r script:
Exercise 3: Multivariable analysis in R part 1: Logistic regression

rm(list=ls())

e_ex03 <- read.table("e_ex02_02.dat")
attach(e_ex03)

Logistic regression with AGE as conintuous variable
mylogit <- glm(formula = outcome02 ~ factor(fq02) + factor(sex) + age, data=e_ex03,

family=binomial)
summary(mylogit)
lreg.or <-exp(cbind(OR = coef(mylogit), confint(mylogit)))
round(lreg.or, digits=4)

Drop variables
names(e_ex03)
e_ex03b <- e_ex03[c(1:4, 7:13)]
detach(e_ex03)
attach(e_ex03b)
names(e_ex03b)

Create new variable for Quartiles of age
Age as categorical variables in quartiles
quantile(age, probs = c(25, 50, 75)/100)
25% 50% 75%
23 31 42

attach(e_ex03b)
e_ex03b$agecat[age >= 00 & age < 23] <- "Q1"
e_ex03b$agecat[age >= 23 & age < 31] <- "Q2"
e_ex03b$agecat[age >= 31 & age < 42] <- "Q3"
e_ex03b$agecat[age >= 42] <- "Q4"
e_ex03b$out02[outcome02 == "Success"] <- 0
e_ex03b$out02[outcome02 == "Failure"] <- 1
detach(e_ex03b)

Solution to Exercise 3: Multivariable analysis in R part 1: Logistic
regression

Key points:
a. Logistic regression is the standard and most commonly used approach to

multivariable analysis if the questions cannot be answered by adjusting in a
stratified analysis using Mantel-Haenszel estimation of the odds ratio

b. Use stepwise exclusion of variables to improve the model fit, by observing p
values and the AIC summary for quality of model fit

c. Beware of heterogeneity, test formally for heterogeneity using Woolf’s test

e_ex03c <- data.frame(e_ex03b)
write.table(e_ex03c, file="e_ex03c", row.names=TRUE)
attach(e_ex03c)
names(e_ex03c)
table(agecat, out02)

Logistic regression with AGE as categorical variable
mylogit2 <- glm(formula = out02 ~ factor(fq02) + factor(sex) + factor(agecat), data=

e_ex03c, family=binomial)
summary(mylogit2)
lreg.or <-exp(cbind(OR = coef(mylogit2), confint(mylogit2)))
round(lreg.or, digits=4)

Full model logistic regression
attach(e_ex03c)
e_ex03c$fq03[fq04 == "Susceptible"] <- "1-Susceptible"
e_ex03c$fq03[fq04 == "Low-level resistance"] <- "2-Low-level resistance"
e_ex03c$fq03[fq04 == "High-level resistance"] <- "3-High-level resistance"

detach(e_ex03c)
e_ex03d <- data.frame(e_ex03c)
write.table(e_ex03d, file="e_ex03d", row.names=TRUE)
e_ex03e <- read.table("e_ex03d")

Full model
mylogit3 <- glm(formula = out02 ~ factor(fq03) + factor(sex) + age + factor(pza02) +

factor(kmy02) + factor(pth02) + factor(cxr02), data=e_ex03e, family=binomial)
summary(mylogit3)
AIC 407.95

Remove kmy02
mylogit3 <- glm(formula = out02 ~ factor(fq03) + factor(sex) + age + factor(pza02) +

factor(pth02) + factor(cxr02), data=e_ex03e, family=binomial)
summary(mylogit3)
AIC 405.96

Remove cxr02
mylogit3 <- glm(formula = out02 ~ factor(fq03) + factor(sex) + age + factor(pza02) +

factor(pth02), data=e_ex03e, family=binomial)
summary(mylogit3)
AIC 403.99

Remove pth02
mylogit3 <- glm(formula = out02 ~ factor(fq03) + factor(sex) + age + factor(pza02),

data=e_ex03e, family=binomial)
summary(mylogit3)
AIC 402.54

Remove pza02
mylogit3 <- glm(formula = out02 ~ factor(fq03) + factor(sex) + age, data=e_ex03e,

family=binomial)
summary(mylogit3)
AIC 401.55

Test for interaction, using the script for
Woolf's test provided by Mark Myatt
load("c:/epidata_course/woolf.test.r")
attach(e_ex03e)
tabofl <- table(fq03, out02, sex)
woolf.test(tabofl)
p-value : 0.6336425
tabofl <- table(fq03, out02, agecat)
woolf.test(tabofl)
p-value : 0.9898
tabofl <- table(sex, out02, agecat)

course_e_ex03_solution

Page 2 of 3

woolf.test(tabofl)
p-value : 0.5075

Put in the interaction term anyhow
mylogit3 <- glm(formula = out02 ~ factor(fq03) + factor(sex) + age +

factor(sex):factor(fq03), data=e_ex03e, family=binomial)
summary(mylogit3)
AIC 405.45
=> AIC worsens

Final model:
mylogit3 <- glm(formula = out02 ~ factor(fq03) + factor(sex) + age, data=e_ex03e,

family=binomial)
summary(mylogit3)

The Woolf’s test for heterogeneity:
tabofl <- table(fq03, out02, sex)
woolf.test(tabofl)
tabofl <- table(fq03, out02, agecat)
woolf.test(tabofl)
tabofl <- table(sex, out02, agecat)
woolf.test(tabofl)

tabofl <- table(fq03, out02, sex)
Woolf's X2 : 0.2271536
p-value : 0.6336425

tabofl <- table(fq03, out02, agecat)
Woolf's X2 : 0.115918
p-value : 0.9898611

tabofl <- table(sex, out02, agecat)
Woolf's X2 : 2.326063
p-value : 0.5075462

Conclusion:

No interaction between fluoroquinolone resistance and sex, fluoroquinolone resistance and age,
nor sex and age. Therfore the final model does not need an interaction term.

course_e_ex03_solution

Page 3 of 3

Often the results of the logistic regression are the culminating final summary of your analysis.
In our specific setting, the logistic regression was an intermediate step to an adjusted form of a
survival analysis. You have learned the principle of using a Kaplan-Meier survival analysis in
an earlier Exercise. We extend on this approach and look at factors that determine the binary
outcome in the treatment of multidrug-resistant tuberculosis. A Kaplan-Meier analysis would
get us quite far, but we would face the problem of adjustment and the problem of dealing with
continuous predictor variables such as age. While categorizing age is an option, it might be
arbitrary and not the most satisfactory solution. We could end up with multiple small groups if
values from more than one variable are made strata of a combining new variable. Almost
inevitably, differences might become meaningless with the loss of power.

There are several techniques of multivariate analysis. Principally all do the same thing –
simultaneous adjustment for multiple variables and providing independent effect estimates for
each exposure variable in the model on the outcome. Depending on the type of outcome
variable, different techniques are used.

If the outcome is a continuous variable, we use linear regression. If the outcome is categorical,
we use logistic regression. If the outcome is ‘time to event’, we use a Cox proportional hazard
model. If the outcome is ‘number of events’ (discrete numeric), then we use Poisson regression.
Here, the outcome measure is ‘time to event’, and hence we use Kaplan-Meier analysis for
univariate analysis and the Cox proportional hazard model for multivariate analysis.

In our approach to the analysis of the dataset on multidrug-resistant tuberculosis we combine
the two techniques of logistic regression modeling and the Cox proportional hazard model in a
way that is quite common: logistic regression is used first to evaluate and determine which
variables have to be considered. There are alternative approaches, including determining the
factors within the Cox model itself. In our case, we had isolated three factors, initial
fluoroquinolone resistance, age, and sex. After fitting the Cox proportional hazard model
including these three variables, we test whether any of the variables grossly violates the
assumption of proportionality of hazards (which must be met). If there is such a variable, it
must be removed from the adjustment and instead stratification by this variable is indicated.
Then each of the strata are adjusted for the remaining variables and it is checked again whether
anything remains that violates the proportionality assumption, and so on, until the final model
emerges. This is the procedure we are going to apply.

Exercise 4: Multivariable analysis in R part 2: Cox proportional hazard
model

At the end of this exercise you should be able to:
a. Use the Cox proportional hazard model
b. Test the assumption for proportionality and if violated, carry out a stratified

analysis

course_e_ex04_task

Page 1 of 8

The R survival package

The base package of R does not include survival analysis, and the package “survival” must thus
be installed (see lower right quadrant in RStudio):

The “survival” package was written by Terry Therneau from the Mayo Clinic. The procedure
is the same as we used before for the “foreign” package. Open a new file in the Source editor
and save it as e_ex04.r file. Analogous to calling “foreign” from the library, we also need
to be calling “survival” from the library. We are going to use the e_ex02_02.dat as our
starting dataset. Thus, make sure that it is attached before we start doing anything.
* Exercise 4: Multivariable analysis in R part 2: Cox proportional hazard

model
library(survival)
rm(list=ls())
e_ex04 <- read.table("e_ex02_02.dat")
names(e_ex04a)
The last line gives us the variables:

We need only AGE, FQ04, SEX, TOTOBSTIME, and OUTCOME02, thus:
e_ex04b <- e_ex04a[c(1:4, 8)]

(It is not just to repeat what was learnt before, there is also some reason to reduce datasets: like
EpiData Analysis, R works in the memory which makes it a relatively “slow processor”). We
then make the same modification we discussed and did in Exercise 3, attach the file and check
the names:
attach (e_ex04b)
e_ex04b$fq03[fq04 == "Susceptible"] <- "1-Susceptible"
e_ex04b$fq03[fq04 == "Low-level resistance"] <- "2-Low-level resistance"
e_ex04b$fq03[fq04 == "High-level resistance"] <- "3-High-level resistance"
e_ex04b$out02[outcome02 == "Success"] <- 0
e_ex04b$out02[outcome02 == "Failure"] <- 1
detach(e_ex04b)
names(e_ex04b)
e_ex04c <- e_ex04b[c(1, 3:4, 6:7)]
attach(e_ex04c)
names(e_ex04c)
The last line shows:

We have thus reduced our dataset to the bare essential minimum with which we can work.

Kaplan-Meier survival analysis

course_e_ex04_task

Page 2 of 8

Let’s first compare notes, i.e. check whether we get identical survival probabilities using the
Kaplan-Meier method in EpiData Analysis and in R. In EpiData Analysis, we would use:
lifetable out02 totobstime /by=fq03 /i=b30 /adj \
 /ymin=0.30 /ymax=1 /NG /e3 \
 /ti="KM successful outcome probability" \
 /sub="by intitial fluoroquinolone susceptibility" \
 /t
We get:

Survival probability for susceptible: 0.865
Survival probability for low-level resistance: 0.909
Survival probability for high-level resistance: 0.480

The model commands in R:
fit1 <- survfit(formula=Surv(totobstime, out02) ~ fq03, data=e_ex04c)

We want to add a simple plot:
plot(fit1, col = c(1, 2, 4), ymin=0.45)
colors: 1=black; 2=red, 4=blue

which gives us the plot in the lower-right quadrant:

Remember that initially we defined R as a “language and environment for statistical computing
and graphing”. The graphics capabilities of R are enormous but it will take time to learn and
acquire them (see more information in the text by Thomas Lumley). As it is not our primary
purpose to evaluate the graphics capabilities of R, we leave that for the time being. We must
see the statistical output, however, so we add a third command line:
fit1 <- survfit(formula=Surv(totobstime, out02) ~ fq03, data=e_ex04c)
plot(fit1, col = c(1, 2, 4), ymin=0.45)
colors: 1=black; 2=red, 4=blue
summary(fit1, times = seq(0, 2000, 30))

course_e_ex04_task

Page 3 of 8

We get exactly the same survival probabilities as with the lifetable in EpiData Analysis.
This should strengthen our confidence in both software and our skills. We note, however, that
the confidence intervals are different. In EpiData Analysis, events change the survival
probability but censored observations do not. This is identical in R and it is what we expect.
In EpiData analysis, the 95% confidence interval, however, continues to widen as observations
with the passage of time become censored, while this is not the case in R. EpiData Analysis
uses the philosophy that smaller numbers lead to larger uncertainty, while R focuses on the
importance of uncertainty at the point of the last event. Comparison shows that Stata and R get
the same results. EpiData Analysis has adapted the approach proposed by Altman, and this will
be reviewed during the re-writing of the EpiData Analysis module. In any case, we can
reproduce the survival probability in the Kaplan-Meier approach.

The Cox proportional hazard model
The proportional hazards model allows the analysis of survival data by regression modeling.
Linearity is assumed on the log scale of the hazard. Relative to a referent, say the rate of death
among a control group, the rate of death among the experimental group might be half that of
the control group and the hazard ratio is thus 0.5. In contrast to relative risks which are
cumulative over observation time, hazard ratios reflect an instantaneous risk over the study
period or a subset of the period. Hazard ratios suffer therefore somewhat less from possible
selection bias introduced by endpoints. Under the Cox proportional hazard model, the hazard
ratio is constant. The Cox model thus assumes an underlying hazard function with a
corresponding survival curve. In a stratified analysis, there will be one such curve for each
stratum.

The command lines for the Cox model are:
mdrcox <- coxph(Surv(totobstime, out02) ~ factor(fq03) + factor(sex) + age,

data=e_ex04c)
summary(mdrcox)

where totobstime is the variable for the total observation time from treatment start until the
event occurs or the observation time is censored (be it e.g. to loss from follow-up after treatment
cessation or reaching the end of the observation time). Note that “Surv” is capitalized (R is
case-sensitive). The second line gives the output:

course_e_ex04_task

Page 4 of 8

As it should be, the three variables are significantly associated. The exp(coef), i.e. the
exponent of the coefficient is the hazard ratio.

As mentioned above, the Cox proportional hazard model requires that the assumption of
proportionality is met, that is the survival function for different factors are required to change
proportionately and do not, for instance cross each other.

The test diagnostic to evaluate whether the assumption of proportionality is met is:
cox.zph(mdrcox)

gives:

The global chi-square test is highly significant, that is the assumption of proportionality is
violated. The most important culprit is seemingly the variable fq03. AGE is also significant
but not that grossly and sex not at all. The way to resolve it is stratification, that is fq03 must
be taken out and the model must be stratified by fq03. R makes it easy for us to do that with
the following modification:
mdrcox <- coxph(Surv(totobstime, out02) ~ strata(fq03) + factor(sex) + age,

data=e_ex04c)
summary(mdrcox)

This gives:

We have now the hazard of sex and age but not anymore of fluoroquinolone resistance
because the latter was not a constant hazard and was thus taken out by stratification.

Testing the assumption for proportionality and plotting the test result:

course_e_ex04_task

Page 5 of 8

cox.zph(mdrcox)
plot(cox.zph(mdrcox))

and

This indicates that the model is not ideal for the variable age, but with a bit lenience and the
more or less regular graphical test we will allow it to pass without further more complex
stratification. The interpretation of the graph in its most simplest way is how curved it is: if it
is fairly flat (as we think it is here), the assumption of proportionality is not (much) violated. If
it is decidedly different from flat, then the assumption is violated as in this example:

Copied from:

http://stats.stackexchange.com/questions/15114/how-to-
understand-the-plotting-of-the-cox-zph-function-in-r

help(plot.survfit)

gives us information on how to plot it. It can get elaborate, of course, but here just a bare-bone
sequence of commands:
p <- plot(survfit(mdrcox), ylim=c(.45, 1), xlab="Days since treatment start",

mark.time=F, ylab="Probability of a successful outcome", col=c(1, 2, 4),
main="Cox proportional hazard model by initial fluoroquinolone
resistance")

course_e_ex04_task

Page 6 of 8

http://stats.stackexchange.com/questions/15114/how-to-understand-the-plotting-of-the-cox-zph-function-in-r
http://stats.stackexchange.com/questions/15114/how-to-understand-the-plotting-of-the-cox-zph-function-in-r

Our main interest is in the numeric output quantification of survival probability:
print(p)

Thus, our main result, the survival probabilities among patients with initial fluoroquinolone
susceptibility, low-, and high-level resistance, adjusted for age and sex are:

Survival probability susceptible: 0.874
Survival probability low-level resistant: 0.905
Survival probability high-level resistant: 0.510

To obtain the detailed data:
mdrcox2 <- survfit(mdrcox)
summary(mdrcox2, times = seq(0, 3000, 30))

gives (just the first 150 days for susceptible, low-level resistant, and high-level resistant):

course_e_ex04_task

Page 7 of 8

Here, we show it for 30-day intervals, out for up to 3000 days but we could also just get it for
the first 5 days, but daily:
summary(mdrcox2, times = seq(0, 5, 1))

R is indeed powerful through flexibility.

Task:
This analysis shows that low-level fluoroquinolone resistance has seemingly no influence on
the outcome while in contrast high-level fluoroquinolone resistance is a powerful predictor
for an adverse outcome. Nevertheless, even with high-level fluoroquinolone resistance, a
remarkable 51% still had a successful outcome. Unsuccessful here also included death and
default. What is of key interest with resistance to the core drug fluoroquinolone is whether
the outcome is bacteriologically favorable or unfavorable.
o The first task is to identify factors that are predictors for an unsuccessful bacteriological

outcome (failure or relapse) versus a bacteriologically favorable outcome (completion and
relapse-free cure) among cases with any type of fluoroquinolone resistance (low-level or
high-level) and who did neither die nor default.

o Summarize your analysis in a table showing numbers, odds ratios and 95% confidence
intervals both univariate and adjusted multivariate for the factors identified in your
regression analysis.

course_e_ex04_task

Page 8 of 8

Solution:

The e_ex04.r script from Exercise 4:
Exercise 4: Multivariable analysis in R part 2: Cox proportional hazard

model

library(survival)
rm(list=ls())
e_ex04a <- read.table("e_ex02_02.dat")
names(e_ex04a)

e_ex04b <- e_ex04a[c(1:4, 8)]

attach(e_ex04b)
e_ex04b$fq03[fq04 == "Susceptible"] <- "1-Susceptible"
e_ex04b$fq03[fq04 == "Low-level resistance"] <- "2-Low-level resistance"
e_ex04b$fq03[fq04 == "High-level resistance"] <- "3-High-level resistance"
e_ex04b$out02[outcome02 == "Success"] <- 0
e_ex04b$out02[outcome02 == "Failure"] <- 1
detach(e_ex04b)
names(e_ex04b)
e_ex04c <- e_ex04b[c(1, 3:4, 6:7)]
attach(e_ex04c)
names(e_ex04c)

Reproducing the Kaplan-Meier lifetable analysis from EpiData Analysis
fit1 <- survfit(formula=Surv(totobstime, out02) ~ fq03, data=e_ex04c)
plot(fit1, col = c(1, 2, 4), ymin=0.45)
colors: 1=black; 2=red, 4=blue
summary(fit1, times = seq(0, 2000, 30))

Cox proportional hazard model
mdrcox <- coxph(Surv(totobstime, out02) ~ factor(fq03) + factor(sex) + age,

data=e_ex04c)
summary(mdrcox)
cox.zph(mdrcox)

mdrcox <- coxph(Surv(totobstime, out02) ~ strata(fq03) + factor(sex) + age,

data=e_ex04c)
summary(mdrcox)
cox.zph(mdrcox)
plot(cox.zph(mdrcox))

Solution to Exercise 4: Multivariable analysis in R part 2: Cox
proportional hazard model

At the end of this exercise you should be able to:
a. Use stepwise logistic regression to determine risk factors for a

bacteriologically adverse outcome among patients with initial fluoroquinolone
resistance who neither defaulted nor died

b. Summarize you findings in a table

p <- plot(survfit(mdrcox), ylim=c(.45, 1), xlab="Days since treatment start",

mark.time=F, ylab="Proportion without adverse event", col=c(1, 2, 4),
main="Cox proportional hazard model by initial fluoroquinolone
resistance")

print(p)

mdrcox2 <- survfit(mdrcox)
summary(mdrcox2, times = seq(0, 3000, 30))
summary(mdrcox2, times = seq(0, 5, 1))

The e_ex04_solution.r script for the task:
Exercise 4 Solution: Logistic regression to identify risk factors for

failure

library(survival)
rm(list=ls())
e_ex04a_task <- read.table("e_ex02_03.dat")
names(e_ex04a_task)

e_ex04b_task <- e_ex04a_task[c(1:3, 8:11)]

attach(e_ex04b_task)
e_ex04b_task$fq03[fq04 == "Low-level resistance"] <- "1-Low-level

resistance"
e_ex04b_task$fq03[fq04 == "High-level resistance"] <- "2-High-level

resistance"
e_ex04b_task$out02[outcome02 == "Success"] <- 0
e_ex04b_task$out02[outcome02 == "Failure"] <- 1
detach(e_ex04b_task)
names(e_ex04b_task)
e_ex04c_task <- e_ex04b_task[c(1, 3, 5:9)]
attach(e_ex04c_task)
names(e_ex04c_task)

Logistic regression
mylogit<- glm(formula = out02 ~ factor(fq03) + factor(sex) + factor(pza02) +

factor(kmy02) + factor(pth02) + age, data=e_ex04c_task, family=binomial)
summary(mylogit)

Remove KMY02
mylogit<- glm(formula = out02 ~ factor(fq03) + factor(sex) + factor(pza02) +

factor(pth02) + age, data=e_ex04c_task, family=binomial)
summary(mylogit)

Remove PTH02
mylogit<- glm(formula = out02 ~ factor(fq03) + factor(sex) + factor(pza02) +

age, data=e_ex04c_task, family=binomial)
summary(mylogit)

Remove SEX
mylogit<- glm(formula = out02 ~ factor(fq03) + factor(pza02) + age,

data=e_ex04c_task, family=binomial)
summary(mylogit)

Remove AGE

course_e_ex04_solution

Page 2 of 3

mylogit<- glm(formula = out02 ~ factor(fq03) + factor(pza02),
data=e_ex04c_task, family=binomial)

summary(mylogit)

=> PZA just not significant with p=0.5468, leave it in
Final model
mylogit<- glm(formula = out02 ~ factor(fq03) + factor(pza02),

data=e_ex04c_task, family=binomial)
summary(mylogit)
lreg.or <-exp(cbind(OR = coef(mylogit), confint(mylogit)))
round(lreg.or, digits=4)

load("c:/epidata_course/woolf.test.r")
tab <- table(fq03, out02, pza02)
woolf.test(tab)
P=0.936 => no interaction

Univariate analysis
load("c:/epidata_course/tab2by2.r")
tab2by2(fq03, out02)
tab2by2(pza02, out02)

Successful Not

successful Total Crude odds ratio Adjusted odds ratio*

 n n % Point
CI

low
CI

high Point
CI

low
CI

high
P

value
Total 44 9 17.0 53
Fluoroquinolone resistance
 Low level 30 1 3.2 31 Ref
 High level 14 8 36.4 22 17.1 2.0 150.7 13.0 1.9 262.1 0.025
Pyrazinamide resistance
 Not known * 27 1 3.6 28 Ref
 Resistant 17 8 32.0 25 12.7 1.5 110.8 9.2 1.3 187.0 0.055

CI 95% confidence interval
* By logistic regression
** Susceptible or not tested

course_e_ex04_solution

Page 3 of 3

	The starting point on the internet is the “The R Project for Statistical Computing” at its web site: http://www.r-project.org/. This is from where you access one if its mirror sites to download the software.
	In tandem with R, we will also use RStudio, also open-source and free, a powerful and productive user interface for R. It can be found for download at its web site: http://www.rstudio.com/.
	course_e_ex01_task.pdf
	The starting point on the internet is the “The R Project for Statistical Computing” at its web site: http://www.r-project.org/. This is from where you access one if its mirror sites to download the software.
	In tandem with R, we will also use RStudio, also open-source and free, a powerful and productive user interface for R. It can be found for download at its web site: http://www.rstudio.com/.

