
Part E. Beyond EpiData Analysis using R

Part E: Beyond EpiData Analysis using R
Exercise 1: Introduction to R software: basics

Exercise 2: Introduction to R software: data bases and functions

Exercise 3: Multivariable analysis in R part 1: A logistic regression

Exercise 4: Multivariable analysis in R part 2: A Cox proportional hazard model

Introductory note
Part E addresses how to conduct a multivariable analysis for two situations for which EpiData
Analysis is not designed to be operational. With our philosophy that there should preference
be given to outstanding freely available software, we chose to introduce the open-source
package R rather than any of the proprietary software solution packages.

The first exercise introduces the bare-bone basics of R software with a few simple exercises to
get a feel for its working. Recommended texts for self-study are (available on the course CD-
ROM):

Aragón T J. Applied epidemiology using R. University of California, Berkeley School of Public Health, and
the San Francisco Department of Public Health. Version 14 October 2013, available from
http://medepi.com/courses/applied-epi-using-r/.

Lumley T and the R Core Development Team and UW Department of Biostatistics. R fundamentals and
programming techniques. Version Birmingham, 2006-2-27/28, available from
http://faculty.washington.edu/tlumley/Rcourse/R-fundamentals.pdf.

Venables W N, Smith D M and the R Core Team. An introduction to R. Notes on R: a programming
environment for data analysis and graphics, Version 3.1.0 (2014-04-10), available from: http://cran.r-
project.org/doc/manuals/R-intro.pdf.

The second exercise extends on the basics by introducing data bases and functions. The
recommended text for self-study is (available on the course CD-ROM):

Myatt M. Open source solutions – R. Nordic School of Public Health and University of Tartu. Computer
software in epidemiology / statistical practice in epidemiology. Version 16 May 2005, available from
http://www.brixtonhealth.com.

The third exercise gives the first application, the use of logistic regression to determine
predictors that include continuous variables and variables with more than two levels. The
recommended text for self-study is (available in the course material):

Manning C. Logistic regression (with R). Version 4 November 2007, available from
http://nlp.stanford.edu/~manning/courses/ling289/logistic.pdf.

The fourth exercise gives the second application, survival analysis where stratification with the
Kaplan-Meier approach does no more suffice and adjustments are preferred by using a Cox

http://medepi.com/courses/applied-epi-using-r/
http://faculty.washington.edu/tlumley/Rcourse/R-fundamentals.pdf
http://cran.r-project.org/doc/manuals/R-intro.pdf
http://cran.r-project.org/doc/manuals/R-intro.pdf
http://www.brixtonhealth.com/
http://nlp.stanford.edu/%7Emanning/courses/ling289/logistic.pdf

proportional hazard model. The recommended texts for self-study are (available in the course
material):

Tableman M. Survival analysis using S/R. Unterlagen für den Weiterbildungsgang in angewandter Statistik
an der ETH Zürich. [Note: despite the German subtitle, the document is entirely in English, except for the
subtitle which refers to the course at the Swiss Federal Institute of Technology in Zurich]. Version August-
September 2012. It is an excerpt from the book Survival Analysis Using S: Analysis of Time-to-Event Data
by Mara Tableman and Jong Sung Kim, published by Chapman & Hall/CRC, Boca Raton, 2004.

Therneau T M. Package ‘survival’. Version 2.37-7, July 2, 2014, available from http://cran.r-
project.org/web/packages/survival/index.html.

Acknowledgments:
We used the following data in the exercises:

In Exercise 1, we use an example given by Altman in:
Altman D G, Machin D, Bryant T N, Gardner M J. Statistics with confidence. 2nd edition. 2 ed. Bristol: BMJ
Group; 2000.

In Exercises 2, 3, and 4 we use data from:
Aung K J M, Van Deun A, Declercq E, Sarker M R, Das P K, Hossain M A, Rieder H L. Successful “9-month
Bangladesh regimen” for multidrug-resistant tuberculosis among over 500 consecutive patients. Int J Tuberc Lung
Dis 2014;18: in press.

We are grateful to Drs Aung, Declercq, and Van Deun to grant permission to use an excerpt of
individual data from the original dataset.

Nguyen Binh Hoa, Ajay M V Kumar, and Zaw Myo Tun went through the first draft of the
exercises and gave valuable input into the development of Part E.

course_e_ex01_task

Page 2 of 14

http://cran.r-project.org/web/packages/survival/index.html
http://cran.r-project.org/web/packages/survival/index.html

R is a language and environment for statistical computing and graphing. It provides a suite of
numerous packages for a virtually unlimited number of applications, including the most
powerful tools that an epidemiologist might need. It has a large community of collaborators
and contributors, it is entirely open to everybody who wants to use it and who wishes to
contribute.

The starting point on the internet is the “The R Project for Statistical
Computing” at its web site: http://www.r-project.org/. This is from
where you access one if its mirror sites to download the software.

In tandem with R, we will also use RStudio, also open-source and free, a
powerful and productive user interface for R. It can be found for download
at its web site: http://www.rstudio.com/.

If your course comes on a CD-ROM, you find the two software packages on your CD-ROM,
but as always with software, we strongly recommend that you obtain it from its original source
on the internet.

Install R on your computer and then install RStudio. If you open RStudio, you see that it is
divided into a left-hand-sided panel, and a split right-handed panel:

In Tools | Options we can adjust to the preferred layout:

Exercise 1: Introduction to R software

At the end of this exercise you should be able to:
a. Have a basic understanding of how R works and to expand on this basis in a

self-learning process
b. Be informed about resources on R software

course_e_ex01_task

Page 3 of 14

http://www.r-project.org/
http://www.rstudio.com/

We chose here (somewhat arbitrarily) to have the Source on the top left, the Console on the top
right, the Environment, History, … on the bottom left, and the Files, Plots, Packages, Help on the
bottom left. and get altogether four quadrants:

So that after these adjustments we get:

course_e_ex01_task

Page 4 of 14

We cleared the screen of the Console by using the shortcut CTRL+L. To switch between the
Console and the Source editor quadrants use CTRL+1 to get to the Source editor, and CTRL+2
to get to the Console.

Of course, you are free to arrange it at your liking, but for the time being in this course, we will
refer to this arrangement.

First we Create project from an Existing directory:

and browse for the EPIDATA_COURSE project folder:

You note on the left top:

and note that the left side has been collapsed to show the environment only and on the right side
we are in Files:

If you click on the toggle icon above Source:

course_e_ex01_task

Page 5 of 14

You see the split screen again.

Note also that RStudio and R use forward slashes “C:/epidata_course/” in the Console. RStudio
actually created a sub-folder “.Rproj.user\” which is not public and by default hidden
from view.

We are therefore all set to go. To introduce the workings of R we will create a two-by-two
table as in a case-control study and calculate the odds ratio with a Woolf confidence interval.

A case-control study example
Our reference text for statistical calculations like for EpiData Analysis is, whenever possible,
the text by Altman and collaborators:
 Altman D G, Machin D, Bryant T N, Gardner M J. Statistics with confidence. 2nd edition. Bristol: BMJ

Group, 2000: pp 61-62.

The odds ratio is defined as the odds of exposure among cases divided by the odds of exposure
among controls. Woolf’s logit method uses normal approximation to the distribution of the
logarithm of the odds ratio in which the standard error is
SE(logeOR) = SQRT(1/a + 1/b + 1/c + 1/d)

To obtain the 95% confidence interval, we calculate the quantities:
95% CI = logeOR ± 1.96 * SE(logeOR)

By exponentiating, we get the 95% confidence interval.

To enable verification of our numbers, we are going to use the same example as Altman uses
in table 7.4 for the worked example:

ABO non-secretor state
Study group

Cases Controls Total

Yes 54 89 143

No 60 245 305

Total 114 334 448

We will be writing our commands into the upper left quadrant (Source editor). When we run
it, it will show in the right upper quadrant (the Console). Objects that we create will be found
in the left lower quadrant.

In the Source editor, you should now have the empty workspace like any text editor:

course_e_ex01_task
Page 6 of 14

Type:
a <- 54

“a” is what we call an “object” to which we assign (using “<-”) the value 54. Some people
say “Everthing is an object in R”. There is (incomplete, though) truth to this. Anything and
everything can be assigned to an object. Here we assign a number to an object “a”. We can
name our objects whatever we want them to be called:
A
a
a.plus.b

but note importantly, they are case-sensitive: “A” is not the same as “a” in R. Another important
note to make is that the value of an object can be overwritten without any warning.

You probably type the lesser sign “<”, followed by the minus sign “-”. RStudio allows you to
use ALT+- alone (the ALT key plus the minus sign) and you get the “assign” symbol
combination including the spaces that we often like to make in R.

Nothing happened when you hit the carriage return key and this is how it is supposed to be in
the Source editor. You only type here your stuff. To execute it, you need to tell it to do it. It
is like writing commands in an EpiData Analysis program, and like in the latter you have:

a Run command: anywhere on a command line, it runs the current line, marking whatever you
wish, it runs the marked section, nothing new here for the seasoned EpiData user. If we run
this line, two things happen: in the right upper quadrant, the Console, you get:

This is confirmation that the command Run was executed. In the left lower quadrant, the
Values, you get:

As we are going to use the Run command often, it is useful to know that the shortcut
CTRL+Enter accomplishes the same thing as Run. CTRL+Shift+Enter runs the entire script.

All objects at your disposal will be listed here. In the Console, the value of object “a” is not
visible. Some things you do will give you the result immediately, others will not, this
assignment obviously belongs to the latter category. But type into the second line below the
assignment:
365/7

and Run it. What you get now in your console is:

course_e_ex01_task
Page 7 of 14

both the command you wrote and the result from the calculation. If you write into your working
space:
a

and Run it you get:

CTRL+L clears the Console.

Let’s do the other assignments, writing each on a separate line:
b <- 89
c <- 60
d <- 245

then Run after marking. You should now have all four objects visible in the lower left quadrant:

While we have our four objects that make up the core of the 2-by-2 table, we would like to have
the complete table including its marginals, and all assigned to one object.

To this end we will first create a vector, that is a one-dimensional object containing the values
of a, b, and their sum. To keep with intuition, we will call this object “ab”. Type:
ab <- c(a, b, a+b)

The “c” stands for “concatenate”, that is putting a string consisting of sub-strings together. The
elements of the vector are in parenthesis, separated by commas. They are, in the order in which
we want to have them, our created two objects a and b, and the third element the sum of the
two.

To see the result, type
ab

on a new line. Alternatively, you could also put a series of commands on one single line,
separated by semi-colons, like in:
ab <- c(a, b, a+b); ab

and you should get:

course_e_ex01_task
Page 8 of 14

Note, that in the left lower quadrant, you get now the object ab and a definition of what it is:

Analogously, we create the second vector for the non-exposed:
cd <- c(c, d, c+d)

and get accordingly:

We have thus two vectors, one for the exposed and another for the non-exposed. Now we want
them to be together in one single object that we will call abcd. The command to “bind” two
rows together is:
abcd <- rbind(ab, cd); abcd

and we get:

The “rbind” is for “row binding”. Of course, if there is “rbind”, there must also be a
“cbind” for column binding. Note also on the top [,1], [,2] and [,3]: R labels (missing
an actual label) things in a Cartesian way as [row, col]. R writes the indices to designate
position in square brackets. As the column headers don’t have a row designation, it is thus the
comma followed by the column number. What might be the internal designation for the location
of the number 54? Yes, it is [1,1] for first row, first column, while 305 is in position [2,3].

We have combined two vectors (one-dimensional objects) and the result is a matrix (a two-
dimensional object). We could have created a matrix directly from the four objects a, b, c, and
d. However, we have to pay attention to the correct the sequence:
abcd_m <- matrix(c(a, c, b, d, a+b, c+d), nrow=2, ncol=3); abcd_m

noting that the matrix function reads the data column-wise (!), we get:

We don’t need to write “nrow=2, ncol=3” to tell R that these 6 objects must be allocated to 2
rows and 3 columns, it suffices to stated:
abcd_m <- matrix(c(a, c, b, d, a+b, c+d), 2, 3); abcd_m

as R understands the first assignment (“2”) to be for the number of rows, and the second (“3”)
for the number of columns. If we don’t pay attention to the default sequence row-column:

course_e_ex01_task

Page 9 of 14

abcd_m <- matrix(c(a, c, b, d, a+b, c+d), 3, 2); abcd_m

we get a solution, but not the intended one:

In contrast, if we specify:
abcd_m <- matrix(c(a, c, b, d, a+b, c+d), ncol=3, nrow=2); abcd_m

we will get what we intend:

Thus, as beginners, not yet fully conscious of default sequences, it is safer to be overly explicit.

To get back to the matrix: A matrix is a “two-dimensional table of like elements” (Aragón).
Remove the object abcd_m as we are not going down this way for the time being:
rm(abcd_m)

where rm is the command to remove an object which is specified within the following
paranethesis.

To complete the table, we need to make a row that is the sum of the first and the second row.
We will call it rtot and it must be:
rtot <- abcd[1,] + abcd[2,]; rtot

because we are adding values of the respective column in row 1 [1,] to the values in row 2
[2,]. The result:

The last thing we have to do to get our complete table with all the marginals is row binding to
an object that we will call tab:
tab <- rbind(abcd, rtot); tab

giving:

Before we lose our hard work, let’s save what we typed so far in our editing window (the Source
as we named the upper left quadrant initially) as “e_ex01_or.r” (by going through File |
Save or by clicking the diskette icon). To our knoweldge, R is not very particular what
extension we give things, but we keep anyhow to what is quite widely common usage, and that
is to give the extension *.r. You note how the file name replaces the Untitled:

course_e_ex01_task

Page 10 of 14

=>

While we have everything we need, we could make it a bit more appealing with appropriate
column an row labeling which is done as:
colnames(tab) <- c(“Case”, “Control”, “Total”)
rownames(tab) <- c(“Exp+”, “Exp-”, “Total”)

and check to verify with:
tab

“colnames” and “rownames” are the respective commands to give labels to columns and
rows, while what follows in the parenthesis (tab) is the object to which the command applies.

We can also label the dimensions:
names(dimnames(tab)) <- c("Exposure", "Status"); tab

and get:

So far so good, but all we have is input, but what we really need are calculations. The odds
ratio should be simple enough, we need to define the location by row and column of a, b, c,
and d to then calculate (a/c)/(b/d), thus:
or <- (tab[1,1]/tab[2,1])/(tab[1,2]/tab[2,2]); or

Note again here the brackets (not parentheses): whenever something needs to be indexed in R,
brackets are used, here for the Cartesian positioning [row, col] but also if one wishes to
describe the position of a record.

We specify the object tab and the position of its numeric elements to get the correct
calculation, and the result should be:
2.477528

For the calculation of the 95% confidence interval (CI) we do this preferably in more than one
step, first calculating the standard error se:
se <- sqrt(1/a+1/b+1/c+1/d)

We take here directly our four input objects as this calculation is independent of the position in
the table. Next, for the lower and upper 95% CI:
or.ci.lower <- exp(log(or)-1.96*se)
or.ci.upper <- exp(log(or)+1.96*se)

Let’s remove the objects that we don’t need, the command to remove objects is rm:

course_e_ex01_task

Page 11 of 14

rm(ab, cd, abcd, rtot, se)

Finally, let’s get an output that summarizes it all together:
print(tab)

cat("\nOR:", round(or, digits=3), "\n95% CI:", round(or.ci.lower,
 digits=3), "to ", round(or.ci.upper, digits=3))

With the function “cat” we avoid quotes where we don’t need them, and then take control by
writing them where we need them:
x <- c("Ajay", "Hoa", "Zaw")
x

gives:
"Ajay" "Hoa" "Zaw"
but
cat(x)

gives:
Ajay Hoa Zaw

The function “\n” is equivalent to a hard carriage return.

The function round is followed by the object, then a comma, then the number of digits to
which it is rounded, all in parentheses as is usual with functions.

Note that it is best if you write everything of the second item (starting with “cat”) on a single
line. We should get:

Verifying by comparison with the results in Altman’s shows that what we obtained is correct.

To make this more generically useful, we remove now all non-essential things, first of all the
input objects a, b, c, and d. While not necessary (any object can be overwritten without
warning), it is intuitively more appealing if we just keep the rest and then enter new values for
a, b, c, and d and then run our “stripped” e_ex01_or.r. Thus, the stripped
e_ex01_or.r may look like (note the hash “#” symbol at the beginning of the line
correspondes to the asterisk “*” in EpiData Analysis denoting a non-executed comment):
Complete 2 by 2 table from
a, b, c, d and calculate odds ratio wih Wolf CI
Assign below values for a, b, c, and d as in:
a <- 100

ab <- c(a, b, a+b)
cd <- c(c, d, c+d)
abcd <- rbind(ab, cd)

course_e_ex01_task

Page 12 of 14

rtot <- abcd[1,]+abcd[2,]
tab <- rbind(abcd, rtot)
colnames(tab) <- cbind("Case", "Control", "Total")
rownames(tab) <- rbind("Exp+", "Exp-", "Total")
names(dimnames(tab)) <- c("Exposure", "Status"); tab
or <- (tab[1,1]/tab[2,1])/(tab[1,2]/tab[2,2])
se <- 1.96*sqrt(1/a+1/b+1/c+1/d)
or.ci.lower <- exp(log(or)-se)
or.ci.upper <- exp(log(or)+se)

print(tab)
cat("\nOR:", round(or, digits=3), "\n95% CI:", round(or.ci.lower,
digits=3), round(or.ci.upper, digits=3), "\n")

You would now assign any value to your input objects a, b, c, and d, for instance directly in
the console and then open this script and Run it, and there it will be.

To quit R, type:
q()

You will be prompted whether you wish to save the workspace image:

to which you can safely answer with “n”: we have saved our scripts and do not need to save
in addition the log file.

Task

In analogy to the calculation of the odds ratio, write an R script e_ex01_rr.r that
calculates the relative risk from two proportions (thus not a ratio of incidence rates, but a
ratio of two prevalence proportions) for a study used in Altman’s textbook. It has the
isolation of Helicobacter pylori as the outcome and the history of an ulcer in the mother as
the exposure. We use the following set-up of notations:

Exposure
Outcome

Ill Healthy Total

Yes A B A+B

No C D C+D

Total A+B B+D A+B+C+D

The data provided by Altman in table 7.2 (page 59) are as follows:

Mother with a
history of ulcer

H pylori isolated

Yes No Total

course_e_ex01_task

Page 13 of 14

Yes 6 16 22

No 112 729 841

Total 118 745 863

The relative risk is calculated by:
 R = [A/(A+B)]/[C/(C+D)]

The standard error of the logeR is:
 se = SQRT(1/A-1/(A+B)+1/C-1/(C+D))

The 95% CI is thus:
 95%CI = exp(logeR ± 1.96*se)

course_e_ex01_task

Page 14 of 14

	The starting point on the internet is the “The R Project for Statistical Computing” at its web site: http://www.r-project.org/. This is from where you access one if its mirror sites to download the software.
	In tandem with R, we will also use RStudio, also open-source and free, a powerful and productive user interface for R. It can be found for download at its web site: http://www.rstudio.com/.

