
 

 

 

 

 

 

What we did in Exercise 1 is unusual in analysis: we entered aggregate data and analyzed them, 
while the usual currency of analysis is appropriate aggregation of individual observations.  
Commonly, datasets have been entered in other software as R is not a data entry tool.  In the 
context of this course, data will come as an EpiData dataset with a *.REC and a *.CHK file.  
R accepts a multitude of data formats for import.  In fact, a package has been developed that 
expands on the number of formats of datasets which can be imported into R, including for 
instance Epi Info / EpiData *.REC files and Stata *.dta files. 

An important part of the versatility of R lies with the system of “packages”.  What we have 
been using is the basic package, but if we want to utilize the capability of importing EpiData 
*.REC files or Stata *.dta files, the package “Foreign” should be added to our existing setup.  
In the lower right quadrant in RStudio, you see: 

 
Click on Packages and you get a list of packages that are available with those loaded already 
ticked as for e.g. a basic statistical package: 

 
The package we need is called foreign. You have to tick Install to get a menu: 

 
You shouldn’t need to do anything here except typing foreign into the line Packages and 
then Install as RStudio knows by definition where you have installed your copy of R. You need 
to be on the Internet though to get to the repository: 

 
Alternatively, you can use the included Zip package in the course material, but then you need 
to change the Install from and get the downloaded zip file.  But as always, to ensure obtaining 

Exercise 2: Introduction to R software: data bases and functions 

At the end of this exercise you should be able to: 
a. Know how to import a data base from another format 
b. Create a function and apply it to an analytic problem 

 

 



the most up-to-date version, get it whenever possible directly from the internet (http://cran.r-
project.org/web/packages/foreign/index.html). 

Having installed the package does not automatically put it at your disposal, you will have to 
call it.  We start a new *.r script that we will name e_ex02.r. 

In the required files on the course site you find the EpiData REC/CHK pair e_ex02.rec and 
e_ex02.chk.  This is an abbreviated set of treatment results among patients with laboratory-
confirmed multidrug resistance in Bangladesh. 

The package foreign allows importing *.REC files with the command: 
read.epiinfo("c:/epidata_course/e_ex02.rec") 

However, this approach disregards the metadata (the *.CHK file) and only imports the field 
values from the *.REC file.  We can write value labels in R, but we would first need to examine 
the *.CHK file and be careful about errors: tedious and error-prone.  More efficient and safer 
is to use EpiData Entry 3.1 (or the EpiData Manager) to export the e_ex02.* file pair to a 
Stata *.dta file that contains both values and labels and then read the Stata file into R.  Once 
you have exported the EpiData file pair to a Stata e_ex02.dta file, we are ready for import 
into R.  

Being sticklers in labeling things, we start with a title, followed by actually invoking the now 
installed package foreign: 
# Import an EpiData REC file 
 
library(foreign) 
e_ex02.dat <- read.dta("c:/epidata_course/e_ex02.dta") 
Because we have made the “epidata_course” our project folder, it suffices to type: 
e_ex02.dat <- read.dta("e_ex02.dta") 
We read the Stata file by putting file name (and file path) in quotation marks inside a parenthesis 
(note the use of forward slashes) as in EpiData.  We assign the imported file to an object that 
we will call e_ex02.dat.  The *.dat is not required, it is just an object after all.  We could 
call the object “a” if we wished to do so.  The period separating the elements “e_ex02” and 
“dat” is not designating an extension, it is just one of the many ways R allows giving names 
to objects.  

In a second step, we write the data to disk: 
library(foreign) 
e_ex02.dat <- read.dta("c:/epidata_course/e_ex02.dta") 
write.table(e_ex02.dat, file="e_ex02.dat", row.names=TRUE) 

Perhaps this is as good as any occasion to introduce the Help functions in R.  If you know 
already “write.table”, then it is easy, type: 
help(write.table) 

and you get in the lower right-hand corner box quite extensive information (try it out!). 

To see what the import did, type: 
e_ex02.dat[1:5,] 

This gives the first 5 records: 
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To see the variable names only, type: 
# Get the list of variable names only 
names(e_ex02.dat) 
and get: 

 

 

R has a special way to deal with missing information.  It uses NA to denote any missing value, 
be it numeric or text.  If NA is the assigned value, then a record in an analysis using the variable 
with such a value will be excluded.  We will use different approaches to the analysis.  In some 
analyses, we will include all 515 records – how many records we have, can be seen in the 
Environment lower quadrant of the left panel: 

 

 

In another analysis, we will exclude missing observations.  We will create three datasets: 

e_ex02_01.dat is the unaltered full set with missing values designated by NA, R’s way to 
define missing values. 

e_ex02_02.dat is the dataset containing only records with information on initial 
fluoroquinolone resistance. 

e_ex02_03.dat is the subset of patients with initial ofloxacin resistance with either a 
bacteriologically unsuccessful outcome (failure or relapse) or a 
bacteriologically successful outcome (relapse-free cure or treatment 
completion). 

 

The dataset 
To get information on the structure of the dataset: 
str(e_ex02.dat) 

and we get (top only shown): 
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The full dataset thus contains 515 records with 12 variables (rearranged): 

AGE: Age in years as an integer. 

AGEQUART: Age as a categorical variable in quartiles. 

AGEMED: Age as a binary categorical variable (below the median, and median and larger). 

SEX: Patient’s sex as categorical variable (Female, Male). 

OUTCOME07: 7-level treatment outcome (Cure, Completion, Failure, Death, Default, Relapse, 
Reinfection). 

OUTCOME02: Outcome as a binary categorical variable, i.e. successful (relapse-free cure or 
completion) vs all other outcomes (Success, Failure). 

TOTOBSTIME: Time of observation, an integer in days from treatment start until an event 
occurred (see later) or the observation time ended because of follow-up completion. 

FQ04: Drug susceptibility test result for ofloxacin.  If resistant, the minimum inhibitory 
concentration to gatifloxacin was determined.  This categorical variable has four levels 
(Susceptible, Low-level resistance, High-level resistance, Missing). 

PZA02: Drug susceptibility test result of molecular (pncA) for pyrazinamide as a categorical 
binary variable, resistant vs not known to be resistant (PZA not known resistant, PZA resistant). 

KMY02: Drug susceptibility test result of phenotypic testing for kanamycin as a categorical 
binary variable, resistant vs not known to be resistant (KM not known resistant, KM resistant). 

PTH02: Drug susceptibility test result of phenotypic testing for prothionamide as a categorical 
binary variable, resistant vs not known to be resistant (PTH not known resistant, PTH resistant). 

CXR02: Radiographic disease extent as a categorical binary variable, bilateral vs not known to 
be bilateral (Not known bilateral, Bilateral). 

The information for some variables was complete (age and sex), for some very few had missing 
information (fluoroquinolone drug susceptibility test result, missing assigned to a defined 
category).  Some variables had quite a few missing (known pncA sequencing result for 
pyrazinamide), others were quite complete (like radiographic disease extent).  One could argue 
to deal differently with the missing than what was done for this exercise in this simplified 
categorization as “not known resistant”.  In any case, we chose here certain simplifications that 
are unlikely to importantly bias the planned analysis in the wrong direction.  For some key 
questions, a “purist’s” approach is chosen to deal with missing values. 

The easiest to create is the full set: the only manipulation required is an assignment of the only 
variable with a missing value, the variable FQ04 for ofloxacin drug susceptibility test result: 
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e_ex02.dat[e_ex02.dat$fq04=="Missing", "fluoroquinolone"] <- NA 

Several new and important things are seen in this command line.  Starting with the outermost 
right assignment NA, we note how R deals with missing data.  In the data entry exercises with 
EpiData software we had taught (a bit dogmatically) that we wish to have a value (commonly 
designated as 9, 99, 9.99 etc) for all records with a missing value in a field.  But this is by no 
means a universal standard.  Rather more commonly such a field may remain empty or might 
have some value for missing or might be a mixture of both.  Dealing correctly with missing 
values remains one of the most challenging tasks in any analysis.  When we read the dataset 
and look at a frequency as follows: 
table(e_ex02.dat$fq04) 

we get (note the use of  “table” rather than “tables” as in EpiData) before and after the NA 
assignment above: 

Before: 

 
After: 

 
We could deal with the 14 missing as a category and leave it just as it is with these 4 category 
levels.  In our, we will, however, pay special interest to this variable.  As 14 of 515 is just 2.7% 
of all observations, there is no important bias if we later simply exclude these 14 cases.  There 
are different ways to sub-setting, but we assign the R designation for missing, which is NA. 

To the very left we have the name of the dataset e_ex02.dat.  Inside the brackets we identify 
the variable within the dataset as in: 
setname$varname 

The “==” is new and differs what we learned in EpiData.  The following are the logical 
operators used in R: 

 
This is from the Quick-R website: 

http://www.statmethods.net/ 
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an extraordinarily useful website to get – as it says – quick answers to questions on R, highly 
recommendable!  R (and Stata) uses the double == sign for equality rather than the single equal 
sign because the latter (=) can be used as “assign” instead of the <- we now got used to (and 
will stick to). 

Thus, to get back:  
e_ex02.dat$fq04=="Missing" 

This identifies the variable fq04 within the dataset e_ex02.dat and identifies records in 
which the category value is “Missing” (note that the value is not the “value” from the *.REC 
file, but the value is the label obtained from the Stata file for easy identification).  After the 
comma, we state that we retain the variable name fq04: 
e_ex02.dat[e_ex02.dat$fq04=="Missing", "fq04"] <- NA 

we could check whether we have now records with NAs with the important command: 
na.is(x) 

which is used to find out which elements of x are recorded as missing (NA), i.e. here: 
is.na(e_ex02.dat$fq04) 

and we get (an excerpt from the list of all 515 records): 

 
To assign this revised set to the new object with the desired name and to ensure that it is a “data 
frame”, we write: 
e_ex02_01.dat <- data.frame(e_ex02.dat) 

What is called a “data frame” in R is just what we EpiData users call a dataset. “It is a list of 
vectors and / or factors of the same length that are related “across” such that data in the same 
position come from the same experimental unit” (formulation copied from Peter Dalgaard, 
Introductory statistics with R, 2008). The distinction is made because R can deal with other 
types of data collection. 

 

Sub-setting 
The next dataset is trickier to create.  An excellent source on the internet to find quick answers 
is Quick-R at http://www.statmethods.net/index.html.  If we enter “subsets” into the Search 
box, we see among several option, option Nr 1: 

 

Clicking on the link we get all we need to know for starters.  To select observations, the full 
explicit is: 
newdata <- mydata[which(mydata$gender=='F' & mydata$age > 65),] 

There is a short-cut allowed: 
newdata <- mydata[which(gender=='F' & age > 65),] 
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Note here the single quotes to enclose text, but we can also use double quotes.  In any case, we 
need to know the criteria.  We mentioned above that we want to do a sub-analysis on patients 
with initial ofloxacin resistance.  If we just write some table command, we might have the 
problem of ambiguity on which of the currently existing two datasets the command needs to be 
executed. 

Our dataset to create is to be named “e_ex02_02.dat”.  It will only contain records without 
missing data for the variable fq04.  We are thus making a selection in EpiData language or 
sub-setting in R language.  If we start from the originally read dataset, we write: 
e_ex02_02.dat <- e_ex02.dat[which(e_ex02.dat$fq04 != "Missing"), ] 

Alternatively, and perhaps simpler, we can use the subset function: 
e_ex02_02.dat <- subset(e_ex02.dat, fq04 != "Missing") 

Note (and see above) the “!=” denoting “unequal”. 

 

To make the even more complex third dataset, the newcomer might best first stick to the fully 
explicit. We thus write three lines, making intermediary datasets, each line being self-
explanatory: 

We start with the dataset e_ex02_02.dat which has 501 records.  Excluding 26 deaths 
defined in the variable outcome07, we get 475 observations in the new dataset 
e_ex02_02_03a.dat: 
e_ex02_03a.dat <- subset(e_ex02_02.dat,  outcome07 != "Death") 

Excluding then 40 defaulters defined in the variable outcome07, we get 435 observations in 
the new dataset e_ex02_02_03b.dat: 
e_ex02_03b.dat <- subset(e_ex02_03a.dat, outcome07 != "Default") 

Excluding finally 382 patients with initial fluoroquinolone susceptibility defined in the variable 
fq04, we get 53 observations in the final desired dataset e_ex02_02_03.dat: 
e_ex02_03.dat <- subset(e_ex02_03b.dat, fq04 != "Susceptible") 
 

Of course, this can all be written into a single command line: 
e_ex02_03.dat <- subset(e_ex02_02.dat,  outcome07 != "Death" & outcome07 != 

"Default" & fq04 != "Susceptible") 

and one gets the same result of 53 observations. 

 

Finally, to save the three datasets to disk, we do as above: 
write.table(e_ex02_01.dat, file="e_ex02_01.dat", row.names=TRUE) 
write.table(e_ex02_02.dat, file="e_ex02_02.dat", row.names=TRUE) 
write.table(e_ex02_03.dat, file="e_ex02_03.dat", row.names=TRUE) 
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A generically applicable function for the analysis of a 2-by-2 table 

If we had a variable fq02 to denote a binary outcome for initial fluoroquinolone (FQ) 
resistance (aggregating low and high resistance) and excluding those with missing 
fluoroquinolone test result, an analysis by the binary outcome in EpiData Analysis is as follows: 
select fq02<>9 // exclude records with missing FQ result 
tables outcome02 fq02 /o 

which gives: 

 
 

Second, we make a stratified analysis to look at the influence of SEX: 
tables outcome02 fq02 sex /o 

which gives a summary: 

  
by the Mantel-Haenszel procedure. 

The first table in R requires that we make a new variable for a binary result of fluoroquinolone 
resistance and then create the table: 
e_ex02_02.dat[e_ex02_02.dat$fq04=="Susceptible", "fq02"] <- "1-Susceptible" 
e_ex02_02.dat[e_ex02_02.dat$fq04=="Low-level resistance", "fq02"] <- "2-Resistant" 
e_ex02_02.dat[e_ex02_02.dat$fq04=="High-level resistance", "fq02"] <- "2-Resistant" 
e_ex02_fq02.dat <- data.frame(e_ex02_02.dat) 

At this point let’s introduce attach.  Followed in parenthesis by the dataset name: 
attach(e_ex02_02_fq02.dat) 

it puts the dataset e_ex02_02_fq02.dat into the search path and we do thus not to need to 
repeat the dataset name all the time, it suffices to write the variable names.  It is equally 
important not to forget to detach a dataset to get it out of the path. Thus, we type here: 
detach(e_ex02_02.dat) 

If the data set is in the path, what would otherwise be: 
table(e_ex02_fq02.dat$fq02, e_ex02_fq02.dat$outcome02) 
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becomes simplified: 
table(fq02, outcome02) 

This gives just the bare bone core of the correct output table: 

  
 

Note here that for the R command table the sequence is different from EpiData: the first 
variable gives the row and the second variable the column.  We noted earlier that the default 
sequence in R is row, then column.  Note also that we numbered “1-Susceptible” and “2-
Resistant” to get these into our preferred alphabetical sequence (the default would be the 
inverse). 

Could we somehow use what we did in Exercise 1, edit it a bit and get it functional for this 
situation?  Open the e_ex01_or.r in the text editor and remove everything, except the 
following lines: 
or <- (tab[1,1]/tab[2,1])/(tab[1,2]/tab[2,2]) 
se <- sqrt(1/a+1/b+1/c+1/d) 
or.ci.lower <- exp(log(or)-1.96*se) 
or.ci.upper <- exp(log(or)+1.96*se) 
print(tab) 
cat("\nOR:", round(or, digits=3), "\n95% CI:", round(or.ci.lower, digits=3), 
"to ", round(or.ci.upper, digits=3)) 

 

We are going to create a Function that can be applied in the future to the same setting.  We 
have already used functions, TABLE is a function.  To make our own function, type: 
tab2by2 <- function(exposure, outcome) {} 

This is the framework only, and it doesn’t yet do anything.  To put it to useful work, type: 
fix(tab2by2) 

and a function editor window opens: 

 
Our commands will go between the curly braces {}.  It is a custom (but no real need, but we 
will faithfully follow customs of those with more experience, they usually have their reasons) 
to put the opening brace { on a new line and then the commands after that on new lines, and 
have the closing brace } again at the end alone on a line.  After we paste from the text editor 
what we have, we should thus get: 
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It is not yet quite correct, because there is no object tab.  Thus type on the line before the 
“or”: 
tab <- table(exposure, outcome) 

That is, we assign the output of any two-by-two table of this format to an object tab.  You may 
note that the RStudio short-cut key ALT+- to get the assign combination “<-” is non-functional 
in functions, you have to type it out.  As we are already using a, b, c, and d, we might as well 
keep these, and then make in the “or” line assignments to these, so that in the revision we get: 
function(exposure, outcome) 
    { 
    tab <- table(exposure, outcome) 
    a <- tab[1,1]; b <- tab[2,1]; c <- tab[1,2]; d <- tab[2,2] 
    or <- (a/c)/(b/d) 
    se <- sqrt(1/a+1/b+1/c+1/d) 
    or.ci.lower <- exp(log(or)-1.96*se) 
    or.ci.upper <- exp(log(or)+1.96*se) 
    print(tab) 
    cat("\nOR:", round(or, digits=3), "\n95% CI:", round(or.ci.lower, 

digits=3), "to ", round(or.ci.upper, digits=3)) 
} 

Save it.  We could save it later when quitting in the workspace, but it is better to also save in in 
a file and doing that now: 
save(tab2by2, file = "tab2by2.r") 

Conversely, when we open RStudio anew, it can be loaded whenever we need it with: 
load(“tab2by2.r”) 

Note that you actually need the full path, thus in our case: 
load("C:/epidata_course/tab2by2.r") 

Also note that this approach results in an *.r file that is not anymore a straight text file (you see 
gibberish in the text editor).  It seems to be the price that has to be paid for a function we write 
by ourselves. 

Before we apply it, we need to reopen and Run our e_ex02.r script which should read now: 
# Exercise 2:  Introduction to R software: data bases and functions 
 
#################################### 
# 1) Import a Stata file 
 
library(foreign) 
e_ex02.dat <- read.dta("e_ex02.dta") 
# e_ex02.dat <- read.dta("c:/epidata_course/e_ex02.dta") 
write.table(e_ex02.dat, file="e_ex02.dat", row.names=TRUE) 
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# See the first 5 records 
e_ex02.dat[1:5,] 
 
# Get the list of variable names only 
names(e_ex02.dat) 
 
table(e_ex02.dat$fq04) 
 
#################################### 
# 2) Create full unaltered set (515 records) 
e_ex02.dat[e_ex02.dat$fq04=="Missing", "fq04"] <- NA 
is.na(e_ex02.dat$fq04) 
e_ex02_01.dat <- data.frame(e_ex02.dat) 
 
#################################### 
# 3) Create a subset with records with known FQ DST result (401 records) 
e_ex02_02.dat <- e_ex02.dat[which(e_ex02.dat$fq04 != "Missing"), ] 
# or alternatively with the SUBSET function: 
e_ex02_02.dat <- subset(e_ex02.dat, fq04 != "Missing") 
 
#################################### 
# 4) Create a subset with records with known FQ resistance and 
#  bacteriological success or failure (53 records) 
# Commands on three lines 
#  e_ex02_03a.dat <- subset(e_ex02_02.dat,  outcome07 != "Death") 
#  e_ex02_03b.dat <- subset(e_ex02_03a.dat, outcome07 != "Default") 
#  e_ex02_03.dat <- subset(e_ex02_03b.dat, fq04 != "Susceptible") 
# Alternatively, commands on single line 
e_ex02_03.dat <- subset(e_ex02_02.dat,  outcome07 != "Death" & outcome07 != "Default" 

& fq04 != "Susceptible") 
 
# Table of outcome by FQ resistance 
# Create first a new variable FQ02 
 
e_ex02_02.dat[e_ex02_02.dat$fq04=="Susceptible", "fq02"] <- "1-Susceptible" 
e_ex02_02.dat[e_ex02_02.dat$fq04=="Low-level resistance", "fq02"] <- "2-Resistant" 
e_ex02_02.dat[e_ex02_02.dat$fq04=="High-level resistance", "fq02"] <- "2-Resistant" 
e_ex02_fq02.dat <- data.frame(e_ex02_02.dat) 
table(e_ex02_fq02.dat$fq02, e_ex02_fq02.dat$outcome02) 
 
write.table(e_ex02_01.dat, file="e_ex02_01.dat", row.names=TRUE) 
write.table(e_ex02_02.dat, file="e_ex02_02.dat", row.names=TRUE) 
write.table(e_ex02_03.dat, file="e_ex02_03.dat", row.names=TRUE) 
 
 
#################################### 
# 5) Make functions: 2-by-2 table 
# Prepare making a function 
# tab2by2 <- function(exposure, outcome) {} 
# fix(tab2by2) 
# save(tab2by2, file = "tab2by2.r") 
 
attach(e_ex02_fq02.dat) 

 

As the last command is ATTACH the proper file, let’s try to apply it.  Type: 
load("C:/epidata_course/tab2by2.r") 
tab2by2(fq02, outcome02) 

and you should get: 
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identical to the EpiData Analysis output (see above).  Note that the R load function is 
necessary only after exiting R and reopening the script.  Similarly, the three lines: 
# tab2by2 <- function(exposure, outcome) {} 
# fix(tab2by2) 
# save(tab2by2, file = "tab2by2.r") 

have been put as comments as they do not need repeat execution once done. 

We can use this function for any other EXPOSURE-OUTCOME pair, such as: 
tab2by2(sex, outcome02) 

 

In EpiData Analysis: 
tables outcome02 sex /o 

 

We surely have to watch out for the variable SEX.  You know from earlier that EpiData Analysis 
inverts (by design) the sequence of values for the exposure and outcome variables, while the 
net effect on the odds ratio thus remains unaffected. 

To summarize: TABLE is an inbuilt function in R which cross tabulates the two variables. 
Replacing TABLE by our function ‘tab2by2’ runs our code creating the table and with the 
odds ratio and the 95% confidence interval, displayed it in the desired format.  There are many 
functions that have been created already by R users and collaborators which we can make use 
of.  Thus, a skill we have to master is to search for a function which suits our purpose and make 
correct and careful use of it.  This example illustrates the basic mode of using and applying 
functions in R. 

 

A generically applicable function for the analysis of a 2-by-2-by-2 table 
In the previous paragraph we dealt with a matrix (a two-dimensional object of like elements).  
It was the special case of a 2-by-2 matrix.  In this part, we move now forward to deal with 
arrays.  An array is an n-dimensional table of like objects.  In particular, we will concern 
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ourselves with the special case of a 2-by-2-by-2 table, i.e. a 3-dimensional table.  We can 
construct such an object in R with the command: 
z <- array(1:8, c(2, 2, 2)); z 

and get: 

 

What is the location of “7”?  Try: 
u <- z[1, 2, 2]; u 

The third dimension (row is the first, the column the second, the added one the third) is also 
indicated by the the two leading commas: 
, , 2 

We mentioned before that the location [indexing] in R is defined within brackets [].  The 
default sequence is by dimension, separated by commas, where the first dimension is always 
the row, the second the column and here the third is what we epidemiologists call the stratifying 
dimension.  If we apply this concept of a multidimensional array to epidemiology, we thus have 
the concept of stratification. 

The generic grammar for a table command for this basic stratification is: 
table(exposure, outcome, stratvar) 

or 
table(rowvar, columnvar, stratvar) 

where stratvar is the name of the straifying variable.  In our case, specifically, we try: 
table(fq02, outcome02, sex) 

to get, if the last attach command was attach(e_ex02_fq02.dat): 

 

 
course_e_ex02_task  

Page 13 of 19 



In 1959, Mantel and Haenszel proposed an efficient method for estimating a summary odds 
ratio from a series of 2 by 2 tables.  It is easy to apply and does not require iterative calculations.  
In the following introduction, we follow Schlesselman’s explanations and use of example 
(Schlesselman J J.  Case-control studies.  Design, conduct, analysis.   New York: Oxford 
University Press, 1982). 

The Mantel-Haenszel estimate of the odds ratio (ORmh), adjusted for the effects of the 
stratification variables is calculated as: 
SUM(aidi/ni)/SUM(bici/ni) 

An estimate of the variance of the ORmh has been proposed.  If we define: 
wi = bici/ni 

and 
vi = (ai + ci)/aici + (bi + di)/bidi 

then the variance of the loge ORmh is given by: 
var(ln ORmh) ≈ SUMwi2vi/(SUMwi)2 

The approximate 95% confidence interval is thus given by: 
ln ORmh ± 1.96*SQRT[var(ln ORmh)] 

 

If we apply this to our data: 
 Female  Male 
 Failure Success  Failure Success 
Resistant 9 10  9 34 
Susceptible 21 106  38 274 
      
OR 4.543   1.909  
ni 146   355  
Wi 1.438   3.639  
vi 0.268   0.170  
aidi/ni 6.534   6.946  
bici/ni 1.438   3.639  
SUM(aidi/ni) 13.481     
SUM(bici/ni) 5.078     
ORmh 2.655     
wi^2*vi 0.555   2.258  
SUM(wi^2*vi) 2.813     
(SUMwi)^2 25.784     
SUM(wi^2*vi)/(SUMwi)^2 0.109     
var(lnORmh) 0.109     
ORmh-lower 1.390     
ORmh-upper 5.072     

 

EpiData Analysis gives: 
ORmh: 2.65 (1.43-4.93) 

The point estimate is the same, but the 95% CI interval is slightly different because EpiData 
Analysis uses consistently the Robins, Greenland, Breslow confidence intervals, while we 
followed here Schlesselman’s example using Hauck’s interval.  As the exercise is about the 
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principle of learning on how to go about when creating a function, the choice of the confidence 
interval does not really matter here. 

We will keep to this most simple example with only 8 cells total among three variables: each 
variable is binary. 

Let’s best start from scratch and make a new function: 
ormh <- function(exposure, outcome, stratvar) {} 

We create a function ORMH (short for Mantel-Heanszel odds ratio) that takes three parameters, 
in that given sequence. 

We propose to draft the content that goes between the curly braces {} in the text editor before 
we put into it with fix.  We can modify what we had before, just slightly so: 
tab <- table(exposure, outcome, stratvar) 
a1 <- tab[1,1,1]; b1 <- tab[2,1,1]; c1 <- tab[1,2,1]; d1 <- tab[2,2,1] 
a2 <- tab[1,1,2]; b2 <- tab[2,1,2]; c2 <- tab[1,2,2]; d2 <- tab[2,2,2] 

This takes into account that we work now with a 3-dimensional array and have a1, a2, and b1, 
b2, etc. 

We have to create the aidi/ni and the bici/ni for each of the two tables: 
adn1 <- (a1*d1)/n1 
adn2 <- (a2*d2)/n2 
bcn1 <- (b1*c1)/n1 
bcn2 <- (b2*c2)/n2 

and from these we calculate the object MHOR: 
mhor <- (adn1+adn2)/(bcn1+bcn2) 

Note that we chose the object name to be mhor to distinguish in from the function name ormh.  
Before we get too much carried away in our excitement, we should check whether we are on 
the right track: 
fix(ormh) 

and insert what we currently have: 
function(exposure, outcome, stratvar) 
    { 
    tab <- table(exposure, outcome, stratvar) 
    a1 <- tab[1,1,1]; b1 <- tab[2,1,1]; c1 <- tab[1,2,1]; d1 <- tab[2,2,1] 
    a2 <- tab[1,1,2]; b2 <- tab[2,1,2]; c2 <- tab[1,2,2]; d2 <- tab[2,2,2] 
    n1 <- a1+b1+c1+d1 
    n2 <- a2+b2+c2+d2 
    adn1 <- (a1*d1)/n1 
    adn2 <- (a2*d2)/n2 
    bcn1 <- (b1*c1)/n1 
    bcn2 <- (b2*c2)/n2 
    mhor <- (adn1+adn2)/(bcn1+bcn2) 
    print(tab) 
    cat("\nOR:", round(mhor, digits=3)) 
} 
and test it with the command: 
ormh(fq02, outcome02, sex) 
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We get: 

 
 

We are definitely on the right track!  Therefore, we might continue requiring next the two 
components w and v that we calculate as intermediate steps for calculation of the variance and 
then the variance itself: 
w1 <- (b1*c1)/n1 
w2 <- (b2*c2)/n2 
v1 <- ((a1+c1)/(a1*c1))+((b1+d1)/(b1*d1)) 
v2 <- ((a2+c2)/(a2*c2))+((b2+d2)/(b2*d2)) 
varor <- ((w1^2*v1)+(w2^2*v2))/((w1+w2)^2) 

Then we calculate the confidence interval: 
se <-sqrt(var.mhor) 
mhor.lower <-exp(log(mhor)-1.96*se) 
mhor.upper <-exp(log(mhor)+1.96*se) 

Finally, by adding what is to appear on the screen, we get the full function as: 
function(exposure, outcome, stratvar) 
{ 
    tab <- table(exposure, outcome, stratvar) 
    a1 <- tab[1,1,1]; b1 <- tab[2,1,1]; c1 <- tab[1,2,1]; d1 <- tab[2,2,1] 
    a2 <- tab[1,1,2]; b2 <- tab[2,1,2]; c2 <- tab[1,2,2]; d2 <- tab[2,2,2] 
    a <- a1+a2; b <- b1+b2; c <-c1+c2; d <- d1+d2 
    or <- (a/c)/(b/d) 
    se <- sqrt(1/a+1/b+1/c+1/d) 
    or.ci.lower <- exp(log(or)-1.96*se) 
    or.ci.upper <- exp(log(or)+1.96*se) 
    n1 <- a1+b1+c1+d1 
    n2 <- a2+b2+c2+d2 
    adn1 <- (a1*d1)/n1 
    adn2 <- (a2*d2)/n2 
    bcn1 <- (b1*c1)/n1 
    bcn2 <- (b2*c2)/n2 
    mhor <- (adn1+adn2)/(bcn1+bcn2)     
    w1 <- (b1*c1)/n1 
    w2 <- (b2*c2)/n2 
    v1 <- ((a1+c1)/(a1*c1))+((b1+d1)/(b1*d1)) 
    v2 <- ((a2+c2)/(a2*c2))+((b2+d2)/(b2*d2)) 
    var.mhor <- ((w1^2*v1)+(w2^2*v2))/((w1+w2)^2) 
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    se <-sqrt(var.mhor) 
    mhor.lower <-exp(log(mhor)-1.96*se) 
    mhor.upper <-exp(log(mhor)+1.96*se) 
    print(tab) 
    cat("\nOR adj:", round(mhor, digits=3), "\n95% CI:", round(mhor.lower, 

digits=3), "-", round(mhor.upper, digits=3)) 
} 
If we test with: 
ormh(oflres, outcome02, sex) 

we get: 

 

 

We can use this generically for other variables, such as: 
ormh(fq02, outcome02, cxr02) 

and get: 

 

Do not forget to save the function to a file: 
save(ormh, file = "ormh.r") 
 

Admittedly, what we have done here is still quite amateurish.  Fortunately, more professional 
contributors to R have written a function to calculate the Mantel-Haenszel estimate of the odds 
ratio.  If you just type the function: 
mantelhaen.test 
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you see the full function.  We can use it for our example: 
mantelhaen.test(table(fq02, outcome02, sex)) 

and we get: 

 

To look what the author of that function actually wrote, you can type in analogy of what we did 
above: 
fix(mantelhaen.test) 

We note thereby that the producers of this function that is part of the basic R package has the 
same approach to the calculation of the confidence interval as was chosen for EpiData Analysis, 
which gave as a summary: 

 

 

In summary, we have demonstrated that we can create any function in R which has a 
generalizable applicability.  Fortunately, others have already done most of what is probably 
needed and it is thus not usually necessary to write our own functions.  This is good news, of 
course, as it proves rather tedious and definitely requires sometimes basic, and sometimes more 
sophisticated knowledge of statistics.  It also requires a thorough knowledge of the S 
programming language.  Functions abound for R, but one has to look out for them to know how 
they are used properly.  How did we find that this one exists?  At the R prompt, type: 
??mantel 

and you get in the right lower quadrant of RStudio: 
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where you then click on the link for detailed information. 

 

Tasks: 

o Append the  ormh.r script to calculate and show also the stratum-specific and crude 
(unstratified) odds ratioa with 95% confidence intervals (you may use the same type of 
confidence interval as we used in the tab2by2.r script) 
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