
 

 

 

 

 

 

 

In Exercise 1, you learned some basic principles about the R language.  As you go along, it will 
prove worthwhile to familiarize yourself more and more with the workings of the R / S 
language, and we provided you with links to some particularly useful texts that help in 
becoming more proficient. 

In Exercise 2, you learned how to import a dataset, to assign the special values for missing data 
that R recognizes as such, to create data subsets for analysis.  Next you learned to write your 
own basic function. 

For none of the things you learned in Exercises 1 and 2 will we have a need for R.  EpiData 
delivers all that, and in a very simple and intuitive way.  We will take recourse to R only if we 
cannot solve a problem analytically with EpiData Analysis.  One such application is the logistic 
regression analysis which is the subject of this exercise. 

Before we get started with the actual work, open a new script page and save it as “e_ex03.r”.  
We will use the dataset e_ex02_02.dat as our starting point, that is, the set with 501 cases 
with known fluoroquinolone drug susceptibility test result.  The simplest way to make a dataset 
available in R is with the command read.table: 
e_ex03 <- read.table("e_ex02_02.dat") 
attach(e_ex03) 

We assign its content to an object e_ex03 which we attach, so that it is available in the path. 

 

The indication for a logistic regression 
A major challenge in the analysis of epidemiologic data is to avoid falsely inferring causality 
between some factor and an outcome.  As a simplified example we might find in a given 
population that cases of lung cancer occur far more frequently among males than among 
females.  One would not conclude that being male is a risk factor for lung cancer before first 
examining whether smoking might also be a virtually male addiction in that population.  For 
categorical variables we might use the Mantel-Haenszel stratification approach to adjust for 
such confounding.  The method has two major limitations.  First, the more variables we need 
to adjust for, the larger the uncertainty of our estimates and the more likely some strata are left 
without counts and making a summary measure becomes impossible.  Second, the method is 
limited to categorical variables but often we do not wish to categorize a naturally continuous 
variable (like age) just to accommodate the method.  From various possibilities, one favored 
method is logistic regression analysis that overcomes these two major limitations of stratified 

Exercise 3: Multivariable analysis in R part 1: Logistic regression 

At the end of this exercise you should be able to: 
a. Know how to use logistic regression in R 
b. Know how to properly remove factors for which most likely adjustment is not 

required 
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analysis.  If carefully done, factors that independently predict a given outcome can be isolated 
and thus get the investigator closer to inference of causality. 

 

Logistic regression using R 

Logistic regression is part of glm which is used to fit generalized linear models.  GLM is part 
of the R base package.  The basic formulation of the model is simple: 
output <- glm(formula = outcome ~ factor(var01) + factor (var02) + var03, 

data=datasetname, family=binomial) 

where output is the object to which the model results are assigned to, and glm is the actual 
function.  In parenthesis, one opens with the formula statement and the name of the outcome 
variable following the = sign, followed by a tilde ~ and then all the variables in the model.  
Specification with factor is required for categorical variables, followed by the variable name 
of the variable in parenthesis as with any function (factor being the function here).  In the 
example var01 and var02 are categorical variables, while var03 is treated as a continuous 
variable.  All the variables entering the equation are connected by + signs.  A comma designates 
the end of the variable list and is followed by data= and the name of the dataset.  Finally, 
family=binomial defines that the logit member of the glm family is to be used. 

Why don’t we just enter here for starters an example from our dataset?  Please add the following 
line (all written onto a single line) at the end of our e_ex03.r: 
mylogit <- glm(formula = outcome02 ~ factor(fq02) + factor(sex) + age, data= 

e_ex03, family=binomial) 

Into the next line type: 
summary(mylogit) 

and you get: 

 
 

Let’s examine the output a bit, notably the part that begins with the Coefficients.  We 
have factor(fq02)2-Resistant and factor(sex)Male.  The referent for a variable 
is the lowest value.  The values for fq02 are 1-Susceptible and 2-Resistant.  We 
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therefore see factor(fq02)2-Resistant in the line.  age is a continuous variable, and 
as such it does not have a referent and is shown as it is. 

For the numeric output we have the Estimate and Std. Error, and in the last column a 
probability Pr(>|z|) for the Estimate.  The latter shows that all three variables are highly 
significant predictors, but otherwise it is difficult to gauge what these numbers mean.  Only by 
making this more explicit it becomes more meaningful.  The estimate is a logartithm, thus we 
do some exponentiation and column binding (cbind): 
lreg.or <-exp(cbind(OR = coef(mylogit), confint(mylogit))) 
round(lreg.or, digits=4) 

and then get more meaningfully: 

 

The two functions coef and confint take the estimate and calculate the confidence interval 
from the standard error respectively. cbind “glues” (Dalgaard) the vectors together.  
Exponentiating the logarithmic terms gives the odds ratios (labeled here as OR) with the 95% 
confidence interval that is more amenable to interpretation.  Thus, we need both the summary 
and the conversion of the estimates.  The former is required to determine how to proceed in the 
stepwise exclusion of variables from the model.  Intuitively, we correctly use age as a 
continuous variable, but it is not certain whether this is actually also analytically correct.  We 
should at least check first whether the influence of age has continuity as logistic regression will 
force a fixed slope. 

How should we categorize age?  We could follow the standard classification of WHO, but 
perhaps a bit less arbitrary is to have the data themselves dictating the categories.  In our dataset 
we have the variables agequart and agemed.  These are indeed data-driven quartiles of age 
and the variable age split into a binary variable defined by the median respectively.  These 
variables were made based on the entire set of 515 records.  As we are using a dataset that has 
14 records removed, the values are now conceptually if not actually incorrect.  We will thus 
first remove the two obsolete variables and then create a new variable for quartiles of age based 
on the actual 501 records.  We used: 
names(e_ex03) 

before.  This gives us the names of the variables and their position in the dataset: 

 
We can see / count that agequart and agemed take positions 5 and 6 respectively in the 
sequence of variables.  In other words, we need only the variables in positions 1 through 4 and 
7 through 13, which we write as: 
e_ex03b <- e_ex03[c(1:4, 7:13)] 
detach(e_ex03) 
attach(e_ex03b) 
names(e_ex03b) 

where the last line names(e_ex03b) is only to check that we got what we intended to get 
and we did: 
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Thus here the principle how to drop variables in R.  Next we want to create a new variable from 
the existing variable age.  As the values for the new variable are driven by the data, we need 
to know first more about the distribution of age.  R has a powerful way of showing quantiles 
(look up the Help file by typing ??quantiles).  To obtain quartiles, we type: 
quantile(age,  probs = c(25, 50, 75)/100) 

and we get: 

 
To create a new variable agecat from the existing variable age, we ensure (no problem if it 
is duplicated from above) that the correct file is in the path and then make the assignments 
followed by again detaching the file: 
attach(e_ex03b) 
e_ex03b$agecat[age >= 00 & age < 23] <- "Q1" 
e_ex03b$agecat[age >= 23 & age < 31] <- "Q2" 
e_ex03b$agecat[age >= 31 & age < 42] <- "Q3" 
e_ex03b$agecat[age >= 42]            <- "Q4" 
detach(e_ex03b) 

We also note that our outcome variable “outcome02” is alphabetically listed as “Failure” 
first, then “Success”.  Intuitively, we might be more interested in risk factors for “Failure” 
rather than in risk factors for “Success”.  We thus make a rearrangement to get the order 
sequentially such that the odds calculated is Failure / Success, taking into account that R wishes 
the outcome to be 0 and 1 (zero and one) and write in full: 
attach(e_ex03b) 
e_ex03b$agecat[age >= 00 & age < 23] <- "Q1" 
e_ex03b$agecat[age >= 23 & age < 31] <- "Q2" 
e_ex03b$agecat[age >= 31 & age < 42] <- "Q3" 
e_ex03b$agecat[age >= 42]            <- "Q4" 
e_ex03b$out02[outcome02 == "Success"] <- 0 
e_ex03b$out02[outcome02 == "Failure"] <- 1 
detach(e_ex03b) 
Then we give both new variables new names, write the data to disk, attach the new file, check 
the names to verify (not necessary, but it is always a good idea in the beginning to verify), and 
then write the output: 
e_ex03c <- data.frame(e_ex03b) 
write.table(e_ex03c, file="e_ex03c", row.names=TRUE) 
attach(e_ex03c) 
names(e_ex03c) 
table(agecat, out02) 

and get: 
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This ensures that for the age quartiles Q1 is the referent and for treatment outcome 1-Success 
is the referent. 

Then we repeat the regression model with the categorized agecat: 
# Logistic regression with AGE as categorical variable 
mylogit2 <- glm(formula = out02 ~ factor(fq02) + factor(sex) + factor(agecat), 

data= e_ex03c, family=binomial) 
summary(mylogit2) 
lreg.or <-exp(cbind(OR = coef(mylogit2), confint(mylogit2))) 
round(lreg.or, digits=4) 

and get: 

 

The referent is the youngest quartile set to unity.  Relative to the referent, the risk of failure 
increases in the third and fourth quartile to similar levels and is then highest in the last quartile.  
This observation seems to support the treating of age as a continuous variable, or at least not 
plainly contradicting it. 

This, so far has been “sampling” only.  What we really wanted to evaluate is the influence of 
several factors that might modify the treatment outcome of multidrug-resistant tuberculosis.  
We will be starting with a full model inputting all variables, using instead of the binary fq02 
the more detailed fq04, slightly modified.  The variable fq04 had originally 4 levels, but in 
the source dataset of 501 records we are using in this exercise, the 14 records with a missing 
result have been dropped.  We will first re-categorize the remaining 3 levels so as to ensure that 
the referent is Susceptible.  As shown earlier, we do this by adding a sequential number to 
the desired sequence to get it alphabetically correct: 
attach(e_ex03c) 
e_ex03c$fq03[fq04 == "Susceptible"]           <- "1-Susceptible" 
e_ex03c$fq03[fq04 == "Low-level resistance"]  <- "2-Low-level resistance" 
e_ex03c$fq03[fq04 == "High-level resistance"] <- "3-High-level resistance" 
detach(e_ex03c) 

Not that it is essential but for getting things tidy, save the new as a data frame and read it in: 
e_ex03d <- data.frame(e_ex03c) 
write.table(e_ex03d, file="e_ex03d", row.names=TRUE) 
e_ex03e <- read.table("e_ex03d") 
and then we are ready for the full model: 
mylogit3 <- glm(formula = out02 ~ factor(fq03) + factor(sex) + age + 

factor(pza02) + factor(kmy02) + factor(pth02) + factor(cxr02),  
data=e_ex03e, family=binomial) 

summary(mylogit3) 
and we get: 
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Note also the “AIC” at the end to which will pay particular attention in the following: 
AIC: 407.95 

AIC stands for Akaike’s Information Criterion and is a weighted criterion of goodness of fit.  
The smaller the value, the better the fit.  As we are going with stepwise elimination as one of 
the common procedures (Crawley M J.  The R book.  Second edition, Wiley, Chichester, UK, 
2013, 1051 pp), we are checking how the criterion changes.  Gauging from the probabilities 
above (last column), kanamycin resistance is the first factor to be removed, thus the model is 
reduced to: 
mylogit3 <- glm(formula = out02 ~ factor(fq03) + factor(sex) + age + 

factor(pza02) + factor(pth02) + factor(cxr02), data=e_ex03e, 
family=binomial) 

summary(mylogit3) 
Improving the AIC to 405.96 and putting removal of the chest radiography result as the next.  
This removal improves the AIC to 403.99 and suggest removal of prothionamide resistance 
next.  This removal improves the AIC to 402.54 and suggests removal of pyrazinamide 
resistance next.  This removal improves the AIC to 401.55.  The model is now: 
mylogit3 <- glm(formula = out02 ~ factor(fq03) + factor(sex) + age, 

data=e_ex03e, family=binomial) 
summary(mylogit3) 
and gives: 

 
While low-level resistance to the fluoroquinolone is not a predictor, high-level resistance is a 
strong predictor, and both sex and age are predictors.  Following the rules of being strict, 
none of the remaining factors should thus be removed. 

If you watched it through the process of elimination, you found: 

Modeling step Resulting AIC value 

Full model 407.95 

Remove kmy02  405.96 

Remove cxr02 403.99 

Remove pth02 402.54 

Remove pza02 401.55 
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What we haven’t done yet, but are very much obliged to do is to test whether there is 
heterogeneity in the data and we therefore need one or more interaction terms.  Woolf's test 
for interaction (also known as Woolf's test for the homogeneity of odds ratios) provides a 
formal test for Interaction.  According to Mark Myatt (see text recommended at the beginning 
of Part E), R does not provide Woolf’s test specifically, but the grammar of the function can 
be found in the help section on mantelhaen.test which we have used earlier.  We use here the 
slightly modified script by Myatt (giving the same result), but is slightly more explicit.  We 
type (perhaps best in the console, so that it does not interfere with our script e_ex03.r: 
woolf.test <- function(x) {} 
fix(woolf.test) 
Then in the editor box: 
function(x)  
    { 
    x <- x + 0.5 
    k <- dim(x)[3] 
    or <- apply(x, 3, function(x) 
    {(x[1, 1] / x[1, 2]) / (x[2, 1] / x[2, 2])}) 
    w <- apply(x, 3, function(x) {1 / sum(1 / x)}) 
    chi.sq <- sum(w * (log(or) - weighted.mean(log(or), w))^2) 
    p <- pchisq(chi.sq, df = k - 1, lower.tail = FALSE) 
    cat("\nWoolf's X2 :", chi.sq, "\np-value :", p, "\n") 
} 
 

Finally we save: 
save(woolf.test, file = "woolf.test.r") 

Back to our e_ex03.r script (not necessary, but no harm either for this time, as it is loaded, 
but for the next run after we close, and also that we note where the credit goes to): 
# Test for interaction, using the script for 
# Woolf's test provided by Mark Myatt 
load("c:/epidata_course/woolf.test.r") 

The function requires one parameter, denoted here as x.  If we are interested in the interaction 
between outcome, ofloxacin resistance, and sex, we could make one object: 
tabofl <- table(fq03, out02, sex) 

and then: 
woolf.test(tabofl) 

and we get: 

 

Thus, not to worry about heterogeneity.  For the sake of exercise, and also to look what happens, 
we will nevertheless put in an interaction term: 
mylogit3 <- glm(formula = out02 ~ factor(fq03) + factor(sex) + age + 

factor(sex):factor(fq03), data=e_ex03e, family=binomial) 
summary(mylogit3) 
and we get a poorer AIC of 405.45 and insignificant interaction terms: 
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If we find a significant interaction and perhaps even the AIC improves, then the interaction 
term must be retained.  As you note above, it is simple to write the interaction term which is 
writing the two variables connected by a colon as in factor(var1):factor(var2). 

 

We are therefore pretty much assured that this is our final model: 
# Final model: 
mylogit3 <- glm(formula = out02 ~ factor(fq03) + factor(sex) + age, 

data=e_ex03e, family=binomial) 
summary(mylogit3) 
lreg.or <-exp(cbind(OR = coef(mylogit3), confint(mylogit3))) 
round(lreg.or, digits=4) 

With the following odds ratios and 95% confidence intervals: 

 
 

Task: 
o Examine whether there are interactions between age and sex and fluoroquinolone 

resistant and age, so that all possibilities have been checked before we accept the model. 
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