
 

 

 

 

 

 

Often the results of the logistic regression are the culminating final summary of your analysis.  
In our specific setting, the logistic regression was an intermediate step to an adjusted form of a 
survival analysis.  You have learned the principle of using a Kaplan-Meier survival analysis in 
an earlier Exercise.  We extend on this approach and look at factors that determine the binary 
outcome in the treatment of multidrug-resistant tuberculosis.  A Kaplan-Meier analysis would 
get us quite far, but we would face the problem of adjustment and the problem of dealing with 
continuous predictor variables such as age.  While categorizing age is an option, it might be 
arbitrary and not the most satisfactory solution.  We could end up with multiple small groups if 
values from more than one variable are made strata of a combining new variable.  Almost 
inevitably, differences might become meaningless with the loss of power. 

There are several techniques of multivariate analysis. Principally all do the same thing – 
simultaneous adjustment for multiple variables and providing independent effect estimates for 
each exposure variable in the model on the outcome.  Depending on the type of outcome 
variable, different techniques are used. 

If the outcome is a continuous variable, we use linear regression.  If the outcome is categorical, 
we use logistic regression.  If the outcome is ‘time to event’, we use a Cox proportional hazard 
model.  If the outcome is ‘number of events’ (discrete numeric), then we use Poisson regression.  
Here, the outcome measure is ‘time to event’, and hence we use Kaplan-Meier analysis for 
univariate analysis and the Cox proportional hazard model for multivariate analysis. 

In our approach to the analysis of the dataset on multidrug-resistant tuberculosis we combine 
the two techniques of logistic regression modeling and the Cox proportional hazard model in a 
way that is quite common: logistic regression is used first to evaluate and determine which 
variables have to be considered.  There are alternative approaches, including determining the 
factors within the Cox model itself.  In our case, we had isolated three factors, initial 
fluoroquinolone resistance, age, and sex.  After fitting the Cox proportional hazard model 
including these three variables, we test whether any of the variables grossly violates the 
assumption of proportionality of hazards (which must be met).  If there is such a variable, it 
must be removed from the adjustment and instead stratification by this variable is indicated.  
Then each of the strata are adjusted for the remaining variables and it is checked again whether 
anything remains that violates the proportionality assumption, and so on, until the final model 
emerges.  This is the procedure we are going to apply. 

 

 

 

Exercise 4: Multivariable analysis in R part 2: Cox proportional hazard 
model 

At the end of this exercise you should be able to: 
a. Use the Cox proportional hazard model 
b. Test the assumption for proportionality and if violated, carry out a stratified 

analysis 
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The R survival package 

The base package of R does not include survival analysis, and the package “survival” must thus 
be installed (see lower right quadrant in RStudio): 

 

 

The “survival” package was written by Terry Therneau from the Mayo Clinic.  The procedure 
is the same as we used before for the “foreign” package.  Open a new file in the Source editor 
and save it as e_ex04.r file.  Analogous to calling “foreign” from the library, we also need 
to be calling “survival” from the library.  We are going to use the e_ex02_02.dat as our 
starting dataset.  Thus, make sure that it is attached before we start doing anything. 
* Exercise 4: Multivariable analysis in R part 2: Cox proportional hazard 

model 
library(survival) 
rm(list=ls()) 
e_ex04 <- read.table("e_ex02_02.dat") 
names(e_ex04a) 
The last line gives us the variables: 

 
We need only AGE, FQ04, SEX, TOTOBSTIME, and OUTCOME02, thus: 
e_ex04b <- e_ex04a[c(1:4, 8)] 

(It is not just to repeat what was learnt before, there is also some reason to reduce datasets: like 
EpiData Analysis, R works in the memory which makes it a relatively “slow processor”).  We 
then make the same modification we discussed and did in Exercise 3, attach the file and check 
the names: 
attach (e_ex04b) 
e_ex04b$fq03[fq04 == "Susceptible"]           <- "1-Susceptible" 
e_ex04b$fq03[fq04 == "Low-level resistance"]  <- "2-Low-level resistance" 
e_ex04b$fq03[fq04 == "High-level resistance"] <- "3-High-level resistance" 
e_ex04b$out02[outcome02 == "Success"] <- 0 
e_ex04b$out02[outcome02 == "Failure"] <- 1 
detach(e_ex04b) 
names(e_ex04b) 
e_ex04c <- e_ex04b[c(1, 3:4, 6:7)] 
attach(e_ex04c) 
names(e_ex04c) 
The last line shows: 

 
We have thus reduced our dataset to the bare essential minimum with which we can work. 

 

Kaplan-Meier survival analysis 
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Let’s first compare notes, i.e. check whether we get identical survival probabilities using the 
Kaplan-Meier method in EpiData Analysis and in R.  In EpiData Analysis, we would use: 
lifetable out02 totobstime /by=fq03 /i=b30 /adj \ 
          /ymin=0.30 /ymax=1 /NG /e3 \ 
          /ti="KM successful outcome probability" \ 
          /sub="by intitial fluoroquinolone susceptibility" \ 
          /t 
We get: 

Survival probability for susceptible: 0.865 
Survival probability for low-level resistance: 0.909 
Survival probability for high-level resistance: 0.480 

The model commands in R: 
fit1 <- survfit(formula=Surv(totobstime, out02) ~ fq03, data=e_ex04c) 

We want to add a simple plot: 
plot(fit1, col = c(1, 2, 4), ymin=0.45) 
# colors: 1=black; 2=red, 4=blue 

 

which gives us the plot in the lower-right quadrant: 

 

Remember that initially we defined R as a “language and environment for statistical computing 
and graphing”.  The graphics capabilities of R are enormous but it will take time to learn and 
acquire them (see more information in the text by Thomas Lumley).  As it is not our primary 
purpose to evaluate the graphics capabilities of R, we leave that for the time being.  We must 
see the statistical output, however, so we add a third command line: 
fit1 <- survfit(formula=Surv(totobstime, out02) ~ fq03, data=e_ex04c) 
plot(fit1, col = c(1, 2, 4), ymin=0.45) 
# colors: 1=black; 2=red, 4=blue 
summary(fit1, times = seq(0, 2000, 30)) 
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We get exactly the same survival probabilities as with the lifetable in EpiData Analysis.  
This should strengthen our confidence in both software and our skills.  We note, however, that 
the confidence intervals are different.  In EpiData Analysis, events change the survival 
probability but censored observations do not.  This is identical in R and it is what we expect.  
In EpiData analysis, the 95% confidence interval, however, continues to widen as observations 
with the passage of time become censored, while this is not the case in R.  EpiData Analysis 
uses the philosophy that smaller numbers lead to larger uncertainty, while R focuses on the 
importance of uncertainty at the point of the last event.  Comparison shows that Stata and R get 
the same results.  EpiData Analysis has adapted the approach proposed by Altman, and this will 
be reviewed during the re-writing of the EpiData Analysis module.  In any case, we can 
reproduce the survival probability in the Kaplan-Meier approach. 

 

The Cox proportional hazard model 
The proportional hazards model allows the analysis of survival data by regression modeling.  
Linearity is assumed on the log scale of the hazard.  Relative to a referent, say the rate of death 
among a control group, the rate of death among the experimental group might be half that of 
the control group and the hazard ratio is thus 0.5.  In contrast to relative risks which are 
cumulative over observation time, hazard ratios reflect an instantaneous risk over the study 
period or a subset of the period.  Hazard ratios suffer therefore somewhat less from possible 
selection bias introduced by endpoints.  Under the Cox proportional hazard model, the hazard 
ratio is constant.  The Cox model thus assumes an underlying hazard function with a 
corresponding survival curve.  In a stratified analysis, there will be one such curve for each 
stratum. 

The command lines for the Cox model are: 
mdrcox  <- coxph(Surv(totobstime, out02) ~ factor(fq03) + factor(sex) + age, 

data=e_ex04c) 
summary(mdrcox) 

where totobstime is the variable for the total observation time from treatment start until the 
event occurs or the observation time is censored (be it e.g. to loss from follow-up after treatment 
cessation or reaching the end of the observation time).  Note that “Surv” is capitalized (R is 
case-sensitive).  The second line gives the output: 
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As it should be, the three variables are significantly associated.  The exp(coef), i.e. the 
exponent of the coefficient is the hazard ratio. 

As mentioned above, the Cox proportional hazard model requires that the assumption of 
proportionality is met, that is the survival function for different factors are required to change 
proportionately and do not, for instance cross each other. 

The test diagnostic to evaluate whether the assumption of proportionality is met is: 
cox.zph(mdrcox) 

gives: 

 

The global chi-square test is highly significant, that is the assumption of proportionality is 
violated.  The most important culprit is seemingly the variable fq03.  AGE is also significant 
but not that grossly and sex not at all.  The way to resolve it is stratification, that is fq03 must 
be taken out and the model must be stratified by fq03.  R makes it easy for us to do that with 
the following modification: 
mdrcox  <- coxph(Surv(totobstime, out02) ~ strata(fq03) + factor(sex) + age, 

data=e_ex04c) 
summary(mdrcox) 

This gives: 

 

We have now the hazard of sex and age but not anymore of fluoroquinolone resistance 
because the latter was not a constant hazard and was thus taken out by stratification. 

Testing the assumption for proportionality and plotting the test result: 
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cox.zph(mdrcox) 
plot(cox.zph(mdrcox)) 

 

and 

 

This indicates that the model is not ideal for the variable age, but with a bit lenience and the 
more or less regular graphical test we will allow it to pass without further more complex 
stratification.  The interpretation of the graph in its most simplest way is how curved it is: if it 
is fairly flat (as we think it is here), the assumption of proportionality is not (much) violated.  If 
it is decidedly different from flat, then the assumption is violated as in this example: 

 

Copied from: 

http://stats.stackexchange.com/questions/15114/how-to-
understand-the-plotting-of-the-cox-zph-function-in-r 

 

 

help(plot.survfit) 

gives us information on how to plot it.  It can get elaborate, of course, but here just a bare-bone 
sequence of commands: 
p <- plot(survfit(mdrcox), ylim=c(.45, 1), xlab="Days since treatment start", 

mark.time=F, ylab="Probability of a successful outcome",  col=c(1, 2, 4), 
main="Cox proportional hazard model by initial fluoroquinolone 
resistance") 
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Our main interest is in the numeric output quantification of survival probability: 
print(p) 

 

Thus, our main result, the survival probabilities among patients with initial fluoroquinolone 
susceptibility, low-, and high-level resistance, adjusted for age and sex are: 

Survival probability susceptible: 0.874 
Survival probability low-level resistant: 0.905 
Survival probability high-level resistant: 0.510 

 

To obtain the detailed data: 
mdrcox2 <- survfit(mdrcox) 
summary(mdrcox2, times = seq(0, 3000, 30)) 

gives (just the first 150 days for susceptible, low-level resistant, and high-level resistant): 
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Here, we show it for 30-day intervals, out for up to 3000 days but we could also just get it for 
the first 5 days, but daily: 
summary(mdrcox2, times = seq(0, 5, 1)) 

 

R is indeed powerful through flexibility. 

 

Task: 
This analysis shows that low-level fluoroquinolone resistance has seemingly no influence on 
the outcome while in contrast high-level fluoroquinolone resistance is a powerful predictor 
for an adverse outcome.  Nevertheless, even with high-level fluoroquinolone resistance, a 
remarkable 51% still had a successful outcome.  Unsuccessful here also included death and 
default.  What is of key interest with resistance to the core drug fluoroquinolone is whether 
the outcome is bacteriologically favorable or unfavorable. 
o The first task is to identify factors that are predictors for an unsuccessful bacteriological 

outcome (failure or relapse) versus a bacteriologically favorable outcome (completion and 
relapse-free cure) among cases with any type of fluoroquinolone resistance (low-level or 
high-level) and who did neither die nor default. 

o Summarize your analysis in a table showing numbers, odds ratios and 95% confidence 
intervals both univariate and adjusted multivariate for the factors identified in your 
regression analysis. 
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