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Introduction 
DOUGLAS G ALTMAN, DAVID MACHIN, 
TREVOR N BRYANT 

In preparing a new edition of a book, the editors are usually happy 
in the knowledge that the first edition has been a success. In the 
current circumstances, this satisfaction is tinged with deep 
personal regret that Martin Gardner, the originator of the idea 
for Statistics with Confidence, died in 1993 aged just 52. His 
achievements in a prematurely shortened career were outlined in 
his obituary in the BMJ. 1 

The first edition of Statistics with Confidence (1989) was 
essentially a collection of expository articles concerned with 
confidence intervals and statistical guidelines that had been 
published in the BMJ over the period 1986 to 1988. All were co­
authored by Martin. The other contributors were Douglas 
Altman, Michael Campbell, Sheila Gore, David Machin, Julie 
Morris and Stuart Pocock. The whole book was translated into 
Italian2 and the statistical guidelines have also appeared in 
Spanish.3 

As may be expected, several developments have occurred since 
the publication of the first edition and Martin had discussed and 
agreed some of the changes that we have now introduced into this 
new and expanded edition. Notably, this second edition includes 
new chapters on Diagnostic tests (chapter 10); Clinical trials and 
meta-analyses (chapter 11); Confidence intervals and sample sizes 
(chapter 12); and Special topics (substitution method, exact and 
mid-P confidence intervals, bootstrap confidence intervals, and 
multiple comparisons) (chapter 13). There is also a review of the 
impact of confidence intervals in the medical literature over the ten 
years or so since the first edition (chapter 2). All the chapters from 
the first edition have been revised, some extensively, and one 
(chapter 6 on proportions) has been completely rewritten. The list 
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STATISTICS WITH CONFIDENCE 

of contributors has been extended to include Leslie Daly and 
Robert Newcombe. We are grateful to readers of the first edition 
for constructive comments which have assisted us in preparing this 
revision. 

Alongside the first edition of Statistics with Confidence, a 
computer program, Confidence Interval Analysis (CIA), was 
available. This program, which could carry out the calculations 
described in the book, had been written by Martin, his son 
Stephen Gardner and Paul Winter. An entirely new Windows 
version of CIA has been written by Trevor Bryant to accompany 
the book, and is packaged with this second edition. It is outlined in 
chapter 17. The program reflects the changes made for this edition 
of the book and has been influenced by suggestions from users. 

Despite the enhanced coverage we would reiterate the comment 
in the introduction to the first edition, that this book is not 
intended as a comprehensive statistical textbook. For further 
details of statistical methods the reader is referred to other 
sources. 4-7 

We were all privileged to be colleagues of Martin Gardner. We 
hope that he would have approved of this new edition of Statistics 
with Confidence and would be pleased to know that he is still 
associated with it. In 1995 the Royal Statistical Society post­
humously awarded Martin the inaugural Bradford Hill medal for 
his important contributions to medical statistics. The medal was 
accepted by his widow Linda. As we were completing this second 
edition in October 1999 we were greatly saddened to learn that 
Linda too had died from cancer, far too young. We dedicate this 
book to the memory of both Martin and Linda Gardner. 

I Obituary of MJ Gardner. BM] 1993;306:387. 
2 Gardner MJ, Altman DG (eds) Gli interval/i di conjidenza. Oltre la signijicativitii 

statistica. Rome: II Pensiero Scientifico Editore, 1990. 
3 Altman DG, Gore SM, Gardner MJ, Pocock SJ. Normas estadisticas para los 

colaboradores de revistas de medicina. Archivos de Bronconeumologia 1988; 
24:48-56. 

4 Altman DG. Practical statistics for medical research. London: Chapman & Hall, 
1991. 

5 Armitage P, Berry G. Statistical methods in medical research. 3rd edn. Oxford: 
Blackwell Science, 1994. 

6 Bland M. An introduction to medical statistics. 3rd edn. Oxford: Oxford 
University Press, 2000. 

7 Campbell MJ, Machin D. Medical statistics. A commonsense approach. 3rd edn. 
Chichester: John Wiley, 1999. 
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Part I 
Estimation and confidence 
intervals 





1 Estimating with 
confidence 

MARTIN J GARDNER, DOUGLAS G ALTMAN 

Editors' note: this chapter is reproduced from the first edition (with 
minor adjustments). It was closely based on an editorial published in 
1988 in the British Medical Journal. Chapter 2 describes developments 
in the use of confidence intervals in the medical literature since 1988. 

Statistical analysis of medical studies is based on the key idea that we 
make observations on a sample of subjects and then draw inferences 
about the population of all such subjects from which the sample is 
drawn. If the study sample is not representative of the population 
we may well be misled and statistical procedures cannot help. But 
even a well-designed study can give only an idea of the answer 
sought because of random variation in the sample. Thus results 
from a single sample are subject to statistical uncertainty, which is 
strongly related to the size of the sample. Examples of the statistical 
analysis of sample data would be calculating the difference between 
the proportions of patients improving on two treatment regimens or 
the slope of the regression line relating two variables. These quan­
tities will be imprecise estimates of the values in the overall popula­
tion, but fortunately the imprecision can itself be estimated and 
incorporated into the presentation of findings. Presenting study 
findings directly on the scale of original measurement, together 
with information on the inherent imprecision due to sampling varia­
bility, has distinct advantages over just giving P values usually 
dichotomised into "significant" or "non-significant". This is the 
rationale for using confidence intervals. 

The main purpose of confidence intervals is to indicate the 
(im)precision of the sample study estimates as population values. 
Consider the following points for example: a difference of 20% 
between the percentages improving in two groups of 80 patients 
having treatments A and B was reported, with a 95% confidence 
interval of 6% to 34% (see chapter 5). Firstly, a possible difference 
in treatment effectiveness of less than 6% or of more than 34% is 
not excluded by such values being outside the confidence inter­
val-they are simply less likely than those inside the confidence 
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interval. Secondly, the middle half of the 95 % confidence interval 
(from 13% to 27%) is more likely to contain the population value 
than the extreme two quarters (6% to 13% and 27% to 34%)-in 
fact the middle half forms a 67% confidence interval. Thirdly, 
regardless of the width of the confidence interval, the sample esti­
mate is the best indicator of the population value-in this case a 
20% difference in treatment response. 

The British Medical Journal now expects scientific papers sub­
mitted to it to contain confidence intervals when appropriate. 1 It 
also wants a reduced emphasis on the presentation of P values 
from hypothesis testing (see chapter 3). The Lancet,2,3 the Medical 
Journal of Australia,4 the American Journal of Public Health,S and 
the British Heart Journal,6 have implemented the same policy, and 
it has been endorsed by the International Committee of Medical 
Journal Editors. 7 One of the blocks to implementing the policy 
had been that the methods needed to calculate confidence intervals 
are not readily available in most statistical textbooks. The chapters 
that follow present appropriate techniques for most common situa­
tions. Further articles in the American Journal of Public Health and 
the Annals of Internal Medicine have debated the uses of confidence 
intervals and hypothesis tests and discussed the interpretation of 
confidence intervals. 8

-
14 

So when should confidence intervals be calculated and pre­
sented? Essentially confidence intervals become relevant whenever 
an inference is to be made from the study results to the wider 
world. Such an inference will relate to summary, not individual, 
characteristics-for example, rates, differences in medians, regres­
sion coefficients, etc. The calculated interval will give us a range of 
values within which we can have a chosen confidence of it contain­
ing the population value. The most usual degree of confidence 
presented is 95%, but any suggestion to standardise on 95%2,3 
would not seem desirable. 15 

Thus, a single study usually gives an imprecise sample estimate 
of the overall population value in which we are interested. This 
imprecision is indicated by the width of the confidence interval: 
the wider the interval the less the precision. The width depends 
essentially on three factors. Firstly, the sample size: larger 
sample sizes will give more precise results with narrower confi­
dence intervals (see chapter 3). In particular, wide confidence 
intervals emphasise the unreliability of conclusions based on 
small samples. Secondly, the variability of the characteristic 
being studied: the less variable it is (between subjects, within 
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subjects, from measurement error, and from other sources) the 
more precise the sample estimate and the narrower the confidence 
interval. Thirdly, the degree of confidence required: the more con­
fidence the wider the interval. 

Langman MJS. Towards estimation and confidence intervals. BMJ 
1986;292:716. 

2 Anonymous. Report with confidence [Editorial]. Lancet 1987;i:488. 
3 Bulpitt CJ. Confidence intervals. Lancet 1987;i:494-7. 
4 Berry G. Statistical significance and confidence intervals. Med J Aust 

1986;144:618-19 
5 Rothman KJ, Yankauer A. Confidence intervals vs significance tests: quantita­

tive interpretation (Editors' note). AmJ Public Health 1986;76:587-8. 
6 Evans SJW, Mills P, Dawson J. The end of the P value? Br Heart J 

1988;60:177-80. 
7 International Committee of Medical Journal Editors. Uniform requirements for 

manuscripts submitted to biomedical journals. BMJ 1988;296:401-5. 
8 DeRouen TA, Lachenbruch PA, Clark VA, et al. Four comments received on 

statistical testing and confidence intervals. Am J Public Health 1987;77:237-8. 
9 Anonymous. Four comments received on statistical testing and confidence 

intervals. Am J Public Health 1987;77:238. 
10 Thompson WD. Statistical criteria in the interpretation of epidemiological data. 

AmJ Public Health 1987;77:191-4. 
11 Thompson WD. On the comparison of effects. Am J Public Health 

1987;77:491-2. 
12 Poole C. Beyond the confidence interval. Am J Public Health 1987;77: 195-9. 
13 Poole C. Confidence intervals exclude nothing. Am J Public Health 

1987;77:492-3. 
14 Braitman, LE. Confidence intervals extract clinically useful information from 

data. Ann Intern Med 1988;108:296-8. 
15 Gardner MJ, Altman DG. Using confidence intervals. Lancet 1987;i:746. 
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2 Confidence intervals 
• • In practIce 

DOUGLAS G ALTMAN 

As noted in chapter 1, confidence intervals are not a modern device, 
yet their use in medicine (and indeed other scientific areas) was 
quite unusual until the second half of the 1980s. For some reason 
in the mid-1980s there was a spate of interest in the topic, with 
many journals publishing editorials and expository articles (see 
chapter 1). It seems that several such articles in leading medical 
journals were particularly influential. Since the first edition of 
this book there have been many further such publications, often 
contrasting confidence intervals and significance tests. There has 
been a continuing increase in the use of confidence intervals in 
medical research papers, although some medical specialties seem 
somewhat slower to move in this direction. This chapter briefly 
summarises some of this literature. 

Surveys of the use of confidence intervals in 
medical journals 

There is a long tradition of reviewing the statistical content of 
medical journals, and several recent reviews have included the 
use of confidence intervals. Of particular interest is a review of 
the use of statistics in papers in the British Medical Journal in 
1977 and 1994, before and after it adopted its policy of requiring 
authors to use confidence intervals. 1 One of the most marked 
increases was in the use of confidence intervals, which had risen 
from 4% to 62% of papers using some statistical technique, a 
large increase but still well short of that required. Similarly, 
between 1980 and 1990 the use of confidence intervals in the 
American Journal of Epidemiology approximately doubled to 
70%, and it was around 90% in the subset of papers related to 
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cancer, 2 despite a lack of editorial directive.3 This review also illu­
strated a wider phenomenon, that the increased use of confidence 
intervals was not so much instead of P values but as a supplement 
to them.2 

The uptake of confidence intervals has not been equal through­
out medicine. A review of papers published in the American Jour­
nal of Physiology in 1996 found that out of 370 papers only one 
reported confidence intervals!4 They were presented in just 16% 
of 100 papers in two radiology journals in 1993 compared with 
52% of 50 concurrent papers in the British Medical Journal. s 

Confidence intervals may also be uncommon in certain contexts. 
For example, they were used in only 2 of 112 articles in anaesthesia 
journals (in 1991-92) in conjunction with analyses of data from 
visual analogue scales.6 

Editorials and expository articles 

Editorials7
-

19 and expository articles20- 31 related to confidence 
intervals have continued to appear in medical journals, some 
being quite lengthy and detailed. In effect, the authors have 
almost all favoured greater use of confidence intervals and reduced 
use of P values (a few exceptions are discussed below). Many of 
these papers have contrasted estimation and confidence intervals 
with significance tests and P values. 

Such articles seem to have become rarer in the second half of 
the 1990s, which may indicate that confidence intervals are now 
routinely included in introductory statistics courses, that there is 
a wide belief that this particular battle has been won, or that 
their use is so widespread that researchers use them to conform. 
Probably all of these are true to some degree. 

Medical journal policy 

As noted in chapter 1, when the first edition of this book was 
published in 1989, a few medical journals had begun to include 
some mention of confidence intervals in their instructions to 
authors. In 1988 the influential 'Vancouver guidelines,32 (origin­
ally published in 1979) included the following passage: 

Describe statistical methods with enough detail to enable a knowl­
edgeable reader with access to the original data to verify the reported 
results. When possible, quantify findings and present them with 
appropriate indicators of measurement error or uncertainty (such 
as confidence intervals). Avoid relying solely on statistical hypothesis 
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testing, such as the use of P values, which fails to convey important 
quantitative information. 

This passage has survived intact to May 1999 apart from one trivial 
rewording?3 The comment on confidence intervals is, however, 
very brief and rather nebulous. In 1988 Bailar and Mosteller pub­
lished a helpful amplification of the Vancouver section,34 but this 
article is not cited in recent versions of the guidelines. Over 500 
medical journals have agreed to use the Vancouver requirements 
in their instructions to authors. 33 

Despite the continuing flow of editorials in medical journals in 
favour of greater use of confidence intervals,7-19 it is clear that 
the uptake ofthis advice has been patchy, as illustrated by reviews 
of published papers and also journals' instructions to authors. In 
1993, I reviewed the 'Instructions to Authors' of 135 journals, 
chosen to have high impact factors within their specialties. Only 
19 (14%) mentioned confidence intervals explicitly in their 
instructions for authors, although about half made some mention 
of the Vancouver guidelines. Journals' instructions to authors 
change frequently, and not necessarily in the anticipated direction. 
Statistical guidelines published (anonymously) in 1993 in Diabetic 
Medicine included the following: 'Confidence intervals should be 
used to indicate the preCIsIOn of estimated effects and 
differences,.35 At the same time they published an editorial stating 
'Diabetic Medicine is now requesting the use of confidence intervals 
wherever possible'. 14 These two publications are not referenced in 
the 1999 guidelines, however, and there is no explicit mention of 
confidence intervals, although there is a reference to the Vancouver 
guidelines. 36 

Kenneth Rothman was an early advocate of confidence intervals 
in medical papers.37 In 1986 he wrote: 'Testing for significance 
continues today not on its merits as a methodological tool but on 
the momentum of tradition. Rather than serving as a thinker's 
tool, it has become for some a clumsy substitute for thought, sub­
verting what should be a contemplative exercise into an algorithm 
prone to error.,38 Subsequently, as editor of Epidemiology, he has 
gone further: 39 

8 

When writing for Epidemiology, you can also enhance your prospects 
if you omit tests of statistical significance. Despite a widespread belief 
that many journals require significance tests for publication, the 
Uniform Requirements for Manuscripts Submitted to Biomedical 
Journals discourages them, and every worthwhile journal will 
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accept papers that omit them entirely. In Epidemiology, we do not 
publish them at all. Not only do we eschew publishing claims of 
the presence or absence of statistical significance, we discourage the 
use of this type of thinking in the data analysis, such as in the use 
of stepwise regression. 

Curiously, this information is not given in the journal's 'Guide­
lines for Contributors' (http://www.epidem.com/). perhaps 
reflecting the slightly softer position of a 1997 editorial: 'it would 
be too dogmatic simply to ban the reporting of all P-values from 
Epidemiology.,4o Despite widespread encouragement to include 
confidence intervals, I am unaware of any other medical journal 
which has taken such a strong stance against P values. 

A relevant issue is the inclusion of confidence intervals in 
abstracts of papers. Many commentators have noted that the 
abstract is the most read part of a paper,41 yet it is clear that it is 
the part that receives the least attention by authors, and perhaps 
also by editors. A few journals explicitly state in their instructions 
that abstracts should include confidence intervals. However, con­
fidence intervals are often not included in the abstracts of papers 
even in journals which have signed up to guidelines requiring 
such presentation.42,43 

Misuse of confidence intervals 

The most obvious example of the misuse of confidence intervals is 
the presentation in a comparative study of separate confidence inter­
vals for each group rather than a confidence interval for the contrast, 
as is recommended (chapter 14). This practice leads to inferences 
based on whether the two separate confidence intervals, such as 
for the means in each group, overlap or not. This is not the appro­
priate comparison and may mislead (see chapters 3 and 11). Of 100 
consecutive papers (excluding randomised trials) that I refereed for 
the British MedicalJournal, 8 papers out of the 59 (14%) which used 
confidence intervals used them inappropriately.44 

The use for small samples of statistical methods intended for 
large samples can cause problems. In particular, confidence inter­
vals for quantities constrained between limits should not include 
values outside the range of possible values for the quantities 
concerned. For example, the confidence interval for a proportion 
should not go outside the range 0 to 1 (or 0% to 100%) (see 
chapters 6 and 10). Quoted confidence intervals which include 
impossible values - such as the sensitivity of a diagnostic test 
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greater than 100%, the area under the ROC curve greater than 1, 
and negative values of the odds ratio - should not be accepted by 
journals.45 ,46 

One criticism of confidence intervals as used is that many 
researchers seem concerned only with whether the confidence 
interval includes the 'null' value representing no difference 
between the groups. Confidence intervals wholly to one side of 
the no effect point are deemed to indicate a significant result. 
This practice, which is based on a correct link between confidence 
interval and the P value, is indeed common. But even if the author 
of a paper acts in this way, by presenting the confidence interval 
they give readers the opportunity to take a different and more 
informative interpretation. When results are presented simply as 
P values, this option is unavailable. 

Dissenting voices 

It is clear that there is a considerable consensus among statisti­
cians that confidence intervals represent a far better approach to 
the presentation and interpretation of results than significance 
tests and P values. Apart from those, mostly statisticians, who 
criticise all frequentist approaches to statistical inference (usually 
in favour of Bayesian methods), there seem to have been very 
few who have spoken out against the general view that confidence 
intervals are a much better way to present results than P values. 

In a short editorial in the Journal of Obstetrics and Gynecology, 
the editor attacked several targets including confidence intervalsY 
He expressed the unshakeable view that only positive results 
(P < 0.05) indicate important findings, and suggested that 'The 
adoption of the [confidence interval] approach has already enabled 
the publication in full of many large but inconclusive studies ... ' 
Charlton48 argued that confidence intervals do not provide infor­
mation of any value to clinicians. In fact, he criticised confidence 
intervals for not doing something which they do not purport to 
do, namely indicate the variation in response for individual 
patients. 

Hilden49 cautioned that confidence intervals should not be pre­
sented 'when there are major threats to accuracy besides sampling 
error; or when a characteristic is too local and study-dependent to 
be generalizable'. Ha1l5o took this line of reasoning further, arguing 
that confidence intervals 'should be used sparingly, if at all' when 
presenting the results of clinical trials. He also argued, contrary to 
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the common view, that they might be particularly misleading 
'when a clinical trial has failed to produce anticipated results'. 
His reasoning was that patients in a trial are not a random 
sample and thus the results cannot be generalised, and also that 
'a clinical trial is designed to confirm expectation of treatment 
efficacy by rejecting the null hypothesis that differences are due 
to chance'. He went further, and suggested that 'there are few, if 
any, situations in which a confidence interval proves useful'. 
This line of reasoning has a rational basis, but he has taken it to 
unreasonable extremes. Other articles in the same journal 
issue51

,52 presented a more mainstream view. 
It is interesting that there is no consensus among this small 

group of critics about what are the failings of confidence intervals. 
It is right to observe that we should always think carefully about 
the appropriate use and interpretation of all statistics, but it is 
wrong to suggest that all confidence intervals are meaningless or 
misleading. 

Comment 

Like many innovations, it is hard now to imagine the medical 
literature without confidence intervals. Overall, this is surely a 
development of great value, not least for the associated down­
playing (but by no means elimination) of the wide use of 
P < 0.05 or P > 0.05 as a rule for interpreting study findings. 
However, as noted, confidence intervals can be both misused and 
overused and there are arguments in favour of other approaches 
to statistical inference. Also, despite a large increase in the use of 
confidence intervals, even in those journals which require con­
fidence intervals - such as the British Medical Journal - their 
use is not widespread, and in some fields, such as physiology and 
psychology, their use remains uncommon. 

Confidence intervals are especially valuable to aid the interpreta­
tion of clinical trials and meta-analyses53 (see chapter 11). In cases 
where the estimated treatment effect is small the confidence interval 
indicates where clinically valuable treatment benefit remains plaus­
ible in the light of the data, and may help to avoid mistaking lack of 
evidence of effectiveness with evidence of lack of effectiveness. 54 

The CONSORT statement43 for reporting randomised trials 
requires confidence intervals, as does the QUOROM statement55 

for reporting systematic reviews and meta-analyses (see chapters 
11 and 15). 
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None of this is meant to imply that confidence intervals offer a 
cure for all the problems associated with significance testing and 
P values, as several observers have noted. 56

,57 We should certainly 
expect continuing developments in thinking about statistical 
inference.58- 61 

1 Seldrup J. Whatever happened to the t-test? Drug Inf J 1997;31:745-50. 
2 Savitz DA, Tolo K-A, Poole C. Statistical significance testing in the American 

Journal of Epidemiology, 1970-1990. AmJ EpidemioI1994;139:1047-52. 
3 Walter SD. Methods of reporting statistical results from medical research 

studies. Am J EpidemioI1995;141:896-908. 
4 Curran-Everett D, Taylor S, Kafadar K. Fundamental concepts in statistics: 

elucidation and iIlustration. J Appl PhysioI1998;85:775-86. 
5 Cozens NJA. Should we have confidence intervals in radiology papers? Clin 

Radiol 1994;49:199-201. 
6 Mantha S, Thisted R, Foss J, Ellis JE, Roizen MF. A proposal to use confi­

dence intervals for visual analog scale data for pain measurement to determine 
clinical significance. Anesth Analg 1993;77:1041-7. 

7 Keiding N. SikkerhedsintervaIler. Ugeskr Lceger 1990;152:2622. 
8 Braitman LE. Confidence intervals assess both clinical significance and statis­

tical significance. Ann Intern Med 1991;114:515-17. 
9 RusseIl 1. Statistics - with confidence? Br J Gen Pract 1991;41:179-80. 

10 Altman DG, Gardner MJ. Confidence intervals for research findings. Br J 
Obstet Gynecol 1992;99:90-1. 

11 Grimes DA. The case for confidence intervals. Obstet GynecoI1992;80:865-6. 
12 Scialli AR. Confidence and the nuIl hypothesis. Reprod ToxicoI1992;6:383-4. 
13 Harris EK. On P values and confidence intervals (why can't we P with more 

confidence?) Clin Chem 1993;39:927-8. 
14 HolIis S. Statistics in Diabetic Medicine: how confident can you be? Diabetic 

Med 1993;10:103-4. 
15 Potter RH. Significance level and confidence interval. J Dent Res 1994;73:494-6. 
16 Waller PC, Jackson PR, Tucker GT, Ramsay LE. Clinical pharmacology with 

confidence. Br J Clin PharmacoI1994;37:309-10. 
17 Altman DG. Use of confidence intervals to indicate uncertainty in research 

findings. Evidence-Based Med 1996;1 (May-June): 102-4. 
18 Northridge ME, Levin B, Feinleib M, Susser MW. Statistics in the journal -

significance, confidence and all that. Am J Public Health 1997;87: 1092-5. 
19 Sim J, Reid N. Statistical inference by confidence intervals: issues of interpre­

tation and utilization. Phys Ther 1999;79:186-95. 
20 Kelbrek HS, Gj0rup T, Hilden J. SikkerhedsintervalIer i stedet for P-vrerdier. 

Ugeskr Lceger 1990;152:2623-8. 
21 Chinn S. Statistics in respiratory medicine. 1. Ranges, confidence intervals and 

related quantities: what they are and when to use them. Thorax 1991;46:391-3. 
22 Borenstein M. A note on the use of confidence intervals in psychiatric research. 

Psychopharmacol Bull 1994;30:235-8. 
23 Healy MJR. Size, power, and confidence. Arch Dis Child 1992;67:1495-7. 
24 Dorey F, Nasser S, Amstutz H. The need for confidence intervals in the 

presentation of orthopaedic data. J Bone Joint Surg 1993;75A:1844-52. 
25 Birnbaum D, Sheps SB. The merits of confidence intervals relative to 

hypothesis testing. Infect Control Hosp EpidemioI1992;13:553-5. 
25a Henderson AR. Chemistry with confidence: should Clinical Chemistry require 

confidence intervals for analytical and other data? Clin Chem 1993;39:929-35. 
26 Metz CEo Quantification of failure to demonstrate statistical significance. 

Invest RadioI1993:28:59-63. 

12 



CONFIDENCE INTERVALS IN PRACTICE 

27 Borenstein M. Hypothesis testing and effect size estimation in clinical trials. 
Ann Allergy Asthma ImmunoI1997;78:5-11. 

28 Young KD, Lewis RJ. What is confidence? Part 1: The use and interpretation 
of confidence intervals. Ann Emerg Med 1997;30:307-10. 

29 Young KD, Lewis RJ. What is confidence? Part 2: Detailed definition and 
determination of confidence intervals. Ann Emerg Med 1997;30:311-18. 

30 Greenfield MVH, Kuhn JE, Wojtys EM. A statistics primer. Confidence inter­
vals. Am J Sports Med 1998;26:145-9. 

31 Fitzmaurice G. Confidence intervals. Nutrition 1999;15:515-16. 
32 International Committee of Medical Journal Editors. Uniform Requirements 

for Manuscripts Submitted to Biomedical Journals. BMJ 1988;296:401-5. 
33 International Committee of Medical Journal Editors. Uniform Requirements 

for Manuscripts Submitted to Biomedical Journals. Ann Intern Med 1997; 
126:36-47 (see also http://www.acponline.org/journals/resource/unifreqr.htm 
dated May 1999 - accessed 23 September 1999). 

34 Bailar JC, Mosteller F. Guidelines for statistical reporting in articles for 
medical journals. Amplifications and expl~nations. Ann Intern Med 1988; 
108:266-73. 

35 Anonymous. Statistical guidelines for Diabetic Medicine. Diabetic Med 
1993;10: 93-4. 

36 Diabetic Medicine. Instructions for Authors. http://www.blacksci.co.uk/ 
(accessed 23 September 1999). 

37 Rothman KJ. A show of confidence. N Eng J Med 1978;299:1362-3. 
38 Rothman KJ. Significance questing. Ann Intern Med 1986;105:445-7. 
39 Rothman KJ. Writing for Epidemiology. Epidemiology 1998;9. See also 

http://www.epidem.com. 
40 Lang JM, Rothman KJ, Cann CI. The confounded P value. Epidemiology 

1998;9:7 -8. 
41 Pitkin RM, Branagan MA. Can the accuracy of abstracts be improved by pro­

viding specific instructions? A randomized controlled trial. J AMA 1998;280: 
267-9. 

42 Haynes RB, Mulrow CD, Huth EJ, Altman DG, Gardner MJ. More informa­
tive abstracts revisited. Ann Intern Med 1990;113:69-76. 

43 Begg C, Cho M, Eastwood S, Horton R, Moher D, Olkin I, et al. Improving 
the quality of reporting of randomized controlled trials: the CONSORT state­
ment. JAMA 1996;276:637-9. 

44 Altman DG. Statistical reviewing for medical journals. Stat Med 1998;17: 
2662-74. 

45 Deeks JJ, Altman DG. Sensitivity and specificity and their confidence intervals 
cannot exceed 100%. BMJ 1999;318:193-4. 

46 Altman DG. ROC curves and confidence intervals: getting them right. Heart 
2000;83:236. 

47 Hawkins DF. Clinical trials - meta-analysis, confidence limits and 'intention 
to treat' analysis. J Obstet GynaecoI1990;10:259-60. 

48 Charlton BG. The future of clinical research: from megatrials towards 
methodological rigour and representative sampling. J Eval Clin Practice 
1996; 2:159-69. 

49 Hilden J. Book review of Lang TA, Secic M, 'How to report statistics in 
medicine. Annotated guidelines for authors, editors and reviewers'. Med 
Decis Making 1998;18:351-2. 

50 Hall DB. Confidence intervals and controlled clinical trials: incompatible tools 
for medical research. J Biopharmaceut Stat 1993;3:257-63. 

51 Braitman LE. Statistical estimates and clinical trials. J Biopharmaceut Stat 
1993;3:249-56. 

52 Simon R. Why confidence intervals are useful tools in clinical therapeutics. 
J Biopharmaceut Stat 1993;3:243-8. 

13 



STATISTICS WITH CONFIDENCE 

53 Borenstein M. The case for confidence intervals in controlled clinical trials. 
Controlled Clin Trials 1994;15:411-28. 

54 Altman DG, Bland JM. Absence of evidence is not evidence of absence. BMJ 
1995;311:485. 

55 Moher D, Cook DJ, Eastwood S, Olkin I, Rennie D, Stroup DF, et al. 
Improving the quality of reports of meta-analyses of randomized controlled 
trials: the QUO ROM statement. Lancet, in press. 

56 Freeman PR. The role of P-values in analysing trial results. Stat Med 
1993;12:1443-52. 

57 Feinstein AR. P-values and confidence intervals: two sides to the same unsatis­
factory coin. J Clin EpidemioI1998;51:355-60. 

58 Savitz DA. Is statistical significance testing useful in interpreting data? Reprod 
ToxicolI993;7:95-100. 

59 Burton PR, Gurrin LC, Campbell MJ. Clinical significance not statistical sig­
nificance: a simple Bayesian alternative to P values. J Epidemiol Community 
Health 1998;52:318-23. 

60 Goodman SN. Towards evidence-based medical statistics. Part 1. The P value 
fallacy. Ann Intern Med 1999;130:995-1004. 

61 Goodman SN. Towards evidence-based medical statistics. Part 2. The Bayes 
factor. Ann Intern Med 1999;130:1005-21. 

14 



3 Confidence intervals 
rather than P values 

MARTIN J GARDNER, DOUGLAS G ALTMAN 

Summary 

• Overemphasis on hypothesis testing-and the use of P values 
to dichotomise results as significant or non-significant-has 
detracted from more useful approaches to interpreting study 
results, such as estimation and confidence intervals. 

• In medical studies investigators should usually be interested in 
determining the size of difference of a measured outcome 
between groups, rather than a simple indication of whether 
or not it is statistically significant. 

• Confidence intervals present a range of values, on the basis 
of the sample data, in which the population value for such a 
difference is likely to lie. 

• Confidence intervals, if appropriate to the type of study, 
should be used for major findings in both the main text of a 
paper and its abstract. 

Introduction 

Over recent decades the use of statistics in medical journals has 
increased tremendously. One unfortunate consequence has been a 
shift in emphasis away from the basic results towards an undue con­
centration on hypothesis testing. In this approach data are exam­
ined in relation to a statistical "null" hypothesis, and the practice 
has led to the mistaken belief that studies should aim at obtaining 
"statistical significance". On the contrary, the purpose of most 
research investigations in medicine is to determine the magnitude 
of some factor(s) of interest. For example, a laboratory-based 
study may investigate the difference in mean concentrations of a 
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blood constituent between patients with and without a certain ill­
ness, while a clinical study may assess the difference in prognosis 
of patients with a particular disease treated by alternative regimens 
in terms of rates of cure, remission, relapse, survival, etc. The dif­
ference obtained in such a study will be only an estimate of what we 
really need, which is the result that would have been obtained had 
all the eligible subjects (the "population") been investigated rather 
than just a sample of them. What authors and readers should want 
to know is by how much the illness modified the mean blood con­
centrations or by how much the new treatment altered the prog­
nosis, rather than only the level of statistical significance. 

The excessive use of hypothesis testing at the expense of other 
ways of assessing results has reached such a degree that levels 
of significance are often quoted alone in the main text and 
abstracts of papers, with no mention of actual concentrations, pro­
portions, etc., or their differences. The implication of hypothesis 
testing-that there can always be a simple "yes" or "no" answer 
as the fundamental result from a medical study-is clearly false 
and used in this way hypothesis testing is of limited value (see 
chapter 14). 

We discuss here the rationale behind an alternative statistical 
approach-the use of confidence intervals; these are more infor­
mative than P values, and we recommend them for papers present­
ing research findings. This should not be taken to mean that 
confidence intervals should appear in all papers; in some cases, 
such as where the data are purely descriptive, confidence intervals 
are inappropriate and in others techniques for obtaining them are 
complex or unavailable. 

Presentation of study results: limitations of P 
values 

The common simple statements "P < 0'05", "P > 0'05", or 
"P = NS" convey little information about a study's findings and 
rely on an arbitrary convention of using the 5% level of statistical 
significance to define two alternative outcomes-significant or not 
significant-which is not helpful and encourages lazy thinking. 
Furthermore, even precise P values convey nothing about the 
sizes of the differences between study groups. Rothman pointed 
this out in 1978 and advocated the use of confidence intervals, 1 

and in 1984 he and his colleagues repeated the proposal. 2 This 
plea has been echoed by many others since (see chapter 2). 
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Presenting P values alone can lead to their being given more 
merit than they deserve. In particular, there is a tendency to 
equate statistical significance with medical importance or bio­
logical relevance. But small differences of no real interest can be 
statistically significant with large sample sizes, whereas clinically 
important effects may be statistically non-significant only because 
the number of subjects studied was small. 

Presentation of study results: confidence 
intervals 

It is more useful to present sample statistics as estimates of 
results that would be obtained if the total population were studied. 
The lack of precision of a sample statistic-for example, the 
mean-which results from both the degree of variability in the 
factor being investigated and the limited size of the study, can be 
shown advantageously by a confidence interval. 

A confidence interval produces a move from a single value esti­
mate-such as the sample mean, difference between sample 
means, etc.-to a range of values that are considered to be plausi­
ble for the population. The width of a confidence interval asso­
ciated with a sample statistic depends partly on its standard 
error, and hence on both the standard deviation and the sample 
size (see appendix 1 for a brief description of the important, but 
often misunderstood, distinction between the standard deviation 
and standard error). It also depends on the degree of "confidence" 
that we want to associate with the resulting interval. 

Suppose that in a study comparing samples of 100 diabetic 
and 100 non-diabetic men of a certain age a difference of 
6·0 mmHg was found between their mean systolic blood pressures 
and that the standard error of this difference between sample 
means was 2·5 mmHg, comparable to the difference between 
means in the Framingham study.3 The 95% confidence interval 
for the population difference between means is from 1·1 to 
10'9 mmHg and is shown in Figure 3.1 together with the original 
data. Details of how to calculate the confidence interval are given 
in chapter 4. 

Put simply, this means that there is a 95% chance that the indi­
cated range includes the "population" difference in mean blood 
pressure levels-that is, the value which would be obtained by 
including the total populations of diabetics and non-diabetics at 
which the study is aimed. More exactly, in a statistical sense, the 
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Figure 3.1 Systolic blood pressures in 100 diabetics and 100 non­
diabetics with mean levels of 146'4 and 140'4 mmHg respectively. The 
difference between the sample means of 6.0 mmHg is shown to the right 
together with the 95% confidence interval from 1'1 to 10'9 mmHg. 

confidence interval means that if a series of identical studies were 
carried out repeatedly on different samples from the same popula­
tions, and a 95% confidence interval for the difference between the 
sample means calculated in each study, then, in the long run, 95% 
of these confidence intervals would include the population differ­
ence between means. 

The sample size affects the size of the standard error and this 
in turn affects the width of the confidence interval. This is 
shown in Figure 3.2, which shows the 95% confidence interval 
from samples with the same means and standard deviations as 
before but only half as large-that is, 50 diabetics and 50 non­
diabetics. Reducing the sample size leads to less precision and an 
increase in the width of the confidence interval, in this case by 
some 40%. 

The investigator can select the degree of confidence associated 
with a confidence interval, though 95 % is the most common 
choice-just as a 5% level of statistical significance is widely 
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Figure 3.2 As Figure 3.1 but showing results from two samples of half 
the size-that is, 50 subjects each. The means and standard deviations 
are as in fig 3.1, but the 95% confidence interval is wider, from -1·0 to 
13·0 mmHg, owing to the smaller sample sizes. 

used. If greater or less confidence is required different intervals can 
be constructed: 99%, 95%, and 90% confidence intervals for the 
data in Figure 3.1 are shown in Figure 3.3. As would be expected, 
greater confidence that the population difference is within a 
confidence interval is obtained with wider intervals. In practice, 
intervals other than 99%,95%, or 90% are rarely quoted. Appen­
dix 2 explains the general method for calculating a confidence 
interval appropriate for most of the methods described in this 
book. In brief, a confidence interval is obtained by subtracting 
from, and adding to, the estimated statistic of interest (such as a 
mean difference) a multiple of its standard error (SE). A few 
methods described in this book, however, do not follow this 
pattern. 

Confidence intervals convey only the effects of sampling 
variation on the precision of the estimated statistics and cannot 
control for non-sampling errors such as biases in design, conduct, 
or analysis. 
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Figure 3.3 Confidence intervals associated with differing degrees of 
"confidence" using the same data as in Figure 3.1. 

Sample sizes and confidence intervals 

In general, increasing the sample size will reduce the width of 
the confidence interval. If we assume the same means and standard 
deviations as in the example, Figure 3.4 shows the resulting 99%, 
95%, and 90% confidence intervals for the difference in mean 
blood pressures for sample sizes of up to 500 in each group. The 
benefit, in terms of narrowing the confidence interval, of a further 
increase in the number of subjects, falls sharply with increasing 
sample size. Similar effects occur in estimating other statistics 
such as proportions. 

For a total study sample size of N subjects, the confidence inter­
val for the difference in population means is narrowest when both 
groups are of size N12. However, the width of the confidence inter­
val will be only slightly larger with differing numbers in each 
group unless one group size is relatively small. 

During the planning stage of a study it is possible to estimate 
the sample size that should be used by stating the width of the 
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Figure 3.4 Confidence intervals resulting from the same means and stan­
dard deviations as in Figure 3.1 but showing the effect on the confidence 
interval of sample sizes of up to 500 subjects in each group. The two 
horizontal lines show: - - - - zero difference between means, -- observed 
study difference between means of 6·0 mmHg. The arrows indicate the 
confidence intervals shown in Figures 3.1-3.3 for sample sizes of 100 
and 50 in each group. 

confidence interval required at the end of the study and carrying 
out the appropriate calculation (see chapter 12). 

Confidence intervals and statistical significance 

There is a close link between the use of a confidence interval and 
a two-sided hypothesis test. If the confidence interval is calculated 
then the result ofthe hypothesis test (often less accurately referred 
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to as a significance test) can be inferred at an associated level of 
statistical significance. The right-hand scale in Figure 3.1 includes 
the point that represents a zero difference in mean blood pressure 
between diabetics and non-diabetics. This zero difference between 
means corresponds to the value examined under the "null hypoth­
esis" and, as Figure 3.1 shows, it is outside the 95% confidence 
interval. This indicates that a statistically significant difference 
between the sample means at the 5 % level would result from 
applying the appropriate unpaired t test. Figure 3.3, however, 
shows that the P value is greater than 1 % because zero is inside 
the 99% confidence interval, so 0·01 < P < 0·05. By contrast, 
had zero been within the 95% confidence interval this would 
have indicated a non-significant result at the 5% level. Such an 
example is shown in Figure 3.2 for the smaller samples. 

The 95 % confidence interval covers a wide range of possible 
population mean differences, even though the sample difference 
between means is different from zero at the 5% level of statistical 
significance. In particular, the 95% confidence interval shows that 
the study result is compatible with a small difference of around 
1 mmHg as well as with a difference as great as 10 mmHg in 
mean blood pressures. Nevertheless, the difference between popu­
lation means is much more likely to be near to the middle of the 
confidence interval than towards the extremes. Although the 
confidence interval is wide, the best estimate of the population 
difference is 6·0 mmHg, the difference between the sample means. 

This example therefore shows the lack of precision of the observed 
sample difference between means as an estimate of the population 
value, and this is clear in each of the three confidence intervals 
shown in Figure 3.3. It also shows the weakness of considering 
statistical significance in isolation from the numerical estimates. 

The confidence interval thus provides a range of possibilities for 
the population value, rather than an arbitrary dichotomy based 
solely on statistical significance. It conveys more useful informa­
tion at the expense of precision of the P value. However, the 
actual P value is helpful in addition to the confidence interval, 
and preferably both should be presented. If one has to be excluded, 
however, it should be the P value. 

Suggested mode of presentation 

In content, our only proposed change is that confidence intervals 
should be reported instead of standard errors. This will encourage 
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a move away from the emphasis on statistical significance. For the 
major finding(s) of a study we recommend that full statistical infor­
mation should be given, including sample estimates, confidence 
intervals, test statistics, and P values-assuming that basic details, 
such as sample sizes and standard deviations, have been reported 
earlier in the paper. The major findings would include at least 
those related to the original hypothesis(es) of the study and those 
reported in the abstract. 

For the above example the textual presentation of the results 
might read: 

The difference between the sample mean systolic blood pressures in 
diabetics and non-diabetics was 6'OmmHg, with a 95% confidence 
interval from 1·1 to 10'9 mmHg; the t test statistic was 2'4, with 
198 degrees of freedom and an associated P value of 0·02. 

In short: 

Mean 6'OmmHg, 95% confidence interval 1·1 to 10'9; t = 2'4, 
df = 198, P = 0·02. 

It is preferable to use the word "to" for separating the two values 
rather than a dash, as a dash is confusing when at least one of the 
numbers is negative. The use of the ± sign should also be avoided 
(see appendix 1 and chapter 14). The exact P value from the t dis­
tribution is 0'01732, but one or two significant figures are enough 
(see chapter 14); this value is seen to be within the range 0'01 to 
0·05 determined earlier from the confidence intervals. 

The two extremes of a confidence interval are known as confi­
dence limits. However, the word "limits" suggests that there is 
no going beyond and may be misunderstood because, of course, 
the population value will not always lie within the confidence 
interval. Moreover, there is a danger that one or other of the 
"limits" will be quoted in isolation from the rest of the results, 
with misleading consequences. For example, concentrating 
only on the larger limit and ignoring the rest of the confidence 
interval would misrepresent the finding by exaggerating the 
study difference. Conversely, quoting only the smaller limit 
would incorrectly underestimate the difference. The confidence 
interval is thus preferable because it focuses on the range of 
values. 

The same notation can be used for presenting confidence 
intervals in tables. Thus, a column headed "95% confidence 
interval" or "95% CI" would have rows of intervals: 1'1 to 10'9, 
48 to 85, etc. Confidence intervals can also be incorporated into 
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figures, where they are preferable to the widely used standard 
error, which is often shown solely in one direction from the 
sample estimate. If individual data values can be shown as well, 
which is usually possible for small samples, this is even more infor­
mative. Thus in Figure 3.1, despite the considerable overlap of the 
two sets of sample data, the shift in means is shown by the 95% 
confidence interval excluding zero. For paired samples, the indivi­
dual differences can be plotted advantageously in a diagram. 

The example given here of the difference between two means is 
common. Although there is some intrinsic interest in the mean 
values themselves, inferences from a study will be concerned 
mainly with their difference. Giving confidence intervals for each 
mean separately is therefore unhelpful, because these do not 
indicate the precision of the difference or its statistical signif­
icance. 4

,5 Thus, the major contrasts of a study should be shown 
directly, rather than only vaguely in terms of the separate means 
(or proportions). 

For a paper with only a limited number of statistical com­
parisons related to the initial hypotheses, confidence intervals are 
recommended throughout. Where multiple comparisons are con­
cerned, however, the usual problems of interpretation arise, 
since some confidence intervals will exclude the "null" value­
for example, zero difference-through random sampling variation 
alone. This mirrors the situation of calculating a multiplicity of P 
values, where not all statistically significant differences are likely to 
represent real effects6 (see chapter 13). Judgement needs to be 
exercised over the number of statistical comparisons made, with 
confidence intervals and P values calculated, to avoid misleading 
both authors and readers (see chapter 14). 

Conclusion 

The excessive use of hypothesis testing at the expense of more 
informative approaches to data interpretation is an unsatisfactory 
way of assessing and presenting statistical findings from medical 
studies. We prefer the use of confidence intervals, which present 
the results directly on the scale of data measurement. We have 
also suggested a notation for confidence intervals which is intended 
to force clarity of meaning. 

Confidence intervals, which also have a link to the outcome of 
hypothesis tests, should become the standard method for presenting 
the statistical results of major findings. 
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Appendix 1: Standard deviation and standard 
error 

When numerical findings are reported, regardless of whether or 
not their statistical significance is quoted, they are often presented 
with additional statistical information. The distinction between 
two widely quoted statistics-the standard deviation and the stan­
dard error-is, however, often misunderstood.7

-
12 

The standard deviation is a measure of the variability between 
individuals in the level of the factor being investigated, such as 
blood alcohol concentrations in a sample of car drivers, and is 
thus a descriptive index. By contrast, the standard error is a mea­
sure of the uncertainty in a sample statistic. For example, the stan­
dard error of the mean indicates the uncertainty of the mean blood 
alcohol concentration among the sample of drivers as an estimate of 
the mean value among the population of all car drivers. The stan­
dard deviation is relevant when variability between individuals is 
of interest; the standard error is relevant to summary statistics 
such as means, proportions, differences, regression slopes, etc. 
(see chapter 14). 

The standard error of the sample statistic, which depends on 
both the standard deviation and the sample size, is a recognition 
that a sample is most unlikely to determine the population 
value exactly. In fact, if a further sample is taken in identical cir­
cumstances almost certainly it will produce a different estimate 
of the same population value. The sample statistic is therefore 
imprecise, and the standard error is a measure of this imprecision. 
By itself the standard error has limited meaning, but it can be 
used to produce a confidence interval, which does have a useful 
interpretation. 

In many publications a ± sign is used to join the standard 
deviation (SD) or standard error (SE) to an observed mean-for 
example, 69·4 ± 9·3 kg-but the notation gives no indication 
whether the second figure is the standard deviation or the standard 
error (or something else).12 As is suggested in chapter 14, a clearer 
presentation would be in the unambiguous form "the mean was 
69·4kg (SD 9·3kg)". The present policy of the BMJ and many 
other journals is to remove ± signs and request authors to indicate 
clearly whether the standard deviation or standard error is 
being quoted. All journals should follow this practice;13 it 
avoids any possible misunderstanding from the omission of SD 
or SE.14 
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Appendix 2: Constructing confidence intervals 

Frequently we can reasonably assume that the estimate of inter­
est, such as the difference between two proportions (see chapter 6), 
has a Normal sampling distribution. To construct a confidence 
interval for the population value we are interested in the range of 
values within which the sample estimate would fall on most occa­
sions (see main text of this chapter). The calculation of confidence 
intervals is simplified by the ability to convert the standard Normal 
distribution into the Normal distribution of interest by multiply­
ing by the standard error of the estimate and adding the value of 
the estimate. 

To construct a 95% confidence interval, say, we use the central 
95% of the standard Normal distribution, so we need the values 
that cut off 2·5% of the distribution at each end (or "tail"). 
Thus we need the values of ZO'025 and ZO'975' In general we con­
struct a 100(1 - 0:)% confidence interval using the values Za/2 

and ZI-a/2 which cut off the bottom and top 1000:/2% of the dis­
tribution. Figure 3.5 illustrates the procedure. 

Figure 3.5 Standard Normal distribution curve. 
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To convert back to the scale of the original data we multiply the 
two values zo./2 and zl-o./2 by the standard error (SE) and add 
them to the estimate, to get the 100(1 - a)% confidence interval as 

estimate + (Za/2 x SE) to estimate + (ZI-a/2 X SE). 

As explained in the notation list at the end of the book (chapter 16), 
an equivalent expression is 

estimate - (ZI-o./2 X SE) to estimate + (Zl-o./2 X SE) 

which makes explicit the symmetry of the confidence interval 
around the estimate. 

For some estimates, such as the difference between sample 
means (see chapter 4), the appropriate sampling distribution is 
the t distribution. Exactly the same procedure is adopted but 
with ZI-o./2 replaced by t l -o./2' For other estimates different sam­
pling distributions are relevant, such as the Poisson distribution 
for standardised mortality ratios (see chapter 7) or the Binomial 
for medians (see chapter 5). 
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4 Means and their 
differences 

DOUGLAS G ALTMAN, MARTIN J GARDNER 

The rationale behind the use of confidence intervals was described 
in chapters 1 and 3. Here formulae for calculating confidence 
intervals are given for means and their differences. There is a 
common underlying principle of subtracting and adding to the 
sample statistic a multiple of its standard error (SE). This extends 
to other statistics, such as proportions and regression coefficients, 
but is not universal. 

Confidence intervals for means are constructed using the t distri­
bution if the data have an approximately Normal distribution. For 
differences between two means the data should also have similar 
standard deviations (SDs) in each study group. This is implicit 
in the example given in chapter 3 and in the worked examples 
below. The calculations have been carried out to full arithmetical 
precision, as is recommended practice (see chapter 14), but inter­
mediate steps are shown as rounded results. 

The case of non-Normal data is discussed both in this chapter 
and in chapter 5. 

A confidence interval indicates the precision of the sample mean 
or the difference between two sample means as an estimate of the 
overall population value. As such, confidence intervals convey 
the effects of sampling variation but cannot control for non­
sampling errors in study design or conduct. 

Single sample 

The confidence interval for a population mean is derived using 
the mean x and its standard error SE(x) from a sample of size n. For 
this case the standard error is obtained simply from the sample 
standard deviation (SD) as SE = SD / fo. Thus, the confidence 
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interval is given by 

X- [t1-<>/2 x SE(x)] to X+ [t1-<>/2 x SE(x)] 

where t 1 _ <>/2 is the appropriate value from the t distribution with 
n - 1 degrees of freedom associated with a "confidence" of 
100(1 - 0:)%. For a 95% confidence interval 0: is 0'05, for a 99% 
confidence interval 0: is 0'01, and so on. Values of t can be found 
from Table 18.2 or in statistical textbooks. 1,2 For a 95% confidence 
interval the value of t will be close to 2 for samples of 20 upwards 
but noticeably greater than 2 for smaller samples. 

Blood pressure levels were measured in a sample of 100 diabetic men 
aged 40-49 years. The mean systolic blood pressure was 146'4mmHg 
and the standard deviation 18'5 mmHg. The standard error of the mean 
is thus found as 18'5/yffOO = 1.85. 

To calculate the 95% confidence interval the appropriate value of to.975 

with 99 degrees of freedom is 1'984. The 95 % confidence interval for the 
population value of the mean systolic blood pressure is then given by 

146·4 - (1'984 x 1'85) to 146·4 + (1'984 x 1'85) 

that is, from 142'7 to 150'1 mmHg. 

Two samples: unpaired case 

The confidence interval for the difference between two popula­
tion means is derived in a similar way. Suppose Xl and X2 are the 
two sample means, Sl and S2 the corresponding standard devia­
tions, and n1 and n2 the sample sizes. Firstly, we need a 
"pooled" estimate of the standard deviation, which is given by 

s= 
(n1 - l)si + (n2 -1)s~ 

n1 + n2 - 2 

From this the standard error of the difference between the two 
sample means is 

[Fll SE( d) = s x - + -
n1 n2 

where d = Xl - X2' The 100(1 - 0:)% confidence interval for the 
difference in the two population means is then 

d - [t1-<>/2 x SE(d)] to d + [t1-<>/2 x SE(d)], 
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where tl- a/Z is taken from the t distribution with nl + nz - 2 
degrees of freedom (see Table 18.2). 

If the standard deviations differ considerably then a common 
pooled estimate is not appropriate unless a suitable transformation 
of scale can be found. 3 Otherwise obtaining a confidence interval is 
more complex.4 

Blood pressure levels were measured in 100 diabetic and 100 non­
diabetic men aged 40-49 years. Mean systolic blood pressures were 
146·4mmHg (SD 18·S) among the diabetics and 140·4 mmHg (SD 16·8) 
among the non-diabetics, giving a difference between sample means of 
6·0mmHg. 

Using the formulae given above the pooled estimate of the standard 
deviation is 

s= 
(99 X 18·S2) + (99 X 16.82) 
..:.----'-,1-,-9.,.-8'---------'- = 17·7 mmHg 

and the standard error of the difference between the sample means is 

SE(d) = 17·7 x 
1 1 

100 + 100 = 2·S0 mmHg. 

To calculate the 9S% confidence interval the appropriate value of tl- a /2 

with 198 degrees of freedom is 1·972. Thus the 9S% confidence interval 
for the difference in population means is given by 

6·0 - (1·972 x 2·S0) to 6·0 + (1·972 x 2·S0) 

that is, from 1·1 to 10·9 mmHg, as shown in Figure 3.l. 
Suppose now that the samples had been of only SO men each but that the 

means and standard deviations had been the same. Then the pooled stan­
dard deviation would remain 17·7 mmHg, but the standard error of the 
difference between the sample means would become 

SE(d) = 17·7 x )S10 + S~ = 3·S3 mmHg. 

The appropriate value of t 1 _ a/2 on 98 degrees of freedom is 1 ·984, and 
the 9S% confidence interval is calculated as 

6·0-(1·984 x 3·S3) to 6·0+(1·984 x 3·S3) 

that is, from -1·0 to 13·0 mmHg, as shown in Figure 3.2. 
For the original samples of 100 each the appropriate values of to.995 and 

to.95 with 198 degrees of freedom to calculate the 99% and 90% confidence 
intervals are 2·601 and 1·653, respectively. Thus the 99% confidence 
interval is calculated as 

6·0 - (2·601 x 2·S0) to 6·0 + (2·601 x 2·S0) 
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that is, from -0'5 to 12'5 mmHg (Figure 3.3), and the 90% confidence 
interval is given by 

6'0-(1'653 x 2'50) to 6'0+(1·653 x 2'50) 

that is, from 1'9 to 10'1 mmHg (Figure 3.3). 

Two samples: paired case 

Paired data arise in studies of repeated measurements-for 
example, at different times or in different circumstances on the 
same subjects-and matched case-control comparisons. For such 
data the same formulae as for the single sample case are used to cal­
culate the confidence interval, where x and SD are now the mean 
and standard deviation of the individual within subject or 
patient-control differences. 

Systolic blood pressure levels were measured in 16 middle-aged men 
before and after a standard exercise, giving the results shown in Table 4.1. 

The mean difference (rise) in systolic blood pressure following exercise 
was 6'6 mmHg. The standard deviation of the differences, shown in the 
last column of Table 4.1, is 6·OmmHg. Thus the standard error of the 
mean difference is found as 6'0/v'I6 = 1.49mmHg. 

Table 4.1 Systolic blood pressure levels (mmHg) in 16 men 
before and after exercise 

Systolic blood pressure CmmHg) 
Subject Difference 
number Before After After - before 

1 148 152 +4 
2 142 152 +10 
3 136 134 -2 
4 134 148 +14 
5 138 144 +6 
6 140 136 -4 
7 132 144 +12 
8 144 150 +6 
9 128 146 +18 

10 170 174 +4 
11 162 162 0 
12 150 162 +12 
13 138 146 +8 
14 154 156 +2 
15 126 132 +6 
16 116 126 +10 
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To calculate the 95% confidence interval the appropriate value of to.975 

with 15 degrees of freedom is 2·131. The 95% confidence interval for the 
population value of the mean systolic blood pressure increase after the 
standard exercise is then given by 

6·6 - (2·131 x 1'49) to 6·6 + (2'131 x 1·49) 

that is, from 3'4 to 9'8 mmHg. 

Non-Normal data 

The sample data may have to be transformed on to a different 
scale to achieve approximate Normality. The most common 
reason is because the distribution of the observations is skewed, 
with a long "tail" of high values. The logarithmic transformation 
is the most frequently used. Transformation often also helps to 
make the standard deviations on the transformed scale in different 
groups more similar. 5 

Single sample 

For a single sample a mean and confidence interval can be con­
structed from the transformed data and then transformed back to 
the original scale of measurement.6 This is preferable to presenting 
the results in units of, say, log mmHg. With highly skewed or 
otherwise awkward data the median may be preferable to the 
mean as a measure of central tendency and used with non-para­
metric methods of analysis. Confidence intervals can be calculated 
for the median (see chapter 5). 

Table 4.2 shows T4 and T8 lymphocyte counts in 28 haemophiliacs7 

ranked in increasing order of the T4 counts. 
Suppose that we wish to calculate a confidence interval for the mean T4 

lymphocyte count in the population of haemophiliacs. Inspection of 
histograms and plots of the data reveals that whereas the distribution of 
T4 values is skewed, after logarithmic transformation the values of 
loge (T4) have a symmetric near Normal distribution. We can thus apply 
the method given previously for calculating a confidence interval for a 
population mean derived from a single sample of observations. 

The mean of the values of loge (T4) is -0,2896 and the standard 
deviation is 0'5921. Thus the standard error of the mean is found as 
0'S921/v'28 = 0·1119. The units here are log lymphocyte counts x 109 /1. 

To calculate the 95% confidence interval the appropriate value of to.975 

with 27 degrees of freedom is 2'052. The 95% confidence interval for the 
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Table 4.2 T4 and T81ymphocyte counts (x 109 /1) in 28 haemophiliacs7 

Subject number T4 T8 loge (T4) - loge (T8) 

1 0·20 0·17 0·163 
2 0·27 0·52 -0·655 
3 0·28 0·25 0·113 
4 0·37 0·34 0·085 
5 0·38 0·14 0·999 
6 0·48 0·10 1·569 
7 0·49 0·58 -0·169 
8 0·56 0·23 0·890 
9 0·60 0·24 0·916 

10 0·64 0·67 -0·046 
11 0·64 0·90 -0·341 
12 0·66 0·26 0·932 
13 0·70 0·51 0·317 
14 0·77 0·18 1·453 
15 0·88 0·74 0·173 
16 0·88 0·54 0·488 
17 0·88 0·76 0·147 
18 0·90 0·62 0·373 
19 1·02 0·48 0·754 
20 1-10 0·58 0·640 
21 1·10 0·34 1·174 
22 1·18 0·84 0·340 
23 1·20 0·63 0·644 
24 1·30 0·46 1·039 
25 1·40 0·84 0·511 
26 1-60 1·20 0·288 
27 1-64 0·59 1·022 
28 2·40 1·30 0·613 

mean loge (T4) in the population is then given by 

-0·2896 - (2·052 x 0·1119) to -0·2896 + (2·052 x 0·1119) 

that is, from -0·5192 to -0·0600. 
We can transform this confidence interval on the logarithmic scale back 

to the original units to get a more meaningful confidence interval. First we 
transform back the mean ofioge (T4) to get the geometric mean T4 count. 
This is given as exp( -0·2896) = 0·75 x 109 /1. (The geometric mean is 
found as the antilog of the mean of the log values.) In the same way we 
can transform back the values describing the confidence interval to get a 
95% confidence interval for the geometric mean T4 lymphocyte count 
in the population of haemophiliacs, which is thus given by 

exp( -0·5192) to exp( -0·0600) 

that is, from 0·59 to 0·94 x 109 /1. 
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Two samples 

For the case of two samples, only the logarithmic transformation 
is suitable.5 For paired or unpaired samples the confidence interval 
for the difference in the means of the transformed data has to be 
transformed back. For the log transformation the antilog of the dif­
ference in sample means on the transformed scale is an estimate of 
the ratio of the two population (geometric) means, and the anti­
logged confidence interval for the difference gives a confidence 
interval for this ratio. Other transformations do not lead to sensible 
confidence intervals when transformed back,5 but a non-parametric 
approach can be used to calculate a confidence interval for the 
population difference between medians (see chapter 5). 

Suppose that we wish to calculate a confidence interval for the difference 
between the T4 and T8 counts in the population of haemophiliacs using 
the results given in Table 4.2. Inspection of histograms and plots of 
these data reveals that the distribution of the differences T4 - T8 
is skewed, but after logarithmic transformation the differences 
loge (T4) -loge (T8) have a symmetric near Normal distribution. We 
can thus apply the method given previously for calculating a confidence 
interval from paired samples. The method makes use of the fact that the 
difference between the logarithms of two quantities is exactly the same 
as the logarithm of their ratio. Thus 

loge (T4) -loge (T8) = loge (T4/TS). 

The mean of the differences between the logs of the T4 and TS counts 
(shown in the final column of Table 4.2) is 0'5154 and the standard 
deviation is 0'5276. Thus the standard error of the mean is found as 
0'5276/v'28 = 0·0997. 

To calculate the 95% confidence interval the appropriate value of to.975 

with 27 degrees of freedom is 2'052. The 95% confidence interval for the 
difference between the mean values of loge (T4) and loge (T8) in the popu­
lation of haemophiliacs is then given by 

0·5154 - (2·052 x 0'0997) to 0·5154 + (2'052 x 0'0997) 

that is, from 0'3108 to 0'7200. 
The confidence interval for the difference between log counts is not as 

easy to interpret as a confidence interval relating to the actual counts. 
We can take antilogs of the above values to get a more useful confidence 
interval. The antilog of the mean difference between log counts is 
exp(0'5154) = 1·67. Because of the equivalence of the difference 
loge (T4) -loge (TS) and loge (T4/T8) this value is an estimate of the 
geometric mean of the ratio T4/T8 in the p·opulation. The antilogs of 
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the values describing the confidence interval are exp(0'3108) = 1·36 and 
exp(0'7200) = 2'05, and these values provide a 95% confidence interval 
for the geometric mean ratio ofT4 to T8lymphocyte counts in the popu­
lation of haemophiliacs. 

Note that whereas for a single sample the use of the log trans­
formation still leads to a confidence interval in the original units, 
for paired samples the confidence interval is in terms of a ratio 
and has no units. 

Iflog transformation is considered necessary, a confidence inter­
val for the difference in the means of two unpaired samples is 
derived in much the same way as for paired samples. The log 
data are used to calculate a confidence interval, using the method 
for unpaired samples given previously. The antilogs of the differ­
ence in the means of the log data and the values describing its con­
fidence interval give the geometric mean ratio and its associated 
confidence interval. 

Comment 

The sampling distribution of a mean (and the difference between 
two means) will become more like a Normal distribution as the 
sample size increases. However, study sizes typical in medical 
research are usually not large enough to rely on this property, espe­
cially for a single mean, so it is useful to use the log transformation 
for skewed data. An exception is where one is interested only in the 
difference between means, not their ratio, such as in studies of cost 
data. s 
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5 Medians and their 
differences 

MICHAEL J CAMPBELL, MARTIN J GARDNER 

The methods for the calculation of confidence intervals for a popu­
lation mean and for differences between two population means for 
paired and unpaired samples were given in chapter 4. These 
methods are based on sample means, standard errors, and the t dis­
tribution and should strictly be used only for continuous data from 
Normal distributions (although small deviations from Normality 
are not important!). This is a so-called parametric approach as it 
essentially estimates the two parameters of the Normal distribu­
tion, that is, the mean and standard deviation. 

For non-Normal continuous data the median of the population 
or the sample is often preferable to the mean as a measure of loca­
tion. This chapter describes methods of calculating confidence 
intervals for a population median (the 50% quantile) or for other 
population quantiles from a sample of observations. Calculations 
of confidence intervals for the difference between two population 
medians (a non-parametric approach rather than the parametric 
approach mentioned above) for both unpaired and paired samples 
are described. 

It is a common misapprehension that non-parametric methods 
are to be preferred if the sample size is small, since distributional 
assumption cannot be checked in these circumstances. However, 
non-parametric methods involve a loss of statistical power if 
Normality assumptions do hold, and so if the sample size is 
small and if there is good external evidence that the distributions 
are likely to be of the Normal form, the parametric methods may 
be preferred. 

Because of the discrete nature of some of the sampling distribu­
tions involved in non-parametric analyses it is not usually possible 
to calculate confidence intervals with exactly the desired level of 
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confidence. Hence, if a 95% confidence interval is wanted the choice 
is between the lowest possible level of confidence over 95% (a "con­
servative" interval) and the highest possible under 95 %. There is no 
firm policy on which of these is preferred, but we shall mainly 
describe conservative intervals in this chapter. The exact level of 
confidence associated with any particular approximate level can be 
calculated from the distribution of the statistic being used although 
this may not be very straightforward. Further aspects of conserva­
tive and exact confidence intervals are given in chapter 13. 

The methods outlined for obtaining confidence intervals are 
described in more detail in some textbooks on non-parametric 
statistics (for example, by Conover2

). If there are many "ties" in 
the data, that is, observations with the same numerical value, 
then modifications to the formulae given here are needed.2 The 
calculations can be carried out using some statistical computer 
packages such as MINITAB? 

A confidence interval indicates the precision of the sample statis­
tic as an estimate of the overall population value. Confidence inter­
vals convey the effects of sampling variation but cannot control for 
non-sampling errors in study design or conduct. They should not 
be used for basic description of the sample data but only for indi­
cating the uncertainty in sample estimates for population values of 
medians or other statistics. 

Medians and other quantiles 

Median 

The median, M, is defined as the value having half of the obser­
vations less than and half exceeding it. It is identified after first 
ranking the n sample observations in increasing order of magni­
tude. The sample median is used as an estimate of the population 
median. To find the 100(1 - a)% confidence interval for the popu­
lation median first calculate the quantities 

r=~-(ZI_a/2X~) and S=I+~+(ZI_a/2X~)' 
where Zl- a/2 is the appropriate value from the standard Normal 
distribution for the 100(1 - a/2) percentile found in Table IS.1. 
Then round rand s to the nearest integers. The rth and sth obser­
vations in the ranking are the 100(1 - a)% confidence interval for 
the population median. 
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For the data in the first example given in chapter 4 the median systolic 
blood pressure among 100 diabetic patients was M = 146 mmHg. Using 
the above formulae to calculate a 95% confidence interval gives 

r= 1~0 - (1'96 x V;OO) =40·2 to 

100 ( VIOO) s = 1 +2+ 1·96 x -2- = 60'8. 

From the original data the 40th observation in increasing order is 
142mmHg and the 61st is 150mmHg. The 95% confidence interval for 
the population median is thus from 142 to 150mmHg. 

This approximate method is satisfactory for most sample sizes.4 

The exact method, based on the Binomial distribution, can be 
used instead for small samples, as shown in the example below, 
which uses Table 18.4. 

The results of a study measuring t3-endorphin concentrations in pmolll 
in n = 11 subjects who had collapsed while running in a half marathons 
were (in order of increasing value): 

66'0,71'2,83'0,83'6, 101'0, 107'6, 122'0, 143'0, 160'0, 177'0, and 414'0. 

The sample median is the 6th observation in this ranking, that is M = 
107·6 pmoili. To find a confidence interval for the population median 
we use the Binomial distribution! with n = 11 and probability 7r = 0·5. 
For a conservative 95% confidence interval we first find the largest X, 
which can take the values 0, 1,2, ... , 11 which gives the closest cumulative 
probability under 0'025 and the smallest X which gives the closest 
cumulative probability over 0'975. This can be done either by direct 
calculation or from tables.2 This gives Prob (X::::; 1) = 0·006 and Prob 
(X ::::; 9) = 0·994. 

The approximate 95% confidence interval is then found by the ranked 
observations that are one greater than those associated with the two 
probabilities, that is, the 2nd and 10th observations, giving 71·2 to 
177·0 pmoili. 

The actual probability associated with this confidence interval is in fact 
0·994 - 0·006 = 0·988 rather than 0'95, so effectively it is a 98'8% confi­
dence interval. For sample sizes up to 100, the required rankings for 
approximate 90%, 95%, and 99% confidence intervals and associated 
exact levels of confidence are given directly in Table 18.4. 
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Alternatively, a non-conservative approximate 95% confidence interval 
can be found by calculating the smallest cumulative probability over 0·025 
and the largest under 0'975. In this case we find Prob (X ::; 2) = 0·033 and 
Prob (X ::; 8) = 0'967, which give a 0·967 - 0·033 = 0·935 or 93'5% con­
fidence interval from the 3rd to the 9th ranked observations, that is, from 
83'0 to 160'0 pmol/l. 

In this case the coverage probability of93'5% is nearer to 95% than for 
the conservative interval coverage of 98'8%. 

For this example the approximate large sample method gives a similar 
result as the conservative 95% confidence interval. 

As another alternative, if the population distribution from which 
the observations came can be assumed to be symmetrical (but 
not of the Normal distribution shape) rather than skewed around 
the median, then the method described below in the section 
"Two samples: paired case" can be used, replacing the differences 
d; given there by the sample observations. 

Other quantiles 

A similar approach can be used to calculate confidence intervals 
for quantiles other than the median-for example, the 90th 
percentile, which divides the lower nine tenths from the upper 
tenth of the observations. For the qth quantile (q = 0·9 for the 
90th percentile) rand S above are replaced by rq and Sq given by 

rq = nq - [ZI-a/2 X Jnq(l - q)] 

and 

Sq = 1 + nq + [ZI-a/2 X Jnq(l - q)]. 

Differences between medians 

In finding confidence intervals for population differences 
between medians it is assumed that the data come from distribu­
tions that are identical in shape and differ only in location. Because 
of this assumption the non-parametric confidence intervals 
described below can be regarded as being either for the difference 
between the two medians, or the difference between the two 
means, or the difference between any other two measures of loca­
tion such as a particular percentile. This assumption is not neces­
sary for a valid test of the null hypothesis of no difference in 
population distributions but if it is not satisfied the interpretation 
of a statistically significant result is difficult. 
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Two samples 

Unpaired case 

Suppose Xl, X2, ... 'Xnj represent the nl observations in a sample 
from one population and Yl ,Y2, ... ,Yn, the n2 observations on the 
same variable in a sample from a second population, where both 
sets of data are thought not to come from Normal distributions. 
The difference between the two population medians is estimated 
by the median of all the possible nl x n2 differences Xi - Yj (for 
i = 1 to nl and j = 1 to n2). 

The confidence interval for the difference between the two 
population medians or means is also derived through these 
nl x n2 differences.2 For an approximate 100(1 - a)% confidence 
interval first calculate 

K-W _nl(nl+l) 
- a/2 2 ' 

where Wa / 2 is the 100a/2 percentile of the distribution of the 
Mann-Whitney test statistic.2 The Kth smallest to the Kth largest 
of the nl x n2 differences then determine the 100(1 - a)% confi­
dence interval. Values of K for finding approximate 90%, 95%, 
and 99% confidence intervals (a = 0.10, 0·05, and 0·01 respec­
tively), together with the associated exact levels of confidence, 
for sample sizes of up to 25 are given directly in Table 18.5. 

For studies where each sample size is greater than about 25, special 
tables are not required and K can be calculated approximately2 as 

nln2 ( nln2(nl+n2+1)) 
K = -2-- ZI-a/2 X 12 ' 

rounded up to the next integer value, where ZI-a/2 is the appro­
priate value from the standard Normal distribution for the 
100(1 - a/2) percentile. 

·:~~#~'~~fl~.· 
Consider the data in Table 5.1 on the globulin fraction of plasma (gil) in 

two groups of 10 patients given by Swinscow.6 The computations are 
made easier if the data in each group are first ranked into increasing 
order of magnitude and then all the group 1 minus group 2 differences 

Table 5.1 Globulin fraction of plasma (gil) in two groups of 10 patients6 

Group 1 
Group 2 

40 

38 
45 

26 
28 

29 
27 

41 
38 

36 
40 

31 
42 

32 
39 

30 
39 

35 
34 

33 
45 
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Table 5.2 Differences in globulin fraction of plasma (gil) between indivi­
duals in two groups of 10 patients6 

Group 1 

Group 2 26 29 30 31 32 33 35 36 38 41 

27 -1 2 3 4 5 6 8 9 11 14 
28 -2 1 2 3 4 5 7 8 10 13 
34 -8 -5 -4 -3 -2 -1 1 2 4 7 
38 -12 -9 -8 -7 -6 -5 -3 -2 0 3 
39 -13 -10 -9 -8 -7 -6 -4 -3 -1 2 
39 -13 -10 -9 -8 -7 -6 -4 -3 -1 2 
40 -14 -11 -10 -9 -8 -7 -5 -4 -2 1 
42 -16 -13 -12 -11 -10 -9 -7 -6 -4 -1 
45 -19 -16 -15 -14 -13 -12 -10 -9 -7 -4 
45 -19 -16 -15 -14 -13 -12 -10 -9 -7 -4 

calculated as in Table 5.2. The estimate of the difference in population 
medians is now given by the median of these differences. 

From the 100 differences in Table 5.2 the 50th smallest difference is 
-6 gil and the 51 st is -5 gil, so the median difference is estimated as 
[-6 + (-S)]/2 = -S.5 gil. 

To calculate an approximate 95% confidence interval for the difference 
in population medians the value of K = 24 is found for nl = 10, nz = 10, 
and Q = 0.05 from Table 18.S. The 24th smallest difference is -10 gil and 
the 24th largest is + 1 gil. The approximate 95 % confidence interval (exact 
level 9S'7%) for the difference in population medians or means is thus 
from -10g/l to +1 gil. 

Paired case 

Paired cases include, for example, studies of repeated measure­
ments of the same variable on the same individuals over time and 
matched case-control comparisons. In these cases the paired differ­
ences are the observations of main interest. The method for finding 
confidence intervals described here assumes that, as well as the two 
distributions being identical except in location, the distribution of 
the paired differences is symmetrical. If this additional assumption 
seems unreasonable then the method described previously for a 
single sample can be applied to the paired differences. 

Suppose that in a sample of size n the differences for each 
matched pair of measurements are d l , dz , ... , dn- The difference 
between the two population medians is estimated by calculating 

all the n(n + 1)/2 possible averages of two of these differences 
taken together, including each difference with itself, and selecting 
their median. 
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The confidence interval for the difference between the popula~ 
tion medians is also derived using these averaged differences. 
For an approximate 100(1 - 0:)% confidence interval first find 
the value of Wa/2 as the 1000:/2 percentile of the distribution of 
the Wilcoxon one sample test statistic.2 Then if Wa/2 = K*, then 
the K*th smallest to the K*th largest of the averaged differences 
determine the 100(1 - 0:)% confidence interval. Values of K* for 
finding approximate 90%, 95%, and 99% confidence intervals 
(0: = 0'10, 0'05, and 0'01), together with the associated exact 
levels of confidence, are given directly for sample sizes of up to 
50 in Table 18.6. In general the coverage probability is only 
slightly higher than the specified one. 

For sample sizes of about 50 or more, special tables are not 
required and K* can be calculated approximately2 as 

K * n(n+ 1) ( = 4 - zl-a/2 X 
n(n + 1)(2n + 1)) 

24 ' 

rounded up to the next integer value, where ZI-a/2 is the appro­
priate value from the standard Normal distribution for the 
100(1 - 0:/2) percentile. 

Consider further the ,B-endorphin concentrations in subjects running in 
a half marathon where 11 people were studied both before and after the 
event. 5 The before and after concentrations (pmol/l) and their differences 
ordered by increasing size were as given in Table 5.3. 

All the possible n( n + 1) /2 averages in this case where n = 11 give the 66 
averages shown in Table 5.4. Thus, having found K* = 11 for n = 11 and 
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Table 5.3 ,B-endorphin concentrations in 11 runners before 
and after a half marathons 

Subject number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

Before 

10'6 
5'2 
8'4 
9'0 
6'6 
4'6 

14·1 
5·2 
4·4 

17·4 
7·2 

After 

14·6 
15·6 
20'2 
20'9 
24·0 
25'0 
35'2 
30'2 
30·0 
46·2 
37'0 

After - before 

4·0 
10'4 
11'8 
11'9 
17·4 
20·4 
21-1 
25·0 
25·6 
28'8 
29·8 
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Table 5.4 Averages of differences in ,6-endorphin concentrations in 11 
runners before and after a half marathon. 5 

Change 

Change 4·0 10'4 11'8 11'9 17·4 20'4 21·1 25'0 25'6 28'8 29·8 

4·0 4·00 7·20 7·90 7'95 10·70 12·20 12·55 14·50 14·80 16·40 16·90 
10'4 10'40 11'10 11-15 13'90 15'40 15·75 17'70 18·00 19·60 20'10 
11·8 11·80 11·85 14·60 16'10 16·45 18'40 18'70 20'30 20'80 
11'9 11·90 14'65 16·15 16'50 18·45 18'75 20·35 20·85 
17·4 17'40 18·90 19'25 21·20 21·50 23·10 23·60 
20'4 20·40 20·75 22'70 23'00 24·60 25'10 
21'1 21-10 23'05 23'35 24·95 25'45 
25'0 25'00 25·30 26·90 27'40 
25'6 25'60 27·20 27'70 
28'8 28·80 29'30 
29'8 29·80 

a = 0·05 from Table 18.6, the 11 smallest averages are 4'00, 7'20, 7'90, 
7'95, 10'40, 10'70, 11'10, 11'15, 11'80, 11'85, and 11'90; and the 11 largest 
averages are 25'10,25'30,25'45,25'60,26'90,27'20,27'40, 27'70, 28'80, 
29'30, and 29'80. The approximate 95% (exact 95'8%) confidence interval 
for the difference between the population medians or means is thus given 
as 11'9 to 25·1 pmol/l around the sample median which is 18'8 pmol/l (the 
average of the 33rd and 34th ranked observations, 18'75 and 18'90, in the 
table of average differences). The triangular table of average differences 
helps to identify the required values, but a computer package such as 
MINIT AB3 can rank the averages in order and select the appropriate 
ranked values. 

Comment 

The methods summarised above for the confidence intervals for 
differences between two medians can be applied to the difference 
between two means. However, this method would only be used 
when the means involved arise from a symmetric distribution 
which is not Normal such as a rectangular distribution. 

A method for calculating confidence intervals for Spearman's 
rank correlation coefficient, the non-parametric equivalent of the 
product moment correlation coefficient, is given in chapter 8. 

Technical note 

I t should be noted that there are differences of presentation in the 
tables referred to in Conover,2 Geigy scientific tables/ and elsewhere. 
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These result from the discrete nature of the distributions and 
whether7 or nor the tabulated values are part of the critical 
region for the test of the null hypothesis. MINIT AB3 uses large 
sample formulae with continuity corrections for computing the 
coverage probabilities of the confidence intervals for differences 
between medians even for sample sizes less than 20. This can lead 
to inaccuracies in the coverage probabilities given by the program. 
Alternative methods for calculating confidence intervals for 
medians, and differences in medians, based on the 'bootstrap' are 
given in chapter 13. 

Bland M. An introduction to medical statistics. 2nd edn. Oxford: Oxford Univer­
sity Press, 1995: 89-92, 165-6. 

2 Conover WJ. Practical non-parametric statistics. 2nd edn. New York: John Wiley, 
1980: table A3, 223-5, table A7, 288-90, table A13. 

3 Ryan BF, Joiner BL, Rogosa D. Minitab handbook. 3rd edn. Boston: Duxbury 
Press, 1994. 

4 Hill ID. 95% confidence limits for the median. J Statist Comput Simulation 
1987;28:80-1. 

5 Dale G, Fleetwood JA, Weddell A, Ellis RD, Sainsbury JRe. ,8-Endorphin: a 
factor in "fun run" collapse. BMJ 1987;294:1004. 

6 Swinscow TDV. Statistics at square one. 9th edn. (Revised by MJ Campbell). 
London: BMJ Publishing Group, 1996: 92-9. 

7 Lentner C, ed. Geigy scientific tables. Volume 2. 8th edn. BasIe: Ciba-Geigy, 
1982: 156-62,163. 
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6 Proportions and their 
differences 

ROBERT G NEWCOMBE, 
DOUGLAS G ALTMAN 

Proportions are used to summarise data for binary variables, that 
is, variables that can take two possible values, such as presence 
or absence of a symptom, success or failure of a treatment. In 
this chapter we present methods for constructing confidence 
intervals for single proportions and for differences between two 
proportions. 

We describe two sets of methods. The traditional methods 
are based on the standard approach (see chapter 3) of taking a 
multiple of the standard error either side of the estimated quantity, 
here either the sample proportion or difference between two 
proportions. These methods are very widely used, and were the 
only ones given in the first edition of this book. Although they 
perform quite well in many cases, they have certain deficiencies, 
and are not valid when zeros or small numbers are involved. 1

-
3 

Alternative methods2
-

4 are now available that perform much 
better irrespective of the numbers involved. These methods are 
not as simple or intuitive, but give much better results across 
all circumstances. We refer to them below as 'recommended' 
methods. 

Worked examples are given to illustrate each method. The cal­
culations have been carried out to full arithmetic precision, as is 
recommended practice, but intermediate steps are shown as 
rounded results. In each case, both the calculated lower and 
upper limits are often expressed as percentages by multiplying 
by 100. 

Confidence intervals convey only the effects of sampling varia­
tion on the estimated proportions and their differences and 
cannot control for other non-sampling errors such as biases in 
study design, conduct, or analysis (see chapter 3). 
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Single sample 

Traditional method 

If r is the observed number of subjects with some feature in a 
sample of size n then the estimated proportion who have the fea­
ture is p = rln. The proportion who do not have the feature is 
q = 1 - p. The standard error of pis SE(p) = Vpqln. Using the 
general approach of chapter 3, the 100(1 - a)% confidence inter­
val for the proportion in the population is calculated as 

p - [Zl-a/2 X SE(P)] to p + [Zl-a/2 X SE(p)] 

where Zl-o:/2 is the 100(1 - a12) percentile from the standard 
Normal distribution. Values of Zl-a/2 can be found from Table 
18.1. Thus, for a 95% confidence interval zl-a/2 = 1·96; this 
value does not depend on the sample size, as it does for the t 
distribution (chapter 4). 

This traditional method is adequate in many circumstances, but it 
is based on an approximation. It should not be used for very low 
observed proportions, such as the prevalence of a disease, or very 
high ones, such as the sensitivity or specificity of a good diagnostic 
test (see chapter 10). The restriction on the use of the traditional 
method is usually given as a requirement that neither r nor n - r 

is less than 5. Failure to observe this restriction leads to anomalies 
of several kinds. l Although the objective is to achieve a pre-stated 
probability, usually 95%, including the population proportion, in 
practice the attained coverage probability is much lower. The calcu­
lated limits lead to too extreme an interpretation of the data, and 
sometimes do not make sense. These problems are illustrated below. 

In such cases an 'exact' but more complex method of calculating 
confidence intervals for population proportions is often used (see 
chapter 13 for an explanation of the term 'exact'). Exact values 
for 95% and 99% confidence intervals for n = 2 to 100 are given 
in Geigy scientific tables.5 The direct calculation described below 
is arguably6 better, in terms of closeness of the achieved coverage 
probability to its nominal value (95%, 99%, etc.). There is also 
some advantage in having a single method which can be applied 
in all cases. 

Recommended method 

The recommended method4 has better statistical properties than 
the traditional method. First, calculate the three quantities 

A = 2r + z2; B = zV z2 + 4rq; and C = 2(n + z2), 
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where z is as before the appropriate value, that is ZI-a/2, from the 
standard Normal distribution. Then the confidence interval for the 
population proportion is given by 

(A - B)/C to (A + B)/C. 

This method has the considerable advantage that it can be used for 
any data. When there are no observed events, r and hence pare 
both zero, and the recommended confidence interval simplifies to 
o to z2/(n + z2). When r = n so that p = 1, the interval becomes 
n/(n + z2) to 1. This case is discussed in more detail later. 

Out of 263 patients giving their views on the use of personal computers 
in general practice, 81 thought that the privacy of their medical file had 
been reduced.? Thus p = 81/263 = 0·308 and the standard error of pis 

SE( ) _ /0·308 x (1 - 0·308) _ . 
P - V 263 - 0 0285. 

The 95% confidence interval for the population value of the proportion of 
patients thinking their privacy was reduced is then given as 

0·308 - (1·96 x 0·0285) to 0·308 + (1·96 x 0·0285) 

that is, from 0·252 to 0·364. 
The recommended method gives a very similar interval, from 0·255 to 

0·366. 

A strength of the new method is that it can be used even when the 
observed proportion is very small (or very large), in situations where the 
traditional method is not valid. Of 29 female prisoners who did not inject 
drugs, 1 was found to be positive on testing for HIV on discharge.8 Here 
p = 1/29 = 0·034 and q = 0·966. We calculate A = 2 x 1 + 1.962 = 5·84, 
B = 1·96 X J(I·962 + 4 x 1 x 0·966) = 5·44, and C = 2 x (29 + 1.962

) = 
65·68. Then the 95% confidence interval for the prevalence of HI V positiv­
ity in the population of such women is given by (5·84 - 5·44)/65·68 = 0·006 
to (5·84 + 5·44)/65·68 = 0·172, that is, from 0·6% to 17%. 

In the same study,8 there were 20 homosexual or bisexual males, none of 
whom tested positive. The estimated prevalence for this case is 0, with 
95% confidence interval from 0 to 1.962 /(20 + 1.962

) = 0.161, that is, 
from 0 to 16%. 

Note that the confidence interval is not symmetric around p 
unless p = !, by contrast to the traditional method. If we were to 

47 



STATISTICS WITH CONFIDENCE 

use the traditional method to calculate a 95% confidence interval 
for the proportion 1/29 considered above we would get -3% to 
10% which includes impossible negative values. The problem is 
due to the interval being symmetric around the observed propor­
tion of 3'4%. In fact, an observed proportion of lout of 29 
would occur about as often if the population proportion was 
17% as if it was 0'6%. This asymmetry may at first seem surpris­
ing, but applies more widely, to confidence intervals for differences 
between proportions (described below), to quantities such as 
relative risks and odds ratios (chapter 7) and in non-parametric 
analyses (chapter 5). 

Conversely, the traditional method fails to produce an interval for 
a zero proportion such as 0/20, we would obtain 0 for the upper limit 
as well as the lower one. This is inappropriate because the true 
popUlation prevalence could well be large-especially in this 
example. The traditional method yields a zero width confidence 
interval irrespective of the sample size or the nominal coverage 
(95%,99%, etc.). Similar problems occur when P is at or near 1. 

Two samples: unpaired case 

The difference between two population proportions is estimated 
by D = PI - P2' the difference between the observed proportions 
in the two samples. It does not matter which proportion is taken 
as PI' and which as Pz, so long as consistent usage is maintained. 

Traditional tnethod 

The confidence interval for the difference between two popula­
tion proportions is constructed round PI - P2' the difference 
between the observed proportions in the two samples of sizes nl 

and n2' The standard error of PI - Pz is 

SE(D) = 

The confidence interval for the population difference in propor­
tions is then given by 

D-zl -o:/2 x SE(D) to D+zl - a / 2 X SE(D), 

where zl_ ,,/2 is found as for the single sample case. 
Negative values are reasonable for any difference between two 

proportions, which can meaningfully take any value between -1 
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and + 1. Nonetheless the same restrictions on validity apply as for 
the single sample. The traditional method should thus not be used 
for small samples although it is hard to specify precisely the range 
of validity. It may be an unsafe approach with fewer than 30 in 
each group or if the observed proportions are outside the range 
0·1 to 0'9. 

RecOinmended method 

The recommended method can again be used for any data. Cal­
culate II and UI' the lower and upper limits that define the 
100(1 - a)% confidence interval for the first sample, and 12 and 
U2' the lower and upper limits for the second sample, using the 
recommended method in the previous section. Then the 
100(1 - a)% confidence interval for the population difference in 
proportions is calculated as 

D - V(PI -11)2 + (U2 - P2)2 to D + V(Pz -12)2 + (UI - PI)2 

(this being method 10 of Newcombe2
). Note that, just as for the 

single sample case, D is not generally at the midpoint of the 
interval. 

A collaborative clinical trial9 assessed the value of extracorporeal 
membrane oxygenation for term neonates with severe respiratory failure. 
63 of the 93 patients randomised to active treatment survived to one year 
compared with 38 of the 92 infants who received conventional manage­
ment. Thus, PI = 63/93 = 0·677 and P2 = 38/92 = 0-413. The difference 
between these two proportions is estimated as 0·677 - 0·413 = 0-264. The 
standard error of the difference is 

JO'677 x (1 - 0'677) 0-413 x (1 - 0-413) ----'------'- + = 0·071. 
93 92 

Using the traditional method, the 95% confidence interval for the differ­
ence between the two population proportions is then 0-264 - 1-96 x 0·071 
to 0-264 + 1·96 x 0'071, that is, from 0'126 to 0·403. In this case the 
recommended method gives a very similar interval, from 0·121 to 0'393. 

---~~~~\~~i;;~~~_$, 
Goodfield et aZ. IO reported adverse effects in 85 patients receiving either 

terbinafine or placebo treatment for dermatophyte onchomyosis; the 
results are shown in Table 6.1. Here, the proportions experiencing 
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Table 6.1 Numbers of patients experiencing respiratory 
problems in patients receiving either terbinafine or placebolO 

Treatment group 

Response Terbinafine Placebo 
(Group 1) (Group 2) 

Respiratory problems 5 0 
No respiratory problems 51 29 

Total 56 29 

respiratory problems were PI = 5/56 = 0·089 and P2 = 0/29 = 0·0 for 
active and placebo groups respectively, suggesting that an extra 9% of 
patients would experience respiratory problems if given terbinafine 
rather than placebo. 

U sing the recommended method described above for the single propor­
tion, 95% confidence intervals for these proportions are 0·039 to 0'193 and 
o to 0'11 7 respectively. The 95 % confidence interval for the difference 
between the two population proportions is then given by 

(0'089 - 0) - 1(0'089 - 0'039)2 + (0'117 - 0)2 to 

(0'089 - 0) + 1(0 - 0)2 + (0'193 - 0'089)2 

that is, from -0,038 to +0,193. Thus, although the best estimate of the dif­
ference in proportions experiencing respiratory problems is 9%, the 95% 
confidence interval ranges from -4% (indicating 4% fewer problems on 
the active treatment) to +19% (indicating 19% more problems on the 
active treatment), showing the imprecision due to the limited sample size. 

Two samples: paired case 

Examples of paired binary data, to be summarised by presenting 
and comparing proportions, include the following: 

(a) Forty-one subjects were classified 11 by a clinical investigator 
and by a laboratory test which is regarded as definitive. The 
laboratory test classified 14 subjects as positive. The investi­
gator classified as positive all 14 ofthese and also 5 of the sub­
jects who subsequently proved test negative. 

(b) In an individually paired case-control study,12 23 out of 35 
cases, but only 13 out of 35 matched controls, were positive 
for exposure to the risk factor under study. 

(c) In a crossover trial13 comparing home and hospital physio­
therapy for chronic multiple sclerosis, 31 out of 40 patients 
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Table 6.2 Classification of subjects undergoing a thallium-201 stress test 
as normal or ischaemic by clinical investigator and core laboratoryll 

Clinical investigator 

Ischaemic 
Normal 

Total 

Core laboratory 

Ischaemic 

r = 14 
t = 0 

14 

Normal 

s=5 
u = 22 

27 

Total 

19 
22 

n = 41 

gave a positive response to treatment at home, whereas 25 
patients gave a positive response to treatment in hospital. 

(d) Respiratory symptom questionnaires were administeredl4
,l5 

to a cohort of 1319 children at age 12 and again at age 14. 
At age 12356 children (27%) were reported to have had 
severe colds in the past 12 months compared to 468 (35%) 
at age 14. 

The data may be presented in the same way in each situation, but 
with labelling to correspond to the context. Either a standard 2 x 2 
format may be used, as in Table 6.2, or a four-row table, as in 
Table 6.3. 

Table 6.2 presents the data for example (a) and also shows the 
labelling of the frequencies used in this section. In examples (a), 
(c), and (d) above we characterise the strength of the effect by 
the difference between two proportions. In case (b), it is more 
relevant to characterise the strength of the association by using 
the odds ratio, as in chapter 7. 

The proportions of subjects with the feature on the two occa­
sions are Pl = (r + s)/n and P2 = (r + t)/n, and the difference 
between them is D = Pl - P2 = (s - t)/n. Note that we cannot 
get the confidence interval for the difference from Pl and P2 (and 
n) alone-we need to know the four counts r, s, t and u. 

Table 6.3 Proportions of children reporting severe 
colds within the past 12 months, at ages 12 and 1414

,15 

Severe colds at Severe colds at Number of 
age 12 age 14 children 

Yes Yes 212 
Yes No 144 
No Yes 256 
No No 707 --
Total 1319 
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Traditional method 

The standard error of the difference between the two propor­
tions is 

1 V (s t)2 SE(D) = - x s + t --'----------'----
n n 

The 100(1 - a)% confidence interval for the population difference 
between proportions is then given as 

D - ZI-a/2 X SE(D) to D + ZI-a/2 X SE(D), 

where ZI-a/2 is found as for the single sample case. An exact 
method is available and is sometimes used when the numbers in 
the study are small. The approach is similar to that described in 
chapter 7 to find the confidence interval for the odds ratio in a 
matched case-control study. We do not describe it here as the 
recommended approach described below obviates the need to use 
it and is greatly superior. 

Recommended method 

First (as for the unpaired case) calculate separate 100(1 - a)% 
confidence intervals for PI and P2' using the recommended 
method, as II to UI and 12 to U2. Next, a quantity ¢> is calculated, 
which is used to correct for the fact that PI and P2 are not indepen­
dent: it is a kind of correlation coefficient (see chapter 8) for the 
binary case, and is closely related to the familiar chi squared (X2

) 

test. It is usually positive, and thus reduces the interval width. If 
any of the quantities r + s, t + u, r + t or s + U is zero, then 
¢> = o. Otherwise, calculate A = (r + s)(t + u)(r + t)(s + u) and 
B = ru - st. Then obtain C as follows: 

C = B - n/2 

c=o 
if B is greater than n/2 (B > n/2); 

if B is between 0 and n/2 (0 ~ B ~ n/2); 

C = B if B is less than 0 (B < 0). 

Then calculate ¢> = C / VA. 
The 100(1 - a)% confidence interval for the population value of 

the difference between these proportions (D) is then 

D - V(PI -/1)2 - 2¢>(pI -/1)(U2 - P2) + (U2 - P2)2 to 

D + V(P2 -/2f - 2¢>(P2 -/2)(ul - PI) + (UI - Plf 

(This is method 10 of Newcombe?) 
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1319 children were asked at age 12 and again at age 14 about respiratory 
illnesses in the preceding 12 months. 14

.15 The paired data summarising 
numbers reporting severe colds are given in Table 6.3. We take PI to be 
the proportion with severe colds at age 14, that is PI = 468/1319 = 
0·355, and pz to be the proportion at age 12, that is pz = 356/1319 = 
0·270. The quantity of interest is the increase in the period prevalence, 
D = PI - pz = 0·355 - 0·270 = 0·085. 

The standard error of the difference D = PI - pz is found from the 
formula given above as 

The 95% confidence interval for the difference between the two popula­
tion proportions by the traditional method is then given by 

0·085 - (1·96 x 0·015) to 0·085 + (1·96 x 0·015), 

that is, from 0·056 to 0·114. 
The recommended method gives an interval from 0·055 to 0·114 for D, 

which is very similar to the interval calculated by the traditional method. 

·,.~~~,~~~jj;I~~';~I~~' 
In a reliability exercise carried out as part of the Multicenter Study of 

Silent Myocardial Ischemia,ll 41 patients were randomly selected from 
those who had undergone a thallium-201 stress test. The 41 sets of 
images were classified as normal or not by the core thallium laboratory 
and, independently, by clinical investigators from different centres who 
had participated in training sessions intended to produce standardisation. 
Table 6.2 presents the results for one of the participating clinical investi­
gators. 

The proportions of subjects classified as positive both by the investi­
gator and by the laboratory were PI = 0·463 and pz = 0·341 (19/41 and 
14/41) respectively; the investigator thus overdiagnosed abnormality by 
0·463 - 0·341 = 0·122, that is in 12% more cases than the laboratory 
test. Here, 95% confidence intervals for PI and pz are 0·321 to 0·613 and 
0·216 to 0·494 respectively. We calculate 

A = (14 + 5) x (0 + 22) x (14 + 0) x (5 + 22) = 158004, 

B = 14 x 22 - 5 x 0 = 308, 

since B > n/2, C = B - n/2 = 308 - 41/2 = 287·5, 

¢ = 287·5/VI58 004 = 0·723. 
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The lower limit of the required 95% confidence interval is then 

0·122 -
(0'463 - 0'321)2 - 2 x 0·723 x (0'463 - 0'321) x 

(0'494 - 0'341) + (0'494 - 0'341)2 

= 0·122 - 0·110 = 0·011. 

The upper limit is 

0·122 + 
(0'341 - 0'216)2 - 2 x 0·723 x (0'341 - 0'216) x 

(0'613 - 0'463) + (0'613 - 0'463)2 

= 0·122 + 0·105 = 0·226. 

The 95% confidence interval for the population difference in proportions 
is 0'011 to 0'226, or approximately +1 % to +23%. 

When no events are observed 

Given that in a sample of individuals no cases are observed with 
the outcome of interest, what can be said about the true prevalence 
in the population? 

Many authors have noted that the 95% confidence interval for 
an observed proportion of zero in a sample of size n has upper 
limit approximately 3/n whatever the value of n. 16,17 The value is 
a little less than 3 for small samples, but this 'rule of three' is a 
reliable guide for samples of more than 50. The value of 3 is, 
however, the upper limit of a one-sided confidence interval. 5 For 
comparability with the standard two-sided intervals it is necessary 
to take a one-sided 97'5% confidence interval, for which the upper 
limit is 3·7/n. 

These calculations are not based on the traditional method to 
derive confidence intervals but the exact method referred to 
earlier, which is sometimes known as the Clopper-Pearson 
method. 5 A strength of the recommended method given earlier is 
that it can safely be used in this extreme situation. The upper 
limit of the confidence interval when there are no observed 
events becomes Z2 j(n + Z2), where z is the appropriate value 
from the Normal distribution. For a 95% confidence interval 
z = 1'96, so that the 95% confidence interval for an observed pro­
portion of 0 is from 0 to 3'84/(n + 3'84). For a 99% confidence 
interval z = 2'576, and the upper limit is 6'64/(n + 6'64). 

If an easily memorable formula is wanted we suggest a new 'rule 
of four' in which the upper limit of the 95% confidence interval is 
4/(n + 4), which is a close approximation to the correct value. 
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The same principles apply equally to the case where the event is 
observed in all individuals. Here the confidence interval for the 
population proportion is from nj(n + z2) to 1. 

Software 

Both the traditional and recommended methods are included in 
the CIA software accompanying this book. The recommended 
methods are referred to as Wilson's method for the single sample 
case and Newcombe's method for the comparisons of two propor­
tions (paired or unpaired). 

Technical note 

Although for quantitative data and means there is a direct corre­
spondence between the confidence interval approach and a t test of 
the null hypothesis at the associated level of statistical significance, 
this is not exactly so for qualitative data and proportions. The lack 
of direct correspondence is small and should not result in changes 
of interpretation. 
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7 Epidemiological 
studies 

JULIE A MORRIS, MARTIN J GARDNER 

The techniques for obtaining confidence intervals for estimates of 
relative risks, attributable risks and odds ratios are described. 
These can come either from an incidence study, where, for example, 
the frequency of a congenital malformation at birth is compared in 
two defined groups of mothers, or from a case-control study, where 
a group of patients with the disease of interest (the cases) is 
compared with another group of people without the disease (the 
controls). 

The methods of obtaining confidence intervals for standardised 
disease ratios and rates in studies of incidence, prevalence, and 
mortality are described. Such rates and ratios are commonly 
calculated to enable appropriate comparisons to be made between 
study groups after adjustment for confounding factors like age 
and sex. The most frequently used standardised indices are the 
standardised incidence ratio (SIR) and the standardised mortality 
ratio (SMR). 

Some of the methods given here are large sample approximations 
but will give reasonable estimates for small studies. Appropriate 
design principles for these types of study have to be adhered to, 
since confidence intervals convey only the effects of sampling varia­
tion on the precision of the estimated statistics. They cannot control 
for other errors such as biases due to the selection of inappropriate 
controls or in the methods of collecting the data. 

Relative risks, attributable risks and odds ratios 

Incidence study 

Suppose that the incidence or frequency of some outcome is 
assessed in two groups of individuals defined by the presence or 
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Table 7.1 Classification of outcome by group 
characteristic 

Outcome 

Yes 
No 

Total 

Group characteristic 

Present 

A 
C 

A+C 

Absent 

B 
D 

B+D 

absence of some characteristic. The data from such a study can be 
presented as in Table 7.1. 

The outcome probabilities in exposed and unexposed indivi­
duals are estimated from the study groups by A/(A + C) and 
B/(B + D) respectively. An estimate, R, of the relative risk (or 
risk ratio) from exposure is given by the ratio ofthese proportions, 
so that 

R = A/(A + C). 
B/(B + D) 

Confidence intervals for the population value of R can be con­
structed through a logarithmic transformation. 1 The standard 
error of loge R is 

SE(loge R ) = 
C B 

A(A + C) + B(B + D)" 

This can also be written as 

V I 1 1 1 
SE(loge R) = A - A + C + Ii - B + D· 

A 100(1 - (0)% confidence interval for R is found by first calculat­
ing the two quantities 

W = loge R - [Zl-a/2 X SE(loge R)] 

and 

x = 10geR + [Zl-a/2 X SE(logeR)], 

where zl-a/2 is the appropriate value from the standard Normal 
distribution for the 100(1 - 00/2) percentile found in Table 18.1. 
The confidence interval for the population value of R is then 
given by exponentiating Wand X as 

eW to eX. 
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Table 7.2 Prevalence of Helicobacter pylori infection in preschool chil­
dren according to mother's history of ulcer2 

Infected with 
H. pylori 

Yes 
No 

Total 

History of ulcer in mother 

Yes 

6 
16 

22 

No 

112 
729 

841 

Brenner et al. reported the prevalence of Helicobacter pylori-infectionifl 
preschool children according to parental history of duodenal or gastri~ 
ulcer.2 The results are shown in Table 7.2. 

An estimate of the relative risk of Helicobacter pylori infection associated 
with a history of ulcer in the mother is 

6/22 
R = = 2·05. 

112/841 

The standard error of loge R is 

!! _ ~ + _1 ___ 1_ = 0.3591 
V 6 22 112 841 

from which for a 95% confidence interval 

W = loge 2·05 - (1'96 x 0'3591) = 0·0130 

and 

x = loge 2·05 + (1'96 x 0'3591) = 1·4206. 

The 95% confidence interval for the population value of R is then given as 

eO-Ol3O to el-4206 

that is, from 1·01 to 4·14. The estimated risk of Helicobacter pylori 
infection in children with a history of ulcer in the mother is 205% of 
that in children without a history of ulcer in the mother with a 95% 
confidence interval of 101 % to 414%. 

A measure of the proportion of individuals in the total population with 
the disease attributed to exposure to the risk factor is given by the attribu­
table risk (AR). If P is the prevalence of the risk factor in the population 
and R is the relative risk for disease associated with the risk factor, then 

AR= p(R-1) 
1+p(R-1) 

If the prevalence, p, is assumed to have negligible sampling variation, then 
the 100(1 - a)% confidence interval for AR can be derived by obtaining 
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confidence limits for the relative risk, R, as described previously and sub­
stituting these into the formula for AR given above. 3 (See chapter 13 for 
discussion of this 'substitution' method.) This approach will give a reason­
able approximation to confidence intervals derived from a more exact 
method. It is important to note that this method is not appropriate for 
substitution of a confounder-adjusted relative risk. 4

.
5 

Denoting the confidence interval for R by RL to Ru , the 100(1 - 0')% 
confidence interval for AR is given by 

P(RL - 1) 

1 +P(RL -1) 
to 

p(Ru - 1) 

1 +p(Ru -1)' 

In the previous example, the prevalence of history of ulcer in mothers of 
preschool children is 22/863 = 0'0255, and the relative risk of Helicobacter 
pylori infection associated with a history of ulcer is 2'05.2 An estimate of 
the attributable risk is 

AR 
0'0255(2'05 - 1) 

= = 0·0260. 
1 + 0'0255(2'05 - 1) 

As already calculated, the 95% confidence interval for R is given by 
RL = 1·01 to Ru = 4·14. The 95% confidence interval for AR is thus 

0'0255(1-01 - 1) 

1 +0'0255(1'01-1) 
to 

0'0255( 4-14 - 1) 

1 + 0'0255(4'14 - 1) 

that is, from 0'0003 to 0'0741. The proportion of children with Helico­
bacter pylori infection due to history of ulcer in the mother is estimated 
at 26 per 1000 with a wide 95% confidence interval ranging from 0'3 
per 1000 to 74 per 1000. 

Unmatched case-control study 

Suppose that groups of cases and controls are studied to assess 
exposure to a suspected causal factor. The data can be presented 
as in Table 7.3. 

An approximate estimate of the relative risk for the disease 
associated with exposure to the factor can be obtained from a 
case-control study through the odds ratio,6 the relative risk itself 
not being directly estimable with this study design. The odds 
ratio (OR) is given as 

OR = ~~. 
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Table 7.3 Classification of exposure among cases and 
controls 

Study group 

Cases 
Controls 

Total 

Yes 

a 
c 

a+c 

Exposed 

No 

b 
d 

b+d 

Total 

a+b 
c+d 

n 

A confidence interval for the population odds ratio can be con­
structed using several methods which vary in their ease and accu­
racy. The method described here (sometimes called the logit 
method) was devised by Woole and is widely recommended as a 
satisfactory approximation. The exception to this is when any of 
the numbers a, b, c, or d is small, when a more accurate but complex 
procedure should be used if suitable computer facilities are avail­
able. Further discussion and comparison of methods can be found 
in Breslow and Day.8 The use of the following approach, however, 
should not in general lead to any misinterpretation of the results. 

The logit method uses the Normal approximation to the distri­
bution of the logarithm of the odds ratio (loge OR) in which the 
standard error is 

/1 1 1 1 
SE(loge OR) = V-:Z+'b+-;;+a' 

A 100(1 - a)% confidence interval for OR is found by first calcu­
lating the two quantities 

Y = loge OR - [Zl ~"/2 X SE(loge OR)] 

and 

Z = loge OR + [Zl ~ ,,/2 X SE(loge OR)], 

where Zl ~ ,,/2 is the appropriate value from the standard Normal 
distribution for the 100(1 - a/2) percentile (see Table 18.1). 
The confidence interval for the odds ratio in the population is 
then obtained by exponentiating Y and Z to give 

e Y to eZ
. 

ABO non-secretor state was determined for 114 patients with spondylo­
arthropathies and 334 controls9 with the results shown in Table 7.4. 
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Table 7.4 ABO non-secretor state for 114 patients 
with spondyloarthropathies and 334 controls9 

Study group 

Cases 
Controls 

Total 

ABO non-secretor state 

Yes 

54 
89 

143 

No 

60 
245 

305 

Total 

114 
334 

448 

The estimated odds ratio for spondyloarthropathies with ABO non­
secretor state is OR = (54 x 245)/(60 x 89) = 2·48. The standard error 
of loge OR is 

SE(loge OR) = 
1 1 1 1 -+-+-+- = 0·2247. 

54 60 89 245 

For a 95% confidence interval 

Y = loge 2·48 - (1·96 x 0·2247) = 0·4678 

and 

Z = loge 2·48 + (1·96 x 0·2247) = 1·3487. 

The 95 % confidence interval for the population value of the odds ratio for 
spondyloarthropathies with ABO non-secretor state is then given as 

eO·4678 to el·3487 

that is, from 1·59 to 3·85. These results show that the estimated risk of 
spondyloarthropathy with ABO non-secretor state is 248% of that without 
ABO non-secretor state with 95% confidence interval of 159% to 385%. 

More than two levels of exposure 

If there are more than two levels of exposure, one can be chosen 
as a baseline with which each of the others is compared. Odds 
ratios and their associated confidence intervals are then calculated 
for each comparison in the same way as shown previously for only 
two levels of exposure. 

A series of untnatched case-control studies 

A combined estimate is sometimes required when independent 
estimates of the same odds ratio are available from each of K sets 
of data-for example, in a stratified analysis to control for con­
founding variables. 
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One approach is to use the logit method to give a pooled estimate 
ofthe odds ratio (ORlogit) and then derive a confidence interval for 
the odds ratio in a similar way to that for a single 2 x 2 table. The 
logit combined estimate (ORlogit) is defined by 

loge ORlogit = L Wi loge ORi / L Wi, 

where ORi = aid,.jbici is the odds ratio in the ith table, ai, bi, ci' and 
di are the frequencies in the ith 2 x 2 table, ni = ai + bi + Ci + di, 
the summation L: is over i = 1 to K for the K tables and Wi is 
defined as 

1 
Wi = (llai) + (lib,) + (l/ ci) + (lldi)' 

The standard error of loge (ORlogit) is given by 

1 
SE(loge ORlogit) = Vw) 

where W = L: Wi' 
A 100(1 - a)% confidence interval for ORlogit can then be found 

by calculating 

U = loge ORlogit - [Zl-a/2 X SE(loge ORlogit)] 

and 

v = loge ORlogit + [Zl-a/2 X SE(loge ORlogit)] 

where Z 1 _ a/2 is the appropriate value from the standard Normal 
distribution for the 100(1 - (12) percentile (see Table lB. 1). 

The confidence interval for the population value of ORlogit is 
given by exponentiating U and V as 

eV to eV
. 

It is important to mention that, before combining independent 
estimates, there should be some reassurance that the separate 
odds ratios do not vary markedly, apart from sampling error. 6,s 
Hence, a test for homogeneity of the odds ratio over the strata is 
recommended. Further discussion of homogeneity tests, methods 
for the calculation of 95% confidence intervals and a worked 
example are given in Breslow and Day.s The logit method is 
unsuitable if any of the numbers ai' bi' ci' or di is small. This 
will happen, for example, with increasing stratification, and in 
such cases a more complex exact method is available.8 
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An alternative approach which gives a consistent estimate of the 
common odds ratio with large numbers of small strata is to use the 
Mante1-Haenszel pooled estimate of the odds ratio (ORM - H ) 

which is given by 

A method of calculating confidence intervals for this estimate is 
described in Armitage and Berry.6 It is more complex, however, 
than the previous approach which extends the single case-control 
technique shown earlier. For samples of reasonable size both 
methods will usually give similar values for the combined odds 
ratio and confidence interval. 

The scope of a stratified analysis for case-control studies can be 
extended using a logistic regression model.8 This also enables the 
joint effects of two or more factors on disease risk to be assessed 
(see chapter 8). 

E!~.i~~~~~~'·· 
A number of studies examining the relationship of passive smoking 

exposure to lung cancer were reviewed by Wald et al. lD The findings, 
which are shown in Table 7.5, included those from four studies of 
women in the USA. They are used below to illustrate the combination 
of results from independent sets of data. A test for homogeneity of the 
odds ratio provided no evidence of a difference between the four studies. 

The logit combined estimate of the odds ratio (ORlogit) over the four 
studies is found to be 1,19. The standard error of loge (ORlogit) is 0·1694. 

For a 95% confidence interval 

U = loge 1·19 - (1,96 X 0'1694) = -0·1581 

and 

v = loge 1·19 + (1'96 X 0'1694) = 0'5060. 

Table 7.5 Exposure to passive smoking among female lung cancer cases 
and controls in four studies10 

Lung cancer cases Controls 

Exposed Unexposed Exposed Unexposed 
Study Ca) Cb) Ce) Cd) Odds ratio 

1 14 8 61 72 2'07 
2 33 8 164 32 0,80 
3 13 11 15 10 0,79 
4 91 43 254 148 1·23 
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The 95% confidence interval for the population value of the odds ratio of 
lung cancer associated with passive smoking exposure is then given by 

e -0-!S8! to eO-5060 

that is, from 0-85 to 1'66. The risk of lung cancer with passive smoking 
exposure is estimated to be 119% of that with no passive smoking 
exposure with a 95% confidence interval of 85% to 166%. 

If, alternatively, the Mantel-Haenszel method is used on these data the 
combined estimate of the odds ratio is found to be also 1'19, with a 95% 
confidence interval of 0'86 to 1'66, virtually the same result. 

Matched case-control study 

If each of n cases of a disease is matched to one control to form n 
pairs and each individual's exposure to a suspected causal factor is 
recorded the data can be presented as in Table 7.6. For this type 
of study an approximate estimate (in fact the Mantel-Haenszel 
estimate) of the relative risk of the disease associated with exposure 
is again given by the odds ratio which is now calculated as 

s 
OR=-. 

t 

An exact 100(1 - a)% confidence interval for the population value 
of OR is found by first determining a confidence interval for s (the 
number of case-control pairs with only the case exposed).6 Condi­
tional on the sum of the numbers of "discordant" pairs (s + t) the 
number s can be considered as a Binomial variable with sample size 
s + t and proportion s/(s + t). 

The 100(1 - a)% confidence interval for the population value of 
the Binomial proportion can be obtained from tables based on the 
Binomial distribution (for example, Lentner!!). If this confidence 
interval is denoted by AL to Au the 100(1 - a)% confidence 

Table 7.6 Classification of matched case-control 
pairs by exposure 

Exposure status 

Case Control Number of pairs 

Yes Yes 
Yes No 
No Yes 
No No u 

Total n 
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interval for the population value of OR is then given by 

AL Au 
to 

1 - AL 1 - Au· 

Thirty-five patients who died in hospital from asthma were individually 
matched for sex and age with 35 control subjects who had been discharged 
from the same hospital in the preceding yearY The inadequacy of moni­
toring of all patients while in hospital was independently assessed; the 
paired results are given in Table 7.7. 

Table 7.7 Inadequacy of monitoring in hospital of 
deaths and survivors among 35 matched pairs of 
asthma patients12 

Inadequacy of monitoring 

Deaths Survivors Number of pairs 

Yes Yes 10 
Yes No 13 
No Yes 3 
No No 9 

Total 35 

The estimated odds ratio of dying in hospital associated with inadequate 
monitoring is OR = 13/3 = 4·33. 

From the appropriate table for the Binomial distribution with sample 
size 5 + t = 13 + 3 = 16, proportion 5/(5 + t) = 13/(13 + 3) = O·SI, and 
Q = 0·05, the 95% confidence interval for the population value of the 
Binomial proportion is found to be AL = 0·5435 to Au = 0·9595. The 
95% confidence interval for the population value of the odds ratio is thus 

0·5435 0·9595 
1 - 0·5435 

to 
1 - 0.9595 

that is, from 1·19 to 23·69. The risk of dying in hospital following inade­
quate monitoring is estimated to be 433% of that with adequate monitor­
ing, with a very wide 95% confidence interval ranging from 119% to 
2369%, reflecting the imprecision in this estimate. 

Matched case-control study with 1 : M matching 

Sometimes each case is matched with more than one control. 
The odds ratio is then given by the Mantel-Haenszel estimate as 

ORM _ H = L [(M - i + 1) x n;~ll/L(i x n;O)), 
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where M is the number of matched controls for each case, n;~ 1 is 
the number of matched sets in which the case and i-I of the 
matched controls are exposed, n;O) is the number of sets in which 
the case is unexposed and i of the matched controls are exposed, 
and the summation is from i = 1 to M. 

A confidence interval for the population value of ORM~H can be 
derived by one of the methods in Breslow and Day.8 These authors 
also explain the calculation of a confidence interval for the odds 
ratio estimated from a study with a variable number of matched 
controls for each case.8 

Incidence rates, standardised ratios and rates 

Incidence rates 

If x is the observed number of individuals with the outcome (or 
disease) of interest, and Py the number of person-years at risk, the 
incidence rate is given by IR = xl Py. 

The 100(1 - a)% confidence interval for the population value of 
IR can be calculated by first assuming x to have a Poisson distribu­
tion, and finding its related confidence interval. 3 Table 18.3 gives 
90%, 95% and 99% confidence intervals for x in the range 0 to 
100. It also indicates how to obtain approximate confidence inter­
vals for x taking values greater than 100. Denote this confidence 
interval by XL to xU. Assuming Py is a constant with no sampling 
variation, the 100(1 - 00)% confidence interval for IR is given by 

to 
Xu 
Py 

Nunn et al. published mortality figures for the period 1990-95 in a rural 
population in south-west Uganda. 13 They reported 28 deaths among 
children aged 5-12 years over 10 992 person-years of observation. 

Taking x = 28 and Py = 10 992, the death rate for 5-12-year olds is 
IR = 28/10992 = 2·55 deaths per 1000 person-years. The 95% confi­
dence limits for the number of deaths, XL = 18·6 and Xu = 40·5 are 
found from Table 18.3 with X = 28 and a = 0·05. 

The 95% confidence interval for the death rate is 

18·6 
10992 

to 
40·5 

10992 

that is, from 1·69 to 3'68 per 1000 person-years. 
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Standardised ratios 

If 0 is the observed number of incident cases (or deaths) in a 
study group and E the expected number based on, for example, 
the age-specific disease incidence (or mortality) rates in a reference 
or standard population the standardised incidence ratio (SIR) or 
standardised mortality ratio (SMR) is OlE. This is usually called 
the indirect method of standardisation because the specific rates 
of a standard population are used in the calculation rather than the 
rates of the study population. The expected number is calculated 
as 

E= Ln;DR;l 

where ni is the number of individuals in age group i of the study 
group, DR; is the death rate in age group i of the reference popula­
tion, and 2:: denotes summation over all age groups. 

The 100(1 - a)% confidence interval for the population value of 
OlE can be found by first regarding 0 as a Poisson variable and 
finding its related confidence interval14 (see Table 18.3). Denote 
this confidence interval by OL to Ou. 

The 100(1 - a)% confidence interval for the population value of 
OlE is then given by 

to 

··:~~k~~'~~< 
Roman et al. observed 64 cases ofleukaemia in children under the age of 

IS years in the West Berkshire Health Authority area during 1972-8S. 15 

They calculated that 4S·6 cases would be expected in the area at the age 
specific leukaemia registration rates by calendar year for this period in 
England and Wales (the standard population). Using 0 = 64 and 
E = 4S·6 the standardised incidence ratio (SIR) is 64/4S·6 = 1·40. 
Values of OL = 49·3 and Ou = 81·7 are found from the appropriate 
table based on the Poisson distribution when 0 = 64 and 0: = O·OS (see 
Table 18.3). 

The 9S% confidence interval for the population value of the standar­
dised incidence ratio is 

49·3 

4S·6 
to 

81·7 

4S·6 

that is, from 1·08 to 1·79. The uncertainty in the incidence rate in West 
Berkshire ranges from just 8% greater incidence to almost 80% greater 
incidence compared to the standard England and Wales population. 
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Sometimes the standardised incidence ratio (or standardised mor­
tality ratio) is multiplied by 100 and then the same must be done to 
the figures describing the confidence interval. 

Ratio of two standardised ratios 

Let O[ and O2 be the observed numbers of cases (deaths) in two 
study groups and E[ and E2 the two expected numbers. It is some­
times appropriate to calculate the ratio of the two standardised 
incidence ratios (standardised mortality ratios) Ot! E[ and O2 / E2 
and find a confidence interval for this ratio. Although there are 
known limitations to this procedure if the age-specific incidence 
ratios within each group to the standard are not similar, these are 
not serious in usual applications.[4 Again O[ and O2 can be 
regarded as Poisson variables and a confidence interval for the 
ratio 0 1/02 is obtained as described by Ederer and Mantel. 16 

The procedure recognises that conditional on the total of 
O[ + O2 the number 0 1 can be considered as a Binomial variable 
with sample size 0 1 + O2 and proportion Ot!(OI + O2 ). The 
100(1 - a)% confidence interval for the population value of the 
Binomial proportion can be obtained from tables based on the 
Binomial distribution (for example, Lentner ll ). Denote this confi­
dence interval by AL to Au. The 100(1 - a)% confidence interval 
for the population value of Ot!Oz can now be found as 

AL Au 
BL = to Bu = ---=-

1 - AL 1- Au 

The 100(1 - a)% confidence interval for the population value of 
the ratio of the two standardised incidence ratios (standardised 
mortality ratios) is then given by 

E2 
BL X - to 

EI 

Roman el al. published figures for childhood leukaemia during 1972-85 
in Basingstoke and North Hampshire Health Authority which gave 
o = 25 and E = 23.7 and a standardised incidence ratio of 1.05.15 To 
compare the figures for West Berkshire from the previous example with 
those from Basingstoke and North Hampshire let 0 1 = 64, EI = 45·6, 
O2 = 25, and E2 = 23·7. 

The ratio of the two standardised incidence ratios is given by 
(64/45·6)/(25/23·7) = 1·40/1·05 = 1·33. From the appropriate table for 
the Binomial distribution with sample size of n = 64 + 25 = 89, proportion 
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p = 64/(64 + 2S) = 0'72, and a: = O·OS, the 9S% confidence intervalfor the 
population value of the Binomial proportion is found to be AL = 0·6138 to 

Au = 0·8093. The 9S% confidence interval for Ol/OZ is thus 

0·6138 

1 - 0'6318 

that is, from I'S9 to 4'24. 

to 
0·8093 

1 - 0·8093 

The 9S% confidence interval for the population value of the ratio of the 
two standardised incidence ratios is then given by 

23·7 
I'S9 x--

4S'6 
23·7 

to 4·24 x--
4S'6 

that is, from 0'83 to 2·21. 

Standardised rates 

If a rate rather than a ratio is required the standardised rate (SR) 
in a study group is given by 

SR = 2:N,ri/2:Ni? 

where Ni is the number of individuals in age group i of the refer­
ence population, ri is the disease rate in age group i of the study 
group, and I: indicates summation over all age groups. This is 
usually known as the direct method of standardisation because 
the specific rates of the population being studied are used directly. 
If ni is the number of individuals in age group i of the study group 
the standard error of SR can be estimated as 

SE(SR) = v2: [N;r;(1 - ri)/ni] / 2: N i' 

This can be approximated by 

SE(SR) = v2: (N;rdni) /2: N i? 

assuming that the rates ri are small. 6 

The 100(1 - a)% confidence interval for the population value of 
SR is then given by 

SR - [Zl-aj2 X SE(SR)] to SR + [Zl-aj2 X SE(SR)], 

where ZI_ ajZ is the appropriate value from the Normal distribu­
tion for the 100(1 - a/2) percentile (see Table IS. 1). 

Note that if the rates ri are given as rates per 10m (for example, 
m = 3 gives a rate per 1000), rather than as proportions, then the 
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standardised rate (SR) is also a rate per 10m and SE( SR) as given 
above needs to be multiplied by V 10m . 

The observations presented in Table 7.8 were made in a study of the 
radiological prevalence of Paget's disease of bone in British male migrants 
to Australia. 17 The standardised prevalence rate (SR) is 5·7 per 100 with 
SE(SR) = 1·17 per 100. 

Table 7.8 Paget's disease of bone in British male migrants to Australia by 
age groupl7 

Study group 
Standard 

Age (years) Cases n; Rate per 100 (r,) population (N,/8 

55-64 4 96 4·2 2773 
65-74 13 237 5·5 2556 
75-84 8 105 7·6 1113 
2:85 7 32 21·9 184 -- -- -- --

Totals 32 470 6·8 6626 

The 95% confidence interval for the population value of the standar­
dised prevalence rate is then given by 

5·7 - (1·96 x 1·17) to 5·7 + (1·96 x 1·17) 

that is, from 3·5 to 8·0 per 100. 

Comment 

Many of the methods described here and others are also given 
with examples by Rothman and Greenland. 19 Several alternative 
methods of constructing confidence intervals for standardised 
rates and ratios have been developed.20

-
23 Further discussion of 

confidence limits for the relative risk can be found in Bailey.24 In 
particular, a method based on likelihood scores is evaluated by 
Gart and Nam25 (see also chapter 10). A useful review of 
approximate confidence intervals for relative risks and odds ratios 
is given by Sato.26 
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8 Regression and 
correlation 

DOUGLAS G ALTMAN, MARTIN J GARDNER 

The most common statistical analyses are those that examine one 
or two groups of individuals with respect to a single variable (see 
chapters 4 to 7). Also common are those analyses that consider 
the relation between two variables in one group of subjects. We 
use regression analysis to predict one variable from another, and 
correlation analysis to see if the values of two variables are asso­
ciated. The purposes of these two analyses are distinct, and usually 
one only should be used. 

We outline the calculation of the linear regression equation for 
predicting one variable from another and show how to calculate 
confidence intervals for the population value of the slope and inter­
cept of the line, for the line itself, and for predictions made using 
the regression equation. We explain how to obtain a confidence 
interval for the population value of the difference between the 
slopes of regression lines from two groups of subjects and how to 
calculate a confidence interval for the vertical distance between 
two parallel regression lines. 

We also describe the calculations of confidence intervals for 
Pearson's correlation coefficient and Spearman's rank correlation 
coefficient. 

The calculations have been carried out to full arithmetical preci­
sion, as is recommended practice (see chapter 14), but intermediate 
steps are shown as rounded results. Methods of calculating confi­
dence intervals for different aspects of regression and correlation 
are demonstrated. The appropriate ones to use depend on the 
particular problem being studied. 

The interpretation of confidence intervals has been discussed in 
chapters 1 and 3. Confidence intervals convey only the effects of 
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sampling variation on the estimated statistics and cannot control 
for other errors such as biases in design, conduct, or analysis. 

Linear regression analysis 

For two variables x and y we wish to calculate the regression 
equation for predicting y from x. We call y the dependent or out­
come variable and x the independent or explanatory variable. The 
equation for the population regression line is 

y = A +Bx 

where A is the intercept on the vertical y axis (the value of y when 
x = 0) and B is the slope of the line. In standard regression analysis 
it is assumed that the distribution of the y variable at each value of 
x is Normal with the same standard deviation, but no assumptions 
are made about the distribution of the x variable. Sample estimates 
a (of A) and b (of B) are needed and also the means of the two vari­
ables (x and .51), the standard deviations of the two variables (sx and 
Sy), and the residual standard deviation of y about the regression 
line (sres)' The formulae for deriving a, b, and Sres are given 
under "Technical details" at the end of this chapter. 

All the following confidence intervals associated with a single 
regression line use the quantity t 1 _ <>/2' the appropriate value 
from the t distribution with n - 2 degrees of freedom where n is 
the sample size. Thus, for a 95% confidence interval we need 
the value that cuts off the top 2'5% of the t distribution, denoted 

to'975 . 

A fitted regression line should be used to make predictions only 
within the observed range of the x variable. Extrapolation outside 
this range is unwarranted and may mislead. 1 

It is always advisable to plot the data to see whether a linear rela­
tionship between x and y is reasonable. In addition a plot of the 
"residuals" ("observed minus predicted" -see "Technical 
details" at the end of this chapter) is useful to check the distribu­
tional assumptions for the y variable. 

Illustrative data set 

Table 8.1 shows data from a clinical trial of enalapril versus 
placebo in diabetic patients. 2 The variables studied are mean arter­
ial blood pressure (mmHg) and total glycosylated haemoglobin 
concentration (%). The analyses presented here are illustrative 
and do not relate directly to the clinical trial. Most of the methods 
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Table 8.1 Mean arterial blood pressure and total glycosylated haemo­
globin concentration in two groups of 10 diabetics on entry to a clinical 
trial of enalapril versus placebo2 

Enalapril group Placebo group 

Mean arterial blood Total glycosylated Mean arterial blood Total glycosylated 
pressure (mmHg) haemoglobin (%) pressure (mmHg) haemoglobin (%) 

x y x y 

91 9·8 98 9'5 
104 7'4 105 6'7 
107 7'9 100 7·0 
107 8·3 101 8'6 
106 8'3 99 6'7 
100 9'0 87 9'5 
92 9'7 98 9·0 
92 8'8 104 7·6 

105 7'6 106 8'5 
108 6'9 90 8'6 

Means: 

x = 101·2 ji = 8·37 x = 98·8 ji = 8·17 

Standard deviations: 

Sx = 6·941 Sy = 0·9615 Sx = 6·161 Sy = 1·0914 

Standard deviations about the fitted regression lines: 

Sres = 0·5485 sres = 0·9866 

for calculating confidence intervals are demonstrated using only 
the data from the 10 subjects who received enalapril. 

Single sample 

We want to describe the way total glycosylated haemoglobin 
concentration changes with mean arterial blood pressure. The 
regression line of total glycosylated haemoglobin (TGH) concen­
tration on mean arterial blood pressure (MAP) for the 10 subjects 
receiving enalapril is found to be 

TGH = 20·19 - 0·1168 x MAP. 

The estimated slope of the line is negative, indicating lower total 
glycosylated haemoglobin concentrations for subjects with 
higher mean arterial blood pressure. 

The other quantities needed to obtain the various confidence 
intervals are shown in Table 8.1. The calculations use 95% confi­
dence intervals. For this we need the value of to.975 with 8 degrees 
of freedom, and Table 18.2 shows this to be 2·306. 
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Confidence interval for the slope of the regression line 

The slope of the sample regression line estimates the mean 
change in Y for a unit change in x. The standard error of the 
slope, b, is calculated as 

SE(b) = sres . 

sxvn=I 
The 100(1 - a)% confidence interval for the population value of 
the slope, B, is given by 

b - [tl-a/2 x SE(b)] to b + [t1- a/2 x SE(b)] . 

••..••. :;Q!.~~j.~~ .•... 
The standard error of the slope is 

0·5845 
SE(b) = J9 = 0·02634% per mmHg. 

6·941 x 9 

The 95% confidence interval for the population value of the slope is thus 

-0,1168 - (2'306 x 0'02634) to -0,1168 + (2'306 x 0'02634) 

that is, from -0·178 to -0·056% permmHg. 
For brevity, in further calculations on these data we will describe the 

units as %. 

Confidence interval for the mean value of Y for a given value of x and 
for the regression line 

The estimated mean value of Y for any chosen value of x, say xo, 
is obtained from the fitted regression line as 

Yfit = a + bxo· 

The standard error of Yfit is given by 

1 (xo - x)2 - + -"--''----'-co_ 
n (n-l)sr 

The 100(1 - a)% confidence interval for the population mean 
value of Y at x = Xo is then 

Yfit - [tl-<>/2 x SE(Yfit)] to Yfit + [tl-a/2 x SE(Yfit)]· 

When this calculation is made for all values of x in the observed 
range of x a 100(1 - a)% confidence interval for the position of 
the population regression line is obtained. Because of the expres­
sion (xo - X)2 in the formula for SE(Yfit) the confidence interval 
becomes wider with increasing distance of Xo from x. 
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·mt~~:·~~tJm~· 
The confidence interval for the mean total glycosylated haemoglobin con­

centration can be calculated for any specified value of mean arterial blood 
pressure. If the mean arterial blood pressure of interest is 100 mmHg the 
estimated total glycosylated haemoglobin concentration is Yfit = 

20·19 - (0'1168 x 100) = 8·51%. The standard error of this estimated 
value is 

( 
1 (100-101'2)2 _. 01 

SE Yfit) = 0·5485 x 10 + 9 X 6'9412 - 01763/0. 

The 95% confidence interval for the mean total glycosylated haemoglobin 
concentration for the population of diabetic subjects with a mean arterial 
blood pressure of 100mmHg is thus 

8·51 - (2·306 x 0'1763) to 8·51 + (2·306 x 0·1763), 

that is, from 8'10% to 8'92%. 
By calculating the 95% confidence interval for the mean total glyco­

sylated haemoglobin concentration for all values of mean arterial blood 
pressure within the range of observations we get a 95% confidence interval 
for the population regression line. This is shown in Figure 8.1. 

The confidence interval becomes wider as the mean arterial blood 
pressure moves away from the mean of 101'2 mmHg. 

Confidence interval for the intercept of the regression line 

The intercept of the regression line on the y axis is generally of 
less interest than the slope of the line and does not usually have any 
obvious clinical interpretation. It can be seen that the intercept is 
the fitted value of y when x is zero. 

Thus a 100(1 - a)% confidence interval for the population value 
of the intercept, A, can be obtained using the formula from the 
preceding section with Xo = 0 and Yfit = a. The standard error of 
a is given by 

SE(a) = Sres x 

The confidence interval for a is thus given by 

a - [tl-0'/2 x SE(a)] to a + [tl-a/2 x SE(a)]. 

The confidence interval for the population value of the intercept is the 
confidence interval for Yfit when x = 0, and is calculated as before. In this 
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Figure 8.1 Regression line of total glycosylated haemoglobin concentra­
tion on mean arterial blood pressure, with 95 % confidence interval for the 
population mean total glycosylated haemoglobin concentration. 

case the intercept is 20·19%, with a standard error of 2·67%. Thus the 
95% confidence interval is from 14·03% to 26·35%. Clearly in this exam­
ple the intercept, relating to a mean arterial blood pressure of zero, is 
extrapolated well below the range of the data and is of no interest in itself. 

Prediction interval for an individual (and all individuals) 

It is useful to calculate the uncertainty in Yfit as a predictor of Y 
for an individual. The range of uncertainty is called a prediction 
(or tolerance) interval. A prediction interval is wider than the asso­
ciated confidence interval for the mean value of Y because the 
scatter of data about the regression line is more important. 
Unlike the confidence interval for the slope, the width of the 
prediction interval is not greatly influenced by sample size. 

For an individual whose value of x is Xo the predicted value of Y 

is Yfio given by 

Yfit = a + bxo· 
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To calculate the prediction interval we first estimate the standard 
deviation (Spred) of individual values of Y when x equals Xo as 

1 (xo - X)2 
1+-+( )2. n n - 1 Sx 

Spred = sres X 

The 100(1 - a)% prediction interval is then 

Yfit - (tl-0'/2 x Spred) to Yfit + (t1-<>/2 x Spred). 

When this calculation is made for all values of x in the observed 
range the estimated prediction interval should include the values 
of Y for 100(1 - a)% of subjects in the population. 

The 95% prediction interval for the total glycosylated haemoglobin 
concentration of an individual subject with a mean arterial blood pressure 
of 100 mmHg is obtained by first calculating spred: 

Spred = 0·5485 x 1 ~ (100 - 101·2)2 = 0.5761 %. 
+10+ 9x6·9412 

The 95 % prediction interval is then given by 

8·51 - (2·306 x 0·5761) to 8·51 + (2·306 x 0·5761) 

that is, from 7·18 to 9·84%. 
The contrast with the narrower 95% confidence interval for the mean 

total glycosylated haemoglobin concentration for a mean arterial blood 
pressure of 100 mmHg calculated above is noticeable. The 95 % prediction 
intervals for the range of observed levels of mean arterial blood pressure 
are shown in Figure 8.2 and again these widen on moving away from 
the mean arterial blood pressure of 101·2 mmHg. 

Two satnples 

Regression lines fitted to observations from two independent 
groups of subjects can be analysed to see if they come from popu­
lations with regression lines that are parallel or even coincident.3 

Confidence interval for the difference between the slopes of two 
regression lines 

If we have fitted regression lines to two different sets of data on 
the same two variables we can construct a confidence interval for 
the difference between the population regression slopes using a 
similar approach to that for a single regression line. The standard 
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Figure 8.2 Regression line of total glycosylated haemoglobin concentra­
tion on mean arterial blood pressure, with 95% prediction interval for an 
individual total glycosylated haemoglobin concentration. 

error of the difference between the slopes is given by first calculat­
ing Spool' the pooled residual standard deviation, as 

SpOOl = 
(nl - 2)s~esl + (n2 - 2)s~es2 

and then 

1 1 

(nl - l)s~l + (n2 - 1)s~2' 
where the suffixes 1 and 2 indicate values derived from the two 
separate sets of data. The 100(1 - a)% confidence interval for 
the population difference between the slopes is now given by 

b1 - b2 - [tl-a/2 x SE(bl - b2)] to 

b1 - b2 + [tl-a/2 x SE(b l - b2 )] 

where tl- a/2 is the appropriate value from the t distribution with 
nl + n2 - 4 degrees of freedom. 
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The regression line for the placebo group from the data in Table 8.1 is 

TGH = 17·33 - 0·09268 x MAP. 

The difference between the estimated slopes of the two regression lines is 
-0·1168 - (-0·09268) = -0·02412 %. The standard error of this differ­
ence is found by first calculating Spool as 

/8 x 0.54852 + 8 X 0.98662 

Spool = V 16 = 0·7982%, 

and then 

SE(b\ - b2 ) = 0·7982 x / 1 2 + 1 2 = 0·05774%. 
V9x6·941 9x6·161 

From Table 18.2 the value of to.975 with 16 degrees of freedom is 2·120, so 
the 95 % confidence interval for the population difference between the 
slopes is 

-0·02412 - (2·120 x 0·05774) to -0·02412 + (2·120 x 0·05774) 

that is, from -0·147 to 0·098%. 
Since a zero difference between slopes is near the middle of this confi­

dence interval there is no evidence that the two population regression 
lines have different slopes. This is not surprising in this example as the 
subjects were allocated at random to the treatment groups. 

Confidence interval for the common slope of two parallel regression 
lines 

If the chosen confidence interval-for example, 95%-for the 
difference between population values of the slopes includes zero 
it is reasonable to fit two parallel regression lines with the same 
slope and calculate a confidence interval for their common slope. 
In practice we would usually perform this analysis by multiple 
regression using a statistical software package (see below). The 
calculation can be done, however, using the results obtained by 
fitting separate regression lines to the two groups and the standard 
deviations of the x and y values in the two groups: SX1' SX2' SY1' and 
Syz. First we define the quantity w as 

w = (nl - 1)s~1 + (n2 - 1)s~2· 

The common slope of the parallel lines (bpar ) is estimated as 

bl (nl - l)s~1 + b2(n2 - l)s~2 
bpar = . 

w 
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The residual standard deviation of y around the parallel lines (spar) 

is given by 

(nl -1)s;1 + (n2 -1)s;2 - b~ar x w 

nl + n2 - 3 

and the standard error of the slope by 

Spar 
SE(bpar ) = Vw' 

The 100(1 - a)% confidence interval for the population value of 
the common slope is then 

bpar - [tl- a / 2 x SE(bpar )] to bpar + [tl- a / 2 x SE(bpar)], 

where tl_ a/2 is the appropriate value from the t distribution with 
nl + n2 - 3 degrees of freedom. 

We first calculate the quantity w as 

w = 9 X 6'941 2 + 9 X 6'161 2 = 775·22. 

The common slope of the parallel lines is then found as 

-0'1168 x 9 x 6'9412 + (-0'09268) x 9 x 6'1612 
bpar = ---------,7=-=7=-=5=-'-.2-,-2-:----'------

= -0,1062%. 

The residual standard deviation of y around the parallel lines is 

Spar = 
9 X 0.96152 + 9 X 1.09142 - (-0'1062)2 x 775·22 

10 + 10 - 3 

= 0·7786%. 

The standard error of the common slope is thus 

0·7786 0 
SE(bpar ) = V775Ti = 0·02796 Yo. 

775·22 

From Table 18.2 the value of t1_ n/2 with 17 degrees offreedom is 2'110, so 
that the 95 % confidence interval for the population value of bpar is there­
fore 

0·1062 - (2'110 x 0'02796) to -0,1062 + (2'110 x 0'02796) 

that is, from -0,165 to -0'047%. 
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Confidence interval for the vertical distance between two parallel 
regression lines 

The intercepts of the two parallel lines with the Y axis are given 
by 

YI - bparXI and Y2 - bpar X2· 

We are usually more interested in the difference between the inter­
cepts, which is the vertical distance between the parallel lines. This 
is the same as the difference between the fitted Y values for the two 
groups at the same value of x, and is equivalent to adjusting the 
observed mean values of Y for the mean values of x, a method 
known as analysis of covariance.3 The adjusted mean difference 
(Ydifr) is calculated as 

Ydiff = YI - Y2 - bpar(XI - X2) 

and the standard error of Ydiff is 

The 100(1 - a)% confidence interval for the population value of 
Ydiff is then 

Ydiff - [tl- o /2 x SE(Ydifd] to Ydiff + [tl - o /2 x SE(Ydiff)] 

where tl_ ("</2 is the appropriate value from the t distribution with 
nl + n2 - 3 degrees of freedom. 

Using the calculated value for the common slope the adjusted difference 
between the mean total glycosylated haemoglobin concentration in the two 
groups is 

Ydiff =, (8·37 - 8·17) - (-0·1062) x (101·2 - 98·8) = 0·4548%, 

and its standard error is 

SE(Ydiff) = 0·7786 x ~ ~ (101·2-98·8)2 =0.3546%. 
10 + 10 + 775·22 

The 95% confidence interval for the population value of Ydiff is then given 
by 

0·4548 - (2·110 x 0·3546) to 0·4548 + (2·110 x 0·3546) 

that is, from -0·29 to 1·20%. 
Figure 8·3 illustrates the effect of adjustment. 
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Figure 8.3 llustration of the calculation of the adjusted difference between 
mean total glycosylated haemoglobin concentrations in two groups. 

Differences between means: 
x, observed difference =':v1 -.:V2 = 0'20%; 
x x, adjusted difference = Ydiff = 0'45%. 

More than two samples 

The methods described for two groups can be extended to the 
case of more than two groups of individuals,3 although such prob­
lems are rather rare. The calculations are best done using software 
for multiple regression, as discussed below. 

We have shown linear regression with a continuous explanatory 
variable but this is not a requirement. Regression with a single 
binary explanatory variable is equivalent to performing a two­
sample t test. When several explanatory variables are considered 
at once using multiple regression, as described below, it is 
common for some to be binary. 

Binary outcome variable-logistic regression 

In many studies the outcome variable of interest is the presence 
or absence of some condition, such as responding to treatment or 
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having a myocardial infarction. When we have a binary outcome 
variable and give the categories numerical values of 0 and I, usually 
representing "No" and "Yes" respectively, then the mean of these 
values in a sample of individuals is the same as the proportion of 
individuals with the characteristic. We might expect, therefore, 
that the appropriate regression model would predict the propor­
tion of subjects with the feature of interest (or, equivalently, the 
probability of an individual having that characteristic) for different 
values of the explanatory variable. 

The basic principle of logistic regression is much the same as 
for ordinary multiple regression. The main difference is that 
the model predicts a transformation of the outcome of interest. 
If p is the proportion of individuals with the characteristic, the 
transformation we use is the logit transformation, logit(p) = 
10g[pj(1 - p)]. The regression coefficient for an explanatory 
variable compares the estimated outcome associated with two 
values of that variable, and is the log of the odds ratio (see chapter 
7). We can thus use the model to estimate the odds ratio as eb

, 

where b is the estimated regression coefficient (log odds ratio). A 
confidence interval for the odds ratio is obtained by applying the 
same transformation to the confidence interval for the regression 
coefficient. An example is given below, in the section on multiple 
regression. 

Outcome is time to an event-Cox regression 

The regression method introduced by Cox in 1972 is used 
widely when the outcome is the time to an event.4 It is also 
known as proportional hazards regression analysis. The under­
lying methodology is complex, but the resulting regression 
model has a similar interpretation to a logistic regression model. 
Again the explanatory variable could be continuous or binary 
(for example, treatment in a randomised trial). 

In this model the regression coefficient is the logarithm of the 
relative hazard (or "hazard ratio") at a given time. The hazard 
represents the risk of the event in a very short time interval after 
a given time, given survival that far. The hazard ratio is interpreted 
as the relative risk of the event for two groups defined by different 
values of the explanatory variable. The model makes the strong 
assumption that this ratio is the same at all times after the 
start of follow up (for example, after randomisation in a controlled 
trial). 
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We can use the model to estimate the hazard ratio as eb
, where b 

is the estimated regression coefficient (log hazard ratio). As for 
logistic regression, a confidence interval is obtained by applying 
the same transformation to the confidence interval for the regres­
sion coefficient. An example is given below, in the section on multi­
ple regression. A more detailed explanation of the method is given 
in chapter 9. 

Several explanatory variables-multiple 
regression 

In much medical research there are several potential explanatory 
variables. The principles of regression-linear, logistic, or Cox­
can be extended fairly simply by using multiple regression. 4 

Further, the analysis may include binary as well as continuous 
explanatory variables. Standard statistical software can perform 
such calculations in a straightforward way. There are many 
issues relating to such analysis that are beyond the scope of this 
book-for discussion see, for example, Altman.4 

Although the nature of the prediction varies according to the 
model, in each case the multiple regression analysis produces a 
regression equation (or "model") which is effectively a weighted 
combination of the explanatory variables. The regression coeffi­
cients are the weights given to each variable. 

For each variable in the regression model there is a standard 
error, so that it is easy to calculate a confidence interval for any 
particular variable in the model, using the standard approach of 
chapter 3. 

The multiple linear regression model is 

Y = bo + blXI + b2X 2 + ... + bkXk, 

where Y is the outcome variable, Xl to X k are k explanatory vari­
ables, bo is a constant (intercept), and bl to bk are the regression 
coefficients. The nature of the predicted outcome, Y, varies 
according to the type of model, as discussed above, but the regres­
sion model has the same form in each case. The main difference in 
multiple regression is that the relation between the outcome and a 
particular explanatory variable is "adjusted" for the effects of 
other variables. 

The explanatory variables can be either continuous or binary. 
Table 8.2 shows the interpretation of regression coefficients for 
different types of outcome variable and for either continuous or 
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Table 8.2 Interpretation of regression coefficients for different types of 
outcome variable and for either continuous or binary explanatory variables 

Type of outcome Type of multiple Continuous explanatory Binary explanatory 
variable (Y) regression variable (X) variable (X) 

Continuous Linear Change in Y for a unit Difference between 
change in X mean of Y in two 

groups 

Binary Logistic Log odds ratio Log odds ratio 
associated with a unit 
change in X 

Time to event Cox Log hazard ratio Log hazard ratio 
(proportional associated with a unit 
hazards) change in X 

binary explanatory variables. For binary variables it is assumed 
that these have numerical codes that differ by one; most often 
these are 0 and 1. 

For multiple logistic regression models the regression coeffi­
cients and their confidence intervals need to be exponentiated 
(antilogged) to give the estimated odds ratio and its confidence 
interval. The same process is needed in Cox regression to get the 
estimated hazard ratio with its confidence interval. 

Table 8.3 shows a multiple logistic regression model from a study of 183 
men with unstable angina. 5 The regression coefficients and confidence 
intervals have been converted to the odds ratio scale. 

Some points to note about this analysis are: 

• The odds ratio for a binary variable (all here except age) indicates the 
estimated increased risk of the outcome for those with the feature. 
(The interpretation of an odds ratio as an approximate relative risk 
depends on the event being reasonably rare.) 

Table 8.3 Logistic regression model for predicting cardiac death or non­
fatal myocardial infarction. 5 

Diabetes mellitus 
Age 

Variable 

Previous myocardial infarction 
Troponin T status 
Further pain or electrographic changes, or both 

Odds ratio 

4'56 
1'08 
2'83 
1·21 
0'84 

95% CI 

1'51 to 13'7 
1·02 to 1·14 
1'06 to 7'57 
0·42 to 3·47 
0'31 to 2'29 
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Table 8.4 Association between number of 
children and risk of testicular cancer in 
Danish men (514 cases and 720 controls)6 

No. of children 

o 
1 
2 

~3 

Adjusted odds ratio 
(95% CI) 

1·00 
0·75 (0·51 to 1·10) 
0·68 (0·47 to 0·98) 
0·52 (0·32 to 0·85) 

• For two of the binary variables, diabetes and previous myocardial 
infarction, the confidence interval excludes 1, suggesting that these 
are indeed risk factors. 

• The odds ratio for age represents the increased risk per extra year of 
age. Thus, for example, the model predicts that a 70-year-old man has 
about an 8% extra risk of a serious cardiac event compared to a 69-
year-old man. For a ten-year age difference the estimated odds ratio 
is 1.0810 or 2 ·16, representing over a twofold risk or a 116 % higher 
risk. The confidence interval for a ten-year difference is from 1.0210 

to 1.2210
, that is 1·22 to 7·30. 

• The variables were included in this model if they showed a significant 
association with the outcome in a univariate (unadjusted) analysis. 
Although common, this procedure may lead to biased estimates of 
effect and the confidence intervals will be too narrow. The same com­
ment applies to the use of stepwise selection within the multiple 
regression. (These remarks apply to all types of multiple regression.) 

• The data are actually times to a specific event and could (and perhaps 
should) have been analysed using Cox regression (chapter 9). 

Table 8.4 shows part of a multiple logistic regression model with an 
ordinal explanatory variable. The number of children was compared for 
men with testicular cancer and controls, and adjustment made in the 
model for cryptorchidism, testicular atrophy, and other characteristics. 
Here each group with children is compared with the reference group 
with no children. This is achieved in the regression model by creating 
three binary variables indicating respectively whether or not each man 
has 1, 2, or 3 children. At most one of these 'dummy' variables will be 
1, and the others are zero.4 

Note that the overall evaluation of the relation between this ordinal 
variable and outcome (here risk of testicular cancer) should be based on 
the trend across the four groups (see "Multiple comparisons" in chapter 
13). Here there was a highly significant trend of decreasing risk in relation 
to number of children even though one of the confidence intervals does not 
exclude 1.6 
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Correlation analysis 

Pearson's product moment correlation coefficient 

The correlation coefficient usually calculated is the product 
moment correlation coefficient or Pearson's r. This measures the 
degree of linear 'co-relation' between two variables x and y. The 
formula for calculating r for a sample of observations is given at 
the end of the chapter. 

A confidence interval for the population value of r can be con­
structed by using a transformation of r to a quantity Z, which 
has an approximately Normal distribution. This calculation 
relies on the assumption that x and y have a joint bivariate 
Normal distribution (in practice, that the distributions of both 
variables are reasonably Normal). 

The transformed value, Z, is given by 

Z=-log --1 (1 + r) 
2 e l-r ' 

which for all values of r has SE = 1/ V n - 3 where n is the sample 
size. For a 100(1 - 0:)% confidence interval we then calculate the 
two quantities 

and G = Z + ZI-a/2 

vn-3 

where Zl- n/2 is the appropriate value from the standard Normal 
distribution for the 100(1 - 0:/2) percentile (Table 18.1). 

The values F and G need to be transformed back to the original 
scale to give a 100(1 - 0:)% confidence interval for the population 
correlation coefficient as 

to 

Table 8.5 shows the basal metabolic rate and total energy expenditure in 
24 hours from a study of 13 non-obese women.7 The data are ranked by 
increasing basal metabolic rate. Pearson's r for these data is 0'7283, and 
the transformed value Z is 

1 (1 + 0.7283) Z = - loge = 0·9251. 
2 1 - 0·7283 
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Table 8.5 Basal metabolic rate and isotopically measured 
24-hour energy expenditure in 13 non-obese women7 

Basal metabolic rate 
CMJ/day) 

4·67 
5·06 
5·31 
5·37 
5·54 
5'65 
5·76 
5'85 
5·86 
5'90 
5'91 
6'19 
6'40 

24-hour total energy expenditure 
CMJ) 

7·05 
6'13 
8'09 
8'08 
7·53 
7·58 
8'40 
7'48 
7·48 
8'11 
7·90 

10·88 
10'15 

The values of F and G for a 95 % confidence interval are 

and 

1·96 
F = 0·9251 - - = 0·3053 

vTO 

1·96 
G = 0·9251 + - = 1·545. 

vTO 
From these values we derive the 95% confidence interval for the popu­

lation correlation coefficient as 

e2 x 0·3053 _ 1 

e2 x 0·3053 + 1 

that is, from 0'30 to 0'91. 

to 
e2x 1·545 _ 1 

e2 x 1'545 + 1 

SpearlDan's rank correlation coefficient 

If either the distributional assumptions are not met or the rela­
tion between x and y is not linear we can use a rank method to 
assess a more general relation between the values of x and y. To 
calculate Spearman's rank correlation coefficient Crg) the values 
of x and y for the n individuals have to be ranked separately in 
order of increasing size from 1 to n. Spearman's rank correlation 
coefficient is then obtained either by using the standard formula 
for Pearson's product moment correlation coefficient on the 
ranks of the two variables, or (as shown below under "Technical 
details") using the difference in their two ranks for each individual. 
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The distribution of rs similar to that of Pearson's r, so that confi­
dence intervals can be constructed as shown in the previous section. 

Technical details: formulae for regression and 
correlation analyses 

We strongly recommend that statistical software is used to per­
form regression or correlation analyses. Some formulae are given 
here to help explain the underlying principles. 

Regression 

The slope of the regression line is given by 

b = (2:XY - nxy ) / (2:x2 - nx2) , 

where L represents summation over the sample of size n. The 
intercept is given by 

a =y - bx. 

The difference between the observed and predicted values of Y for 
an individual with observed values Xo and Yo is Yo - Yfio where 
Yfit = a + bxo. The standard deviation of these differences (called 
"residuals") is thus a measure of how well the line fits the data. 

The residual standard deviation of Y about the regression line is 

Sres = 

= /Ly2 - ny2 - b2(L x2 - nx2) 

V n-2 

(n - 1)(s; - b2s~) 

n-2 

Most statistical computer programs give all the necessary quanti­
ties to derive confidence intervals, but you may find that the 
output refers to Sres as the 'standard error of the estimate'. 

Correlation 

The correlation coefficient (Pearson's r) is estimated by 
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Spearman's rank correlation coefficient is given by 

r - 1 _ 6 I: d7 
s - n3 _ n 

where d; is the difference in the ranks of the two variables for the 
ith-individual. Alternatively, rs can be obtained by applying the 
formula for Pearson's r to the ranks of the variables. The calcula­
tion of r s should be modified when there are tied ranks in the data, 
but the effect is minimal unless there are many tied ranks. 

Altman DG, Bland JM. Generalisation and extrapolation. BMJ 1998;317:409-
10. 

2 Marre M, Leblanc H, Suarez L, Guyenne T -T, Menard J, Passa P. Converting 
enzyme inhibition and kidney function in normotensive diabetic patients with 
persistent micro-albuminuria. BMJ 1987;294:1448-52. 

3 Armitage P, Berry G. Statistical methods in medical research. 3rd edn. Oxford: 
Blackwell Science, 1994: 336-7. 

4 Altman DG. Practical statistics for medical research. London: Chapman & Hall, 
1991: 336-58. 

5 Stubbs P, Collinson P, Moseley D, Greenwood T, Noble M. Prospective study 
of the role of cardiac troponin T in patients admitted with unstable angina. BMJ 
1996;313:262-4. 

6 M0ller H, Skakkebrek NE. Risk of testicular cancer in subfertile men: case­
control study. BMJ 1999;318:559-62. 

7 Prentice AM, Black AE, Coward W A, et al. High levels of energy expenditure in 
obese women. BMJ 1986;292:983-7. 
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9 Time to event studies 
DAVID MACHIN, MARTIN J GARDNER 

It is common in follow-up studies to be concerned with the survival 
time between the time of entry to the study and a subsequent 
event. l The event may be death in a study of cancer, the disappear­
ance of pain in a study comparing different steroids in arthritis, or 
the return of ovulation after stopping a long-acting method of 
contraception. These studies often generate some so-called "cen­
sored" observations of survival time. Such an observation would 
occur, for example, on any patient who is still alive at the time of 
analysis in a randomised trial where death is the end point. In 
this case the time from allocation to treatment to the latest 
follow-up visit would be the patient's censored survival time. 

The Kaplan-Meier product limit technique is the recognised 
approach for calculating survival curves in such studies.2

•
3 An out­

line of this method is given here. Details of how to calculate a con­
fidence interval for the population value of the survival proportion 
at any time during the follow up and the median survival are given. 
Confidence interval calculations are also described for the differ­
ence in survival between two groups as expressed by the difference 
in survival proportions as well as for the hazard ratio between 
groups which summarises, for example, the relative death or 
relapse rate. 

In some circumstances, the comparison between groups is 
adjusted for prognostic variables by means of Cox regression. 3 

In this case the confidence interval describing the difference 
between the groups is adjusted for the relevant prognostic variable. 

In the survival comparisons context, confidence intervals convey 
only the effects of sampling variation on the precision of the esti­
mated statistics and cannot control for any non-sampling errors 
such as bias in the selection of patients or in losses to follow up. 
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Survival proportions 

Single sample 

Suppose that the survival times after entry to the study (ordered 
by increasing duration) of a group of n subjects are tj, t2, t3, ... tn­

The proportion of subjects surviving beyond any follow-up time 
t, often referred to as S(t) but here denoted p for brevity, is esti­
mated by the Kaplan-Meier technique as 

p = IT ri - di , 
rj 

where ri is the number of subjects alive just before time ti (the ith 
ordered survival time), dj denotes the number who died at time tj, 
and II indicates multiplication over each time a death occurs up to 
and including time t. 

The standard error (SE) of p is given by 

SE(p) = 
p(l - p) 

neffective 

where neffective is the "effective" sample size at time t. When there 
are no censored survival times, neffective will be equal to n, the total 
number of subjects in the study group. When censored observa­
tions are present, the effective sample size is calculated each time 
a death occurs.4 

neffective = n - number of subjects censored before time t. 

The 100(1 - a)% confidence interval for the population value of 
the survival proportion p at time t is then calculated as 

p-[Zj_o:/2xSE(P)] to P+[Zj_o:/2xSE(P)] 

where Zj-o:/2 is the appropriate value from the standard Normal 
distribution for the 100(1 - a/2) percentile. Thus for a 95% con­
fidence interval a = 0·05 and Table 18.1 gives Zj-o:/2 = 1·96. 

There are other and more complex alternatives for the calcula­
tion of the SE given here including that of Greenwoods but, 
except in situations with very small numbers, these will lead to 
similar confidence intervals. 3 

The times at which to estimate survival proportions and their 
confidence intervals should be determined in advance of the 
results. They can be chosen according to practical convention­
for example, the five-year survival proportions which are often 
quoted in cancer studies-or according to previous similar studies. 
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Consider the survival experience of the 25 patients randomly assigned to 

receive ,-linolenic acid for the treatment of colorectal cancer of Dukes's 
stage c.6 The ordered survival times (t), the calculated survival propor­
tions (p), and the effective sample sizes (neffective) are shown in Table 9.1. 

The data come from a comparative trial, but it may be of interest to 
quote the two-year survival proportion and its confidence interval for 
the group receiving ,-linolenic acid. The survival proportion to any 
follow-up time is taken from the entries in the table for that time if 

Table 9.1 Survival data by month for 49 patients with Dukes's C 
colorectal cancer randomly assigned to receive either ,-linolenic acid or 
control treatment6 

Group treated with 'Y-linolenic acid 

Patient 
number 

2 

3 
4 
5 
6 
7 
8 
9 

10 
II 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

Survival 
time* 

(months) 
(t) 

1+ 
5+ 
6 
6 
9+ 

10 
10 
10+ 
12 
12 
12 
12 
12+ 
13+ 
15+ 
16+ 
20+ 
24 
24+ 
27+ 
32 
34+ 
36+ 
36+ 
44+ 

Survival 
proportion ** 

(p) 

0'9130 

0'8217 

0'6284 

0'5498 

0'4399 

Effective 
sample 

sizet 

(neffective) 

25 
24 

23 

22 

21 

20 
19 
18 
17 
16 

15 
14 

13 

11 

Patient 
number 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

Controls 

Survival 
time* 

(months) 
(I) 

3+ 
6 
6 

6 
6 
8 
8 

12 
12 
12+ 
15+ 
16+ 
18+ 
18+ 
20 
22+ 
24 
28+ 
28+ 
28+ 
30 
30+ 
33+ 
42 

Survival 
proportion *'" 

(p) 

0'8261 

0'7391 

0'6522 

0'5870 

0'5136 

0'3852 

o 

Effective 
sample 

sizet 

(neffective) 

24 

23 

22 
21 

20 
18 

17 

14 

13 
12 

, Survival times are shown in each group by month to either death or to censoring. 

Figures with plus signs show that patient follow up was censored. 
" Figures need not be recalculated except when a death occurs. 
t Figures are calculated using method from Pet04 and need not be recalculated 
except when a loss to follow up occurs. 
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available or otherwise for the time immediately preceding. Thus for two 
years, t = 24 months, the survival proportion is p = S(24) = 0·5498. 
The corresponding effective sample size is neffective = 16. 

The standard error of this survival proportion is 

SE() 
)0'5498 x (1 - 0'5498) 

p = = 0·1244 16 . 

The 95% confidence interval for the population value of the survival 
proportion is then given by 

0·5498 - (1'96 x 0'1244) to 0·5498 + (1'96 x 0'1244) 

that is, from 0·31 to 0·79. 
The estimated percentage of survivors to two years is thus 55% with a 

95% confidence interval of 31 % to 79%. 

Median survival time 

Single sample 

If there are no censored observations, for example, if all the 
patients have died on a clinical trial, then the median survival 
time, M, is estimated by the middle observation (see also chapter 
5) of the ordered survival times tl, t 2, ... ,tn if the number of obser­
vations n is odd, and by the average of tn/2 and tn/2 + 1 if n is even. 
Thus 

M = t(n+I)/2 if n is odd 

or 

M = !( tn/2 + tn/H I) if n is even . 

...... ~~~:;~~~, ..... 
If we ignore the fact that there are censored observations in Table 9.1 

and therefore consider all the patients to have died, then the median sur­
vival time of the 25 patients receiving ,-linolenic acid is the 13th ordered 
observation or M = 12 months. Making the same assumption for the 24 
patients of the control group the median is the average of the 12th and 
13th ordered survival times, that is M = (16 + 18)/2 = 17 months. 

In the presence of censored survival times the median survival is 
estimated by first calculating the Kaplan-Meier survival curve, 
then finding the value of t that satisfies the equation 

p = S(t) = 0·5. 
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This can be done by extending a horizontal line from P = 0·5 (or 
50%) on the vertical axis of the Kaplan-Meier survival curve, 
until the actual curve is met, then moving vertically down from 
that point to cut the horizontal time axis at t = M, which is the 
estimated median survival time. 

The calculations required for the confidence interval of a median 
are quite complicated and an explanation of how these are derived is 
complex.7 The expression for the standard error of the median 
includes SEep) described above but evaluated at p = S(M) = 0·5. 
Whenp = 0,5, 

SE(p) = 
0·5 x 0·5 0·5 

yfneffective neffective 

The standard error of the median is given by 
0·5 

SE(M) = yf x [(tsmall - tlarge)/(Plarge - Psmall)], 
neffective 

where tsmall is the smallest observed survival time from the 
Kaplan-Meier curve for which P is less than or equal to 0'45, 
while tlarge is the largest observed survival time from the 
Kaplan-Meier curve for which P is greater than 0'55. The ratio 
[(tsmall - tlarge)/(Plarge - Psmall)] in the above expression, estimates 
the height of the distribution of survival times at the median. 
Just as the blood pressure values of chapter 4 have a distribution, 
in that case taking the Normal distribution form, survival times 
will also have an underlying distribution of some form. The 
values of 0'45 and 0'55 are chosen at each side of the median of 
0'5 to define "small" and "large" and are arbitrary. Should 
Plarge = Psmall then the two values will need to be chosen wider 
apart. They may be chosen closer to 0·5 for large study sizes. 

The 100(1 - a)% confidence interval for the population value of 
the median survival M is then calculated as 

M - [ZI-a/2 X SE(M)] to M + [ZI-a/2 X SE(M)], 

where Zl _ a/2 is obtained from Table 18.1. 
However, we must caution against the uncritical use of this 

method for small data sets as the value of SEeM) is unreliable in 
such circumstances, and also the values of tsmall and tlarge will be 
poorly determined. 

··'iWh~~~~j~~f~···" 
The Kaplan-Meier survival curve for the control patients of Table 9.1 

is shown in Figure 9.1 and the hatched line indicates how the median is 
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Figure 9.1 Kaplan-Meier estimate of the survival curve of 24 patients 
with Dukes's C colorectal cancer.6 

estimated. This gives M = 30 months. (We note that this is quite different 
from the incorrect value given in the illustrative example above.) 

The effective sample size at 30 months is neffeClive = 14 so that 

0·5 
SE(M) = v'I4 = 0·1336. 

Reading from Table 9.1 at Psmall = 0·3852 < 0·45 gives tsmall = 30 months 
also, and for Plarge = 0·5870 > 0·55 gives tlarge = 20 months. 

Thus 

SE(M) = 0·1336 x ( (30 - ~01852) = 6·6230. 
0·5870 - . 

The 95% confidence interval is therefore 

30 - (1·96 x 6'6230) to 30 + (1'96 x 6'6230), 

that is, from 17·0 to 43'0 months. 
The estimated median survival is 30 months with a 95 % confidence 

interval of 17 to 43 months. For the ')'-linolenic acid group M = 32 
months and SE(M) = 14·18. 

Two samples 

The difference between survival proportions at any time t in two 
study groups of sample sizes nl and nz is measured by PI - Pz, 
where PI = Sl (t) and pz = Sz(t) are the survival proportions at 
time t in groups 1 and 2 respectively. 
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The standard error of PI - P2 is 

neffective, I n effective,2 

where neffective,l and n effective,2 are the effective sample sizes at time t 
in each group. 

The 100(1 - a)% confidence interval for the population value of 
PI - P2 is 

PI - P2 - [ZI-Ci/2 X SE(PI - P2)] to 

PI - P2 + [ZI-a/2 X SE(PI - P2)], 

where Zl-a/Z is obtained from Table 18.1. 

The survival experience of the patients receiving ,-linolenic acid and 
the controls can be compared from the results given in Table 9.1. At 
two years for example, PI = 0·5498 and P2 = 0·5136 with neffctivd = 16 
and n effective,2 = 17. The estimated difference in two-year survival propor­
tions is thus 0·5498 - 0·5136 = 0·0363. 

The standard error of this difference in survival proportions is 

/0·5498(1 - 0'5498) 0'5136(1 - 0'5136) 
y-----'---1-6-----'-+ 17 = 0·1737. 

The 95 % confidence interval for the population value of the difference 
in two-year survival proportions is then given by 

0·0363 - (1'96 x 0, 1737) to 0·0363 + (1 ,96 x 0'1737) 

that is, from -0,30 to 0'38. 
Thus the study estimate of the increased survival proportion at two 

years for the patients given ,-linolenic acid compared with the control 
group is only about 4%. Moreover, the imprecision in the estimate from 
this small study is indicated by the 95% confidence interval ranging 
from -30% to +38%. 

Difference between median survival times 

The difference between the median survival times in two study 
groups of sample sizes nl and nz is measured by M I - M 2, where 
MI and M2 are the medians in groups 1 and 2 respectively. The 
standard error of M I - M2 is 
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The 100(1 - a)% confidence interval for the population value of 
MI -Mz is 

MI - M z - [ZI-a/Z X SE(MI - M z)] to 

Ml - M z + [ZI-a/Z X SE(MI - M z)]' 

where ZI-n/Z is obtained from Table 18.1. 

The median survival experiences of the patients receiving ,-linolenic 
acid and the controls can be compared from the results given in Table 
9.1. Thus Ml = 32 and M2 = 30 months, a difference of M] - M2 = 2 
months. The standard error of this difference is estimated by 

)(14.1783)2 + (6·6230)2 = 15·65. 

The 95% confidence interval for the population value of the difference in 
medians is then given by 

2 - (1·96 x 15·65) to 2 + (1·96 x 15·65) 

that is, from -28·7 to 32·7 months. 
Thus the study estimate of the increased median survival for the 

patients given ,-linolenic acid compared with the control group is only 
2 months. Moreover, the imprecision in the estimate from this small 
study is indicated by the 95% confidence interval ranging from -29 to 
+33 months. 

The hazard ratio 

In a follow-up study oftwo groups the ratio of failure rates-for 
example, death or relapse rates-is termed the "hazard ratio". It is 
a common measure of the relative effect of treatments or exposures. 
If 0 1 and Oz are the total numbers of deaths observed in the two 
groups then the corresponding expected numbers of deaths (EI 
and Ez), assuming an equal risk of dying at each time in both 
groups, may be calculated as 

and Ez = 2..= rZidi . 
ri 

Here rli and rZi are the numbers of subjects alive and not censored 
in groups 1 and 2 just before time ti with ri = rJi + rZi; 

di = dJi + dZi is the number who died at time ti in the two groups 
combined; and L indicates addition over each time of death. 
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One estimator of the hazard ratio (HR) is (OI/El)/(Oz/Ez) 
although, for technical reasons, the more complex estimator 

(
0 1 -El) 

HR = exp V ' 

where 

'"' rl·rZ d(r - d) 
V = L..,., • • •• • r7(rj-l) , 

is more appropriate. 
To obtain a 100(1 - a)% confidence interval for the population 

value of the hazard ratio one first calculates the two quantities 

and y=ZI-oJZ 

v'V ' 
where ZI _ o:/Z is the appropriate value from the standard Normal 
distribution for the 100(1 - a/2) percentile (see Table 1B.1). 
Thus for a 95% confidence interval a = 0·05 and ZI-o:/Z = 1·96. 

The hazard ratio can then be estimated by HR and the confi­
dence interval for the hazard ratio by8 

eX - Y to eX + Y. 

The hazard ratio calculated from (01/ E1) / (Oz/ Ez) will be close to 
eX except in unusual data sets. 

For the data at the end of the trial, shown in Table 9.1, 0 1 = 10, 
El = 11'37, O2 = 12, E2 = 10'63, and V = 4·99. 

The values of X and for Y, with a = 0'05, are 

X = 10 - 11·37 = -0,28 and 
4·99 

The hazard ratio is thus estimated as 

1·96 
Y=--=0·88. 

/4·99 

HR = e-O
'
28 = 0·76. 

The 95% confidence interval for the population value of the hazard ratio is 
then given by 

that is, from 0'32 to 1·83. 

The results indicate that treatment with ,),-linolenic acid has been asso­
ciated with an estimated reduction in mortality to 76% of that for the con­
trol treatment, while the alternative hazard ratio calculation gives a similar 
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figure of78%. The reduction, however, is imprecisely estimated as shown 
by the wide confidence interval of 32% to 183%. 

In the case when the distributions for the two groups can be 
assumed to be from exponential distributions, the ratio of the 
inverse of the two medians provides an estimate of the hazard 
ratio, that is, HRmedian = M2/ MI' In this case, the approximate 
confidence interval is given as9 

M2 _ e-z, nj2 xSE(HRm ,nian) 

Ml 

where 

to 

As noted earlier, 0 1 and O2 are the number of deaths in the respec­
tive groups. 

For the data at the end of the study, shown in Table 9.1, MI = 32, 
M2 = 30, while 0 1 = 10 and O2 = 12. This gives an estimate of the 
hazard ratio as 30/32 = 0·9375. This is equivalent to a reduction in 
mortality of 6%. The corresponding standard error is 

(ll 
SE(HRmedian) = V 10 + 12 = 0·4282. 

The 95% confidence interval for the population value of the hazard ratio is 
then given by 

0.9375 _ e( --1,96 x 04282) to 0.9375 + e(-196 x 0'4282), 

that is, from 0·9375 - 0·4320 to 0·9375 + 0'4320, or 0·51 to 1·37. 

Cox regression 

Just as in the situations described in chapter 8 in which the linear 
regression equation is used for predicting one variable from 
another, it is often important to relate the outcome measure 
(here survival time) to other variables. In contrast to they variable 
of chapter 8, the comparable variable is time t but with the added 
complication that this will usually have censored values in some 
cases. As a consequence, and for quite technical reasons, special 

102 



TIME TO EVENT STUDIES 

methods have been developed for survival time regression. 10 These 
Cox regression models are then utilised in much the same way as 
the regression models of chapter 8. In the special case of a compar­
ison between two groups of subjects, the Cox model provides 
essentially the same estimate of HR and the associated confidence 
interval as described earlier. The basic assumption is that the risk 
of failure (death) in one group is the same constant multiple of the 
other group at any point in the follow-up time. 3 

The Cox regression model for the comparison of two groups 
assumes that the risk of death in the two groups can be respectively 
described by 

)'l(t) = Ao(t)eBx1 and A2(t) = Ao(t)ePX2
. 

Here if (3 = 0 then both groups have the same underlying death 
rate (hazard), AO(t), at each time t, but this rate may change over 
time. For comparing two groups, it is usual to write XI = 1 and 
X2 = 0, in which case 

P Al (t) Ao(t)e B 

HRcox = A2(t) = AO(t) = e . 

Since t does not appear in the above expression (eP) the hazard 
ratio does not change with time. 

The 100(1 - 0')% confidence interval for the population hazard 
ratio is 

where SE((3) is obtained from a computer program. 

··.li:~~f~.~~~f~ ••. :·· 
For the data of Table 9.1 use of a standard statistical package gives 

(3 = -0'2528, with SE((3) = 0·4302. Thus the HRcox = e-02528 = 0·78. 
The corresponding 95% confidence interval for the hazard ratio is 

e( -0'2528 - 1·96 x 0·4302) = e -1'0960 to e( -0,2528 + 1·96 x 0·4302) = eO'5900 

or 0,33 to 1·80. 

It is useful to note that the estimate of HRcox and the correspond­
ing 95% confidence interval are similar to those given in earlier 
calculations. They differ somewhat from those corresponding to 
HRmedian for which the assumption of a constant hazard (one that 
does not change with t) was made within each treatment group. 
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In certain circumstances there may be prognostic features of 
individual patients which may influence their survival and thus 
may modify the observed difference between groups. In such 
cases, we wish to compare the groups taking account of (or 
adjusted for) these variables. This leads to extending the single­
variable Cox model just described (with one explanatory variable 
indicating the group) to include also one or more prognostic 
variables as one may do in other multiple regression situations 
(see chapter 8). In the context of randomised controlled trials, 
described in chapter 11, we wish to check whether or not the 
treatment effect observed, as expressed by the hazard ratio, will 
be modified after taking account of these prognostic variables. 3 

1 Bland JM, Altman DG. Time to event (survival) data. BM] 1997;317:468-9. 
2 Altman DG, Bland JM. Survival probabilities (tbe Kaplan-Meier method). 

BM] 1997;317:1572. 
3 Parmar MKB, Machin D. Survival analysis: a practical approach. Chichester: 

John Wiley, 1995:26-40; 115-42. 
4 Peto J. The calculation and interpretation of survival curves. In: Buyse ME, 

Staquet MJ, Sylvester RJ (eds). Cancer clinical trials: methods and practice. 
Oxford: Oxford University Press, 1984:361-80. 

5 Greenwood M. The natural duration oj cancer. Reports of Public Health and 
Medical Subjects, 33. London: HMSO, 1926. 

6 McIllmurray MB, Turkie W. Controlled trial of ,-linolenic acid in Dukes's C 
colorectal cancer. BM] 1987;294:1260 and 295:475. 

7 Collett D. Modelling survival data in medical research. London: Chapman & 
Hall, 1994: section 2'4. 

8 Daly L. Confidence intervals. BM] 1988;297:66. 
9 Altman DG. Practical statisticsjor medical research. London: Chapman & Hall, 

1991:384-5. 
10 Cox DR. Regression models and life tables (with discussion).] R Statist Soc Ser 

B 1972;34:187-220. 
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10 Diagnostic tests 
DOUGLAS G ALTMAN 

Studies evaluating diagnostic test performance yield a variety of 
numerical results. While these ought to be accompanied by confi­
dence intervals, this is less commonly done than in other types of 
medical research. 1 

Diagnosis may be based either on the presence or absence of 
some feature or symptom, on a classification into three or more 
groups (perhaps using a pathological grading system), or on a 
measurement. Values of a measurement may also be grouped 
into two or more categories, or may be kept as measurements. 
Each case will be considered in turn. See Altman2 for more 
detailed discussion of most of these methods. 

A confidence interval indicates uncertainty in the estimated 
value. As noted in earlier chapters, it does not take account of 
any additional uncertainty that might relate to other aspects such 
as bias in the study design, a common problem with studies 
evaluating diagnostic studies.3 

Classification into two groups 

Sensitivity and specificity 

The simplest diagnostic test is one where the results of an 
investigation, such as an X-ray or biopsy, are used to classify patients 
into two groups according to the presence or absence of a symptom 
or sign. The question is then to quantify the ability of this binary test 
to discriminate between patients who do or do not have the disease or 
condition of interest. (The general term "disease" is used here, 
although the target disorder is not always a disease.) Table 10.1 
shows a 2 x 2 table representing this situation, in which a, b, c, 
and d are the numbers of individuals in each cell of the table. 
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Table 10.1 Relation between a binary diagnostic test 
and presence or absence of disease 

Disease 

+ Total 

+ 
True +ve False +ve 

a b a+b 
Test 

False -ve True -ve 
c d c+d 

Total a+c b+d n 

The two most common indices of the performance of a test are 
the sensitivity and specificity. The sensitivity is the proportion of 
true positives that are correctly identified by the test, given by 
aj(a + c) in Table 10.1. The specificity is the proportion of true 
negatives that are correctly identified by the test, or dj(b + d). 

The sensitivity and specificity are proportions, and so confi­
dence intervals can be calculated for them using the traditional 
method or Wilson's method, as discussed in chapter 6. Note that 
the traditional method may not perform well when proportions 
are close to 1 (100%) as is often the case in this context, and may 
even give confidence intervals which exceed 100%.4 Wilson's 
method is thus generally preferable. 

Petersen et al. 5 investigated the use of the ice-water test in 80 patients 
with detrusor overactivity. Of these, 60 had bladder instability and 20 
had detrusor hyperreflexia. Their results are shown in Table 10.2. 

The sensitivity of the test at detecting detrusor hyperreflexia was 
39/60 = 0·650 or 65'0% and the specificity was 17/20 = 0·850 or 

Table 10.2 Results of ice-water test among patients with 
either detrusor hyperreflexia (DH) or bladder instability (BI)5 

DH (+) BI(-) Total 

+ 
True +ve False +ve 

39 3 42 
Test 

False -ve True -ve 
21 17 38 

Total 60 20 80 
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85'0%. Using the recommended method (Wilson's method), 95% confi­
dence intervals are 52'4% to 75'8% for the sensitivity and 64'0% to 
94'8% for the specificity. 

The traditional method gives a similar confidence interval for the sensi­
tivity of 52'9% to 75'8%, but an impossible confidence interval for the 
specificity of 69'4% to 100'6%. 

Positive and negative predictive values 

In clinical practice the test result is all that is known, so we want to 
know how good the test is at predicting abnormality. In other 
words, what proportion of patients with abnormal test results are 
truly abnormal? The sensitivity and specificity do not give us this 
information. Instead we must approach the data from the direction 
of the test results. These two proportions are defined as follows: 

• Positive predictive value (PV +) is the proportion of patients 
with positive test results who are correctly diagnosed . 

• Negative predictive value (PV -) is the proportion of patients 
with negative test results who are correctly diagnosed. 

In the notation of Table 10.1, PV + = a/ (a + b) and PV - = 

d/(c + d). 

Using the same data as before, the positive predictive value among those 
with a positive ice-water test is PV+ = 39/42 (92'9%) and the negative 
predictive value among those with a negative test result is PV - = 17/38 
(44'7%). Using Wilson's method (chapter 6), 95% confidence intervals 
are 81'0% to 97'5% for the positive predictive value and 30'1 % to 
60'3% for the negative predictive value. 

We should not stop the analysis here. The predictive values of a test 
depend upon the prevalence of the abnormality in the patients being 
tested, which may not be known. The values just calculated assume 
that the prevalence of detrusor hyperreflexia among the population 
of patients likely to be tested is the same as in the sample, namely 
60/80 or 75%. In a different clinical setting the prevalence of 
abnormality may differ considerably. 

Predictive values observed in one study do not apply universally. 
The rarer the true abnormality is, the more sure we can be that 
a negative test indicates no abnormality, and the less sure that a 
positive result really indicates an abnormal patient. 
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More general formulae for calculating predictive values for any 
prevalence (prev) are 

PV + = sens x prev 
(sens x prev) + (1 - spec) x (1 - prev) 

and 

PV _ = spec x (1 - prev) 
(1 - sens) x prev + spec x (1 - prev) , 

where sens and spec are the sensitivity and specificity as previously 
defined. The prevalence can be interpreted as the probability 
before the test is carried out that the subject has the disease, also 
known as the prior probability of disease. PV + and PV - are the 
revised estimates of the probability of disease for those subjects 
who are positive and negative to the test, and are known as posterior 
probabilities. The comparison of the prior and posterior probabilities 
is one way of assessing the usefulness of the test. The predictive 
values can change considerably with a different prevalence. 

We can obtain approximate confidence intervals for prevalence­
adjusted predictive values by expressing them as proportions of the 
number of positive or negative test results in the study. 

We can estimate the predictive values for a setting where the prevalence 
of detrusor hyperreflexia is 25% (0·25). For example, the prevalence­
adjusted positive predicted value is 

0·65 x 0·25 
P V + = --;-:--:-----:c---::-::,,------,---,----:-=---:-,------:-:-= 

(0·65 x 0·25) + (1 - 0·85) x (1 - 0·25) 

=0·591 or 59·1%. 

With the estimated prevalence-adjusted PV + of 0·591, in a sample of 42 
test positives we would expect 0·591 x 42 = 24·8 true positives, or about 
25. We can construct a confidence interval for the proportion 25/42 in 
the usual way. Wilson's method gives a 95% confidence interval around 
the adjusted PV + of 0·591 from 0·445 to 0·730, or 44·5% to 73·0%. 

Likelihood ratios 

For any test result we can compare the probability of getting that 
result, if the patient truly had the condition of interest, with the 
corresponding probability if they were healthy. The ratio of these 
probabilities is called the likelihood ratio (LR). The likelihood 
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ratio for a positive test result is calculated as 

LR+ = sensj(1 - spec) 

and the likelihood ratio for a negative test result is calculated as 

LR- = (1 - sens)jspec. 

The contrast between these values indicates the value of the test for 
increasing certainty about a diagnosis.2 

. !j~#t1~~~i~~:····· 
Using the same data as before, the prevalence of detrusor hyperreflexia was 

0'75. The likelihood ratio for a positive test is LR+ = 0'65/(1 - 0'85) =4·33 
and the likelihood ratio for a negative test is LR- = (1 - 0'65)/0'85 = 0·41. 

The likelihood ratio is increasingly being quoted in papers 
describing diagnostic test results, but is rarely accompanied by a 
confidence interval. The likelihood ratio for a positive test can be 
also expressed as the ratio of the true-positive and false-positive 
rates, that is 

aj(a + c) 
LR+=bj(b+d)' 

Similarly, the likelihood ratio for a negative test can be expressed 
as the ratio of the true-negative and false-negative rates, that is 

LR- = dj(b + d) 
cj(a+c) . 

The likelihood ratio is identical in construction to a relative risk (or 
risk ratio)-that is, it is the ratio of two independent proportions. 
It follows immediately that a method for deriving a confidence 
interval for a relative risk can be applied also to the likelihood 
ratio. There are several possible methods, not all of which are 
equally good. Two are considered here. 

Log method 

Confidence intervals for the population value of the likelihood 
ratio can be constructed through a logarithmic transformation,2 
as described in chapter 7. The method is illustrated using LR+. 
The standard error of loge LR+ is 

r-------~----~ 

/1 I 1 1 
SE(loge LR+) = y-;;,- a+c +[;- b+d 
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from which a 100(1 - 0:)% confidence interval for loge LR+ is 
found in the standard way. We obtain a confidence interval for 
LR+ by antilogging (exponentiating) these values. (The derivation 
of this method, sometimes called the log method, is given in the 
appendix of Simel et al.6

) 

Note that either a or b can be zero, in which case SE(loge LR+) 
becomes infinite. To avoid this problem, it may be preferable in 
such cases to add 0'5 to the counts in all four cells of the observed 
table before calculating both LR+ and SE(loge LR+). 

Score method 

The "score test" method reportedly performs somewhat better 
that the usual log method,7,8 although it is too complex for the 
formula to be given here. 

NamB (1995) considered the following example, originally provided by 
Koopman:9 36/40 diseased and 16/80 non-diseased patients have positive 
test results. We thus have a = 36, b = 16, c = 4, and d = 64. The estimated 
likelihood ratio for a positive test is LR+ = (36/40)/(16/80) = 4.5. The 
log method gives a 95% confidence interval for LR+ from 2·87 to 7·06. 
Using the score method, the 95% confidence interval is 2'94 to 7'15, so 
in this case the two methods agree reasonably well. 

Classification into more than two groups 

Multicategory classifications represent an intermediate step 
between dichotomous tests and tests based on measurements. With 
few categories, say three or four, we can evaluate the preceding statis­
tics using in turn each division between categories to create a binary 
test. Sometimes this procedure is adopted for tests which are measure­
ments. For example, Sackett et al. IO discuss the use of serum ferritin 
level in five bands to diagnose, or rule out, iron-deficiency anaemia. 

Diagnostic tests based on measurements 

Many diagnostic tests are quantitative, notably in clinical 
chemistry. The methods of the preceding sections can be applied 
only if we can select a cutpoint to distinguish "normal" from 
"abnormal", which is not a trivial problem. It is often done by 
taking the observed median value, or perhaps the upper limit of 
a predetermined reference interval. 
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This approach is wasteful of information, however, and involves 
a degree of arbitrariness. Classification into several groups is 
better than just two, but there are ways of proceeding that do 
not require any grouping of the data; they are described in this 
section. 

The area under a receiver operating characteristic (ROC) 
curve 

First we can investigate to what extent the test results differ 
among people who do or do not have the diagnosis of interest. 
The receiver operating characteristic (ROC) plot is one way to 
do this. ROC plots were developed in the 1950s for evaluating 
radar signal detection. A paper by Hanley and McNeill! was 
very influential in introducing the method to medicine. 

The ROC plot is obtained by calculating the sensitivity and 
specificity for every distinct observed data value and plotting 
sensitivity against 1 - specificity, as in Figure 10.1. A test that 
discriminates perfectly between the two groups would yield a 

Area under ROC curve = 0·7956 
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Figure 10.1 ROC curve for data in Table 10.3. 
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"curve" that coincided with the left and top sides of the plot. A test 
that is completely useless would give a straight line from the 
bottom left corner to the top right corner. In practice the ROC 
curve will lie somewhere between these extremes according to 
the degree of overlap of the values in the groups. 

A global assessment of the performance of the test, sometimes 
called diagnostic accuracy,I2 is given by the area under the ROC 
curve (often abbreviated AVC). This area is equal to the probabil­
ity that a random person with the disease has a higher value of the 
measurement than a random person without the disease. The area 
is 1 for a perfect test and 0·5 for an uninformative test. The non­
parametric calculation of the area under the curve is closely related 
to the Mann-Whitney V statistic. 

The area under the curve and its standard error can be obtained 
by examining every comparison of a member of each group. We 
consider the n individuals in the first group with values Xi and 
the m individuals in the second group with observations Y j , so 
that there are nm pairs of values Xi and Yj • For each pair we 
obtain a "placement score" 1/Jzj' which indicates which value is 
larger. We have 1/Jij = 1 if Yj > Xi; 1/Jij = 0·5 if Yj = Xi; and 
1/Jij = 0 if Yj < Xi' In effect we assess where each observation is 
placed compared with all of the values in the other group.14,15 
The area under the curve is simply the mean of all of the values 
1/)ij' In mathematical notation, we have 

1 n m 

AUG = - L L 1/J,}. 
nm i=1 j=1 

The area under the curve can also be written as 

where 

1 n 1 m 

AUG=- LRi =- LGj 
nm i=1 nm j=1 

m 

Ri = L 1/Jzj and 
j=1 

n 

Gj = L 1/Jij' 
i=1 

The values Ri indicate for each member of the first group the 
proportion of the observations in the second group which exceed 
it, and similarly for Cj • (They are also the row and column totals 
of 1/Jij when the data are arranged in a two-way table, as in the 
worked example below.) 
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To get the standard error of A UG we first calculate the 
quantities 

s~ =_1_ t(Ri _AUG)2 
n-l i=lm 

and 

1 m (G )2 S~ =-- L -L-AUG 
m -1 n 

;=1 

The standard error of A UG is then given by 

SE(AUC) = 

An equivalent method, based on the values of Ri and Gj , and 
avoiding the need to calculate S~ and S~, is 

SE(AUG) = 
1 

- [var(R i ) + var(Gj )] 
nm 

where var indicates the variance. The standard error of A UG, the 
area under the ROC curve, can be used to construct a confidence 
interval in the familiar way using the general formula given in 
chapter 3. A 100(1 - a)% confidence interval for AUG is 

AUG - Zl-a/2 X SE(AUG) to AUG + Zl-a/2 X SE(AUG) 

where Zl -a/2 is the appropriate value from the standard Normal 
distribution for the 100(1 - a/2) percentile (see Table 18.1). For 
a 95% confidence interval, Zl-a/2 = 1·96. 

Table 10.3 shows values of an index of mixed epidermal celllympho­
cyte reactions in bone-marrow transplant recipients who did or did not 
develop graft-versus-host disease (GvHD).13 The usefulness of the test 
for predicting GvHD is related to the degree of non-overlap in the two 
distributions. The ROC curve for these data is shown in Figure 1O.l. 
Table lOA shows the values of 1/Jij for each combination of one 
member of each group, where the X j are the observations from 17 
patients with GvHD and Y j are the values from the 20 patients without 
GvHD. 

The area under the curve is obtained simply as the mean of the entries 
in Table lOA, given by AUe = 270·5/(17 x 20) = 0·7956, or about 0·8, 
showing quite good separation between the groups. 
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Table 10.3 Values of an index of mixed epidermal celllym­
phocyte reactions in bone-marrow transplant recipients who 
did or did not develop graft-versus-host disease (GvHD)13 

With GvHD en = 17) Without GvHD em = 20) 

1'10 4·13 0·27 1·10 
1·16 4'52 0·31 1·52 
1·45 4'52 0·39 1'88 
1·50 4'71 0·48 2·01 
1·85 5'07 0·49 2·40 
2·30 9'00 0·50 2'45 
2'34 10'11 0'81 2'60 
2·44 0·82 2-64 
3'70 0·86 3'78 
3'73 0'92 4'72 

The variances of the row and column totals are 4'3633 and 3'7259 
respectively, so that 

SE(AUC) = - --+ -- = 0·0730. 
1 (4.3633

2 
3'7259

2
) 

340 17 20 

The 95% confidence interval for the area under the curve is thus 
0·7956 - 1·96 x 0'0730 to 0·7956 + 1·96 x 0'0730, that is 0'65 to 0'94. 
The confidence interval is quite wide because the sample size is small. 

The method just described relies on the assumption that 
the area under the curve has a Normal sampling distribution. 
Obuchowski and Lieber16 note that for methods of high accuracy 
(A UC > 0'95) use of the preceding method for the area under a 
single ROC curve may require a sample size of 200. For 
smaller samples a bootstrap approach is recommended (see 
chapter 13). 

Having determined that a test does provide good discrimination 
the choice can be made of the best cutpoint for clinical use. The 
simple approach of minimising "errors" (equivalent to maximising 
the sum of the sensitivity and specificity) is common, but it is not 
necessarily best. Consideration needs to be given to the costs (not 
just financial) of false-negative and false-positive diagnoses, and 
the prevalence of the disease in the subjects being tested. 12 For 
example, when screening the general population for cancer the 
cutpoint would be chosen to ensure that most cases were detected 
(high sensitivity) at the cost of many false positives (low specifi­
city), who could be eliminated by a further test. 
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Table 10.4 Placement scores ('l/Ji) for the data in Table 10.3 

l-10 1-16 1·45 1'50 1-85 2-30 2-34 2-44 3-70 3-73 4-13 4-52 4-52 4-71 5-07 9-00 10-11 Total 

0-27 17 
0-31 17 
0-39 17 
0-48 17 
0-49 17 
0-50 17 
0'81 1 17 
0'82 1 17 
0'86 1 1 1 17 
0-92 1 1 1 1 17 
1-10 I 1 1 1 1 1 16-5 '2 
I-52 0 0 0 0 1 1 1 13 
1-88 0 0 0 0 0 1 1 1 12 
2-01 0 0 0 0 0 1 1 1 1 12 
2'40 0 0 0 0 0 0 0 1 1 10 
2-45 0 0 0 0 0 0 0 0 1 9 
2'60 0 0 0 0 0 0 0 0 1 9 
2-64 0 0 0 0 0 0 0 0 1 1 1 1 1 9 
3-78 0 0 0 0 0 0 0 0 0 0 1 1 1 1 7 
4'72 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 

Total 10-5 11 11 11 12 14 14 15 18 18 19 19 19 19 20 20 20 270-5 
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The ROC plot is more useful when comparing two or more 
measures. A test with a curve that lies wholly above the curve of 
another will be clearly better. Methods for comparing the areas 
under two ROC curves for both paired and unpaired data are 
reviewed by Zweig and Campbell. 12 

Comparison of assessors-the kappa statistic 

An important aspect of classifying patients into two or more 
categories is the consistency with which it can be done. Of particu­
lar interest here is the ability of different observers to agree on the 
classification. A similar situation arises when we wish to compare 
two alternative diagnostic tests to see how well they agree with 
each other. In each case, we can construct a two-way table such 
as Table 10.5 and compare the observed agreement with that 
which we would expect by chance alone, using the statistic 
known as kappa (K). 

Kappa is a measure of agreement beyond the level of agreement 
expected by chance alone. The observed agreement is the propor­
tion of samples for which both observers agree, given by Po = 

(a + d)/n. To get the expected agreement we use the row and 
column totals to estimate the expected numbers agreeing for 
each category. For positive agreement (+, +) the expected 
proportion is the product of (a + b)/n and (a + c)/n, giving 
(a + b) (a + c) / n2

• Likewise, for negative agreement the expected 
proportion is (c + d) (b + d) / n2

. The expected proportion of agree­
ments for the whole table (Pe) is the sum of these two terms. From 
these elements we obtain kappa as 
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Po - Pe 
K=---

1 - Pe 

Table 10.5 Comparison of binary assessments by two 
observers 

+ 
Observer 2 

Total 

Observer 1 

+ 

a b 

c 

a+c 

d 

b+d 

Total 

a+b 

c+d 

n 



DIAGNOSTIC TESTS 

and its standard error is 

Po(1 - Po) 
n(l - Pe)21 

from which a 100(1 - a)% confidence interval for K, is found in the 
standard way as 

K,-ZI-et/2 x SE(K,) to K,+ZI_et/2XSE(K,) 

where Z 1 _ et/2 is defined as above. 
Kappa has its maximum value of 1 when there is perfect 

agreement. A kappa value of 0 indicates agreement no better 
than chance, while negative values (rarely encountered) indicate 
agreement worse than chance. 

;jli~~~iij,,( 
A group of children who had survived post-haemorrhagic ventricular 

dilatation were assessed by a paediatrician and by their parents regarding 
their ability to perform various activities. Table 10.6 shows the relation 
between their assessments of whether the child could walk downstairs. 
The observed agreement is Po = (32 + 42)/83 = 0·8916. The expected 
agreement is Pe = (35 X 38)/832 + (48 X 45)/832 = 0·5066. From these 
we calculate kappa as 

0·8916 - 0·5066 
K, = = 0·780. 

1 - 0·5066 

The standard error of kappa is 

0·8916 x (1 - 0'8916) = 0.0692. 
83 x (1 - 0'5066f 

Table 10.6 Comparison of paediatrician's and parent's 
assessments of whether children could walk downstairs 17 

Parent 
Yes 

No 

Total 

Paediatrician 

Yes 

32 

3 

35 

No 

6 

42 

48 

Total 

38 

45 

83 
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The 95% confidence interval for kappa is thus 0·780 - 1·96 x 0·0692 to 
0'780 + 1·96 x 0'0692, that is from 0'64 to 0'92. 

The calculation of kappa can be extended quite easily to assess­
ments with more than two categories.2 If there areg categories and 
Ii is the number of agreements for the ith category, then the overall 
observed agreement is 

If ri and Ci are the totals of the ith row and ith column, then the 
overall expected agreement is 

Kappa and its standard error are then calculated as before. 
Kappa can also be extended to multiple observers, and it is 

possible to weight the disagreements according to the number of 
categories separating the two assessments. 
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11 Clinical trials and 
meta-analyses 

DOUGLAS G ALTMAN 

Confidence intervals are of special importance in the interpretation 
of the results of randomised clinical trials. The decision about 
whether or not to adopt a particular treatment is aided by 
knowledge of the uncertainty of the treatment effect. Most of the 
necessary statistical methods have been presented in earlier 
chapters. Here their relevance to controlled trials will be pointed 
out and confidence intervals for a few further measures introduced. 
The use of confidence intervals in meta-analyses of the data from 
several randomised trials is also considered. 

I shall assume that two treatments are being compared. These 
are referred to as treatment and control, where the control group 
may receive an active treatment, no treatment, or placebo. There 
are some comments on the case of more than two groups in chapter 
13. 

The confidence interval indicates uncertainty in the estimated 
treatment effect arising from sampling variation. Note again that 
it does not take account of any additional uncertainty that might 
relate to other aspects such as the non-representativeness of the 
patients in a randomised trial or the studies in a meta-analysis. 

Randomised controlled trials 

I consider first trials using a parallel group design and then trials 
using the crossover design. 

Parallel group trials 

Continuous outcome 

When the outcome is a continuous measure, such as blood 
pressure or lung function, the usual analysis is a comparison of 
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the observed mean (or perhaps mean change from baseline) in the 
two treatment groups, using the method based on the t distribution 
(chapter 4). 

A randomised controlled trial compared intermittent cyclical etidronate 
with placebo in patients undergoing long-term oral corticosteroid therapy. 
The groups were compared with respect to percentage change in lumbar 
spine bone mineral density after two years.l The mean percentage increase 
in bone mineral density was 5·12% (SD 4·67%) in 21 etidronate-treated 
patients and 0·98% (SD 5·88%) in 16 placebo-treated patients. (Note 
that some "increases" were negative.) Using the method described in 
chapter 4, the mean difference between the two groups was 4·14% with 
standard error 1·733%. The value of to.975 with 21 + 16 - 2 = 35 degrees 
offreedom is 2·030. A 95% confidence interval for the difference between 
the groups is thus 

4·14 - 2·030 x 1·733 to 4·14 + 2·030 x 1·733 

that is, 0·62% to 7·66%. 

If the data within each treatment group are not close to having a 
Normal distribution, we may need to make a log transformation 
of the data before analysis (described in chapter 4) or use a non­
parametric method (described in chapter 5). 

Binary outcome 

Many trials have outcomes that are binary, often indicating 
whether or not the patient experienced a particular event (such 
as a myocardial infarction or resolution of the illness). When 
the outcome is binary, there are three statistics commonly used 
to summarise the treatment effect-the risk difference, the rela­
tive risk, and the odds ratio. Methods for constructing confidence 
intervals for all of these measures were presented in chapters 6 
and 7; here I recast them in the context of clinical trials. None 
of them is uniformly the most appropriate. However, the odds 
ratio is not an obvious effect measure for a randomised trial, 
and it may mislead when events are common (say >30% of 
patients).2 

The data from a controlled trial can be presented as in Table 
11.1. The observed proportions experiencing the event are 
PT = alnT and Pc = blnc The risk difference (also called the abso­
lute risk reduction) is given by PT - Pc or Pc - PT, whichever is 
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Table 11.1 Patient outcome by treatment group 

Event occurred 

Yes 
No 

Total 

Treatment 

a 

Group 

Control 

b 
d 

more appropriate. The appropriate confidence interval is that for 
the difference between two proportions, as given in chapter 6. 

The relative risk (also called the risk ratio) (RR) is defined as the 
ratio of the event rates, either PT/PC or PC/PT. The odds ratio (OR) 
is defined as PT (1 - Pc) / Pc (1 - PT ); it is more easily obtained as 
ad/be. Confidence intervals for both the relative risk and odds 
ratio were given in chapter 7 in the sections on incidence studies 
and unmatched case-control studies respectively. 

Rai et al. 3 carried out a randomised controlled trial of aspirin plus 
heparin versus aspirin in pregnant women with recurrent miscarriage. 
The proportions of women having a successful live birth was 32/45 
(71 %) in the aspirin plus heparin group and 19/45 (42%) in the aspirin­
only group. The relative risk of a live birth was thus 
R = (32/45)/(19/45) = 1·68 and 10geR = 0·226. Using the method in 
chapter 7, the standard error of the log relative risk is given by 

./1 1 1 1 
SE(loge R) = V32 - 45 + 19 - 45 = 0·199. 

The 95% confidence interval for loge R is thus 0·132 to 0·911 and the 95% 
confidence interval for the relative risk is obtained as eO· 132 to eO.91l

, or 1·14 
to 2·49. 

The term "relative risk" is more often used when the outcome is an 
adverse one. In this trial we could calculate the relative risk of failing to 
have a live birth. The relative risk is now (13/45)/(26/45) = 0·5, indicat­
ing a halving of the risk of an adverse outcome. A 95 % confidence interval 
for 10geR is -1·215 to -0·171, and the 95% confidence interval for the 
relative risk is 0·30 to 0·84. These values cannot be obtained simply 
from those for the relative risk of a live birth. 

Some authors present results using the odds ratio. This has the 
advantage that it gives a unique answer whether one takes a good or bad 
outcome. But, as noted above, it may be misleading when events are 
common as here. In their paper, Rai et al. 3 gave the odds ratio for a live 
birth as 3·37 (95% confidence interval 1·40 to 8·10). Because live births 
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were common the odds ratio is much larger than the corresponding rela­
tive risk of 1·68. Interpreted (wrongly) as a relative risk it would imply 
an effect twice the size of the true one. 

When the treatment of interest reduces the risk of an adverse 
event, so that the relative risk or odds ratio is less than 1, it may 
be useful to present the relative risk reduction or relative odds 
reduction, defined as 1 - RR or 1 - OR, with a confidence inter­
val. These values are sometimes multiplied by 100 to give percen­
tages. In each case, the confidence interval is obtained by making 
the same manoeuvre. In the above study, the relative risk of not 
having a live birth was O'SO with 9S% confidence interval from 
0'30 to 0'84. This translates into a relative risk reduction of SO% 
with 9S% confidence interval from 16% to 70%. 

A further way of quantifying the treatment effect from trials 
with a binary outcome is the number needed to treat. I discuss 
this concept later in this chapter. 

Outcome is time to an event 

In many studies with a binary outcome the focus of interest is 
not just whether an event occurred but also when it occurred. 
The methods used to analyse such data go under the general 
name of survival analysis, regardless of whether the outcome is 
death or something else. A better general name is thus analysis of 
time to event data (see chapter 9). 

The outcome in such studies is often summarised as the median 
survival time in each group. The treatment effect is not usually 
summarised as the difference between these medians, however. 
It is not simple to provide a confidence interval, and medians 
often cannot be estimated when the event rate is low. Rather, it 
is more common to present the hazard ratio, estimated in one of 
the ways described in chapter 9. 

Adjusting for other variables 

In some trials there is ancillary information about patients which 
may influence the observed treatment effect. In particular, many 
trials with continuous outcomes collect baseline measurements of 
the variable that the treatment is intended to influence. The best 
approach for incorporating baseline values into the analysis is to 
use the baseline value as a predictor (covariate) in a multiple 
regression analysis,4 as described in chapter 8. In other words, 
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we perform a multiple regression of the final value on the treatment 
(as a binary indicator) and the baseline value. This analysis is 
sometimes called analysis of covariance; it was used in the etidro­
nate study described earlier.! The regression coefficient and confi­
dence interval from the multiple regression analysis give the 
adjusted treatment effect. 

Other (possibly) prognostic variables are handled in the same 
way, being entered as explanatory variables in a multiple regres­
sion analysis. An example was given in Figure 8.3. This more 
general situation applies to all types of outcome and hence also 
to logistic and Cox regression models for binary and survival 
time outcomes respectively (see chapter 8). The choice of which 
variables to adjust for should ideally be specified in the study 
protocol, not by which variables seem to differ at baseline between 
the treatment groups. 5 

The number needed to treat 

The valuable concept of the number needed to treat (NNT) was 
introduced by Laupacis et al. 6 as an additional way of assessing 
the treatment benefit from trials with a binary outcome. It has 
become popular as a useful way of reporting the results of clinical 
trials,7 especially in journals of secondary publication (such as 
ACP Journal Club and Evidence-Based Medicine). 

From the result of a randomised trial comparing a new treat­
ment with a standard treatment, the NNT is the number of 
patients who need to be treated with the new treatment rather 
than the standard (control) treatment in order for one additional 
patient to benefit. It can be obtained for any trial that has 
reported a binary outcome. 

The NNT is calculated as the reciprocal of the risk difference 
(absolute risk reduction, or ARR), given by 1/(pc - PT) (or 
1/ (PT - pc) if the outcome is beneficial to the patient). A large 
treatment effect thus leads to a small NNT. A treatment which 
will lead to one saved life per 10 patients treated is clearly better 
than a competing treatment that saves one life for every 50 treated. 
When there is no treatment effect the risk difference is zero and the 
NNT is infinite. 

A confidence interval for the NNT is obtained simply by taking 
reciprocals of the values defining the confidence interval for the 
absolute risk reduction (see chapter 6). To take an example, if 
the risk difference in a trial is 10% with a 95% confidence interval 
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from 5% to 15%, the NNT is 1/0'1 = 10 and the 95% confidence 
interval for the NNT is 6·7 to 20 (i.e. 1/0'15 to 1/0'05). 

The case of a treatment effect that is not significant is more 
difficult. The same finding of ARR = 10% with a wider 95% 
confidence interval for the ARR of -5% to 25% gives the 95% 
confidence interval for the NNT of 10 as - 20 to 4. There are two dif­
ficulties with this interval: first, the NNT can only be positive, and 
second the confidence interval does not seem to include the best esti­
mate of 10. To avoid such perplexing results, the NNT is often given 
without a confidence interval when the treatments are not statisti­
cally significantly different. This is unsatisfactory behaviour, and 
goes against advice that the confidence interval is especially useful 
when the result of a trial is not statistically significant (chapter 14). 
In fact, a sensible confidence interval can be quoted for any trial. 

In the example, the 95% confidence interval for the NNT was 
-20 to 4. The value of -20 indicates that if 20 patients are 
treated with the new treatment one fewer would have a good out­
come than if they all received the standard treatment. In this 
case the inverse of the ARR is the number of patients treated for 
one to be harmed. This has been termed the number needed to 
harm (NNH).8,9 However, it is more appropriate to indicate the 
number needed to treat for benefit (NNTB) or harm (NNTH). 
Using these descriptors, the value of -20 corresponds to a 
NNTH of 20. The confidence interval can thus be rewritten as 
NNTH 20 to NNTB 4. As already noted, this interval does not 
seem to include the overall estimate of NNTB 10. 

The 95% confidence interval for the ARR includes all values of 
the ARR from -5% to +25%, including zero. The NNT is infi­
nity (00) when the ARR is zero, so the confidence interval calcu­
lated as NNTH 20 to NNTB 4 must include infinity. The 
confidence interval is thus most peculiar, comprising values of 
NNTB from 4 to infinity and values ofNNTH from 20 to infinity. 
Figure 11.1 shows the ARR and 95% confidence interval for the 
example. The values NNTB = 1 and NNTH = 1 thus correspond 
to impossible absolute risk reductions of + 100% and -100% 
respectively, and are not actually shown. Conversely, the midpoint 
on the NNT scale is the case where the treatment makes no 
difference (ARR = ° and NNT = (0). We need to remember the 
absolute risk reduction scale when trying to interpret the NNT 
and its confidence interval. 

It is desirable to give a confidence interval for the NNT even 
when the confidence interval for the absolute risk reduction 
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Figure 11.1 Relation between absolute risk reduction and number needed 
to treat and their confidence intervals for the example discussed in the text. 

includes zero. I suggest that it is done as, for example, NNTB 10 
(95% confidence interval NNTH 20 to 00 to NNTB 4). 

Tramer et al. lD quoted an NNT of -12'5 for a trial comparing the anti­
emetic efficacy of intravenous ondansetron and intravenous droperidol. 
The negative NNT implies here that ondansetron was less effective than 
droperidol. The quoted 95% confidence interval was -3'7 to 00, which 
is incomplete. The ARR was -0,08 with 95% confidence interval -0,27 
to 0.11. We can convert this finding to the NNT scale as NNTH = 12.5 
(95% confidence interval NNTH 3·7 to 00 to NNTB 9'1). With this 
presentation we can see that an NNTB smaller (better) than 9·1 is unlikely. 

The NNT can also be obtained for survival analysis. For these 
studies the NNT is not a single number, but varies according to 
time since the start of treatment. 11 

Benefit per 1000 patients 

One of the arguments for using the NNT rather than the 
absolute risk difference is that the latter is harder to assimilate. 
For example, it is felt that an NNT of, say, 17 is easier to judge 
(and remember) than the equivalent absolute risk reduction of 
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5·9%. One way of representing differences between proportions 
that has some of the appeal of the NNT is to convert to the 
number of patients out of 1000 who would benefit from the new 
treatment. Even though this change is trivial, being achieved 
simply by multiplying by 10, it does simplify the results. For 
this measure, of course, a larger number is better. 

For example, among patients randomised to streptokinase or 
placebo within 6 hours of their myocardial infarction, the survival 
rates by 35 days were 91·8% and 87·5% respectively.12 The risk 
difference was thus 4·3% (95% confidence interval 2·1% to 
6·5%). Baigent et aZY reported this result as 43 patients out of 
1000 benefiting from streptokinase (95% confidence interval 21 
to 65). 

Crossover trials 

In crossover trials patients are randomised to groups which receive 
each treatment in a different sequence. In the most common case, 
two treatments are given in one of two orders (randomly chosen 
for each participant), often with a "washout" period in between. 
The strength of the crossover design is that the two treatments are 
compared on the same patients rather than on two separate groups. 
With such trials there is no issue of comparability of groups, but 
there are other methodological and practical difficulties/ 3 I will 
not dwell upon them here. Exactly the same analysis issues (and 
similar methodological problems) arise in within-person randomised 
trials. 

The main difference from parallel group trials is the need to use 
an analysis that takes account of the paired responses for each 
patient in the trial. As for parallel group trials, it is essential that 
the confidence interval relates to the difference between treat­
ments, not separately for the average effects with each of the treat­
ments. 

Continuous outcome 

For continuous outcomes a confidence interval for the treatment 
effect is obtained using the method for paired continuous data 
presented in chapter 4. 

Binary outcome 

Paired binary data can be presented as in Table 11.2. As 
noted earlier in this chapter, the analysis of trials with binary 
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Table 11.2 Patient outcome (yes or no) by treatment 
for a clinical trial with a paired design 

Control 

Yes 
No 

Total 

Yes 

a 
c 

a+c 

Treatment 

No 

b 
d 

b+d 

Total 

a+b 
c+d 

n 

outcomes can be based on the risk difference, the relative risk, or 
the odds ratio. Methods for risk differences and odds ratios 
derived from paired binary data were presented in chapters 6 
and 7 respectively. 

In some crossover or within-person trials the risk difference may 
be felt to be the appropriate outcome measure. From Table 11.2, 
the proportions with a good outcome are PT = (a + c) / nand 
Pc = (a + b)/n, and thus the relative risk is estimated as R = 
(a + c)/(a + b). 

As with the unpaired case, a confidence interval can be con­
structed for the logarithm of the relative risk. Vreth and Poulsen l4 

have shown that the standard error of the log relative risk from 
paired data is 

SE(loge R ) = 
I 1 2a --+ -- - -:-----:--:--;-----:-

a+b a+c (a+b)(a+c)" 

The 100(1 - a)% confidence interval for 10geR is found by first 
calculating the quantities 

W = loge R - ZI-o.j2 X SE(logeR) 

and 

x = loge R + ZI-o.j2 X SE(logeR). 

As with the unpaired case (chapter 7), the confidence interval for 
the population relative risk is obtained by taking the antilogs of 
the values representing the confidence interval for loge R, 
namely eW to eX. 

Women requiring oestrogen replacement who had previously experi­
enced skin reactions were randomly allocated to receive either a matrix 
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Table 11.3 Numbers of women discontinuing each 
type of trans dermal oestradiol patch because of skin 
irritation 15 

Reservoir 

Matrix Discontinue Continue Total 

Discontinue 9 4 13 
Continue 26 33 59 -- -- --

Total 35 37 72 

patch or a reservoir patch for eight weeks followed by the other patch for 
eight weeks. IS Seventy-two women completed the study. The numbers 
discontinuing because of skin irritation are shown in Table 11.3. 

The proportions discontinuing were 13/72 (18%) with the matrix patch 
and 35/72 (49%) with the reservoir patch, giving an estimated relative risk 
of R = 13/35 = 0'371. The log relative risk is loge R = -0'9904. Using the 
above formula, the standard error of loge R is 

SE(loge R) = 
1 1 2 X 9 - + - - --= 0·2568. 
13 35 13 X 35 

The 95% confidence interval for 10geR is 10geR - 1·96 X 0·2568 to 
10geR + 1·96 x 0'2568, or -1 '49 to -0'487. The 95 % confidence interval 
for the relative risk R is thus e- Io49 to e-00487, or 0'22 to 0·61. 

Multiple groups 

Some trials have more than two treatment groups. Confidence 
intervals can be constructed using the methods given above for 
any pair of groups. The question of whether to make any allowance 
for mUltiple testing is considered in chapter 13. 

Subgroups 

Comparing P values alone can be misleading. Comparing confi­
dence intervals is less likely to mislead. However, the best approach 
here is to compare directly the sizes of the treatment effects. 16 When 
comparing two independent estimates with standard errors (SE1 and 
SE2 ) we can derive the standard error of the difference very simply as 
SEdifI = V SEi + SE~. Much the same procedure for comparing 
subgroups applies to all outcome measures, although the details 
may vary. (For continuous data we might prefer to use the method 
based on pooling the standard deviations, as described in chapter 4. 
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Table 11.4 Serum calcium levels at one week (mmol/I) 

Breast fed Bottle fed 

Serum calcium Supplement Placebo Supplement Placebo 

Treatment mean 2'45 2'41 2·30 2·20 
Standard error 0'036 0'032 0·022 0·019 
n 64 102 169 285 

Treatment effect 0·04 0·10 
Standard error 0·048 0'029 
P 0'40 0·0006 

It will give very similar answers unless the two standard deviations 
differ considerably.) A confidence interval can be constructed in 
the usual way (as described in chapters 4 and 6), using the difference 
in estimates ±Zl-aj2SEdiff or ±tl-aj2SEdiff as appropriate. 

In a study of the effect of vitamin D supplementation for the prevention 
of neonatal hypocalcaemial7 expectant mothers were given either supple­
ments or placebo and the serum calcium of the baby was measured at one 
week. The benefit of supplementation was reported separately for breast­
and bottle-fed infants, and t tests to compare the treatment groups gave 
P = 0·40 in the breast fed group and P = 0·0006 in the bottle-fed group 
(Table 11.4). It is wrong to infer that vitamin D supplementation had a 
different effect on breast- and bottle-fed babies on the basis of these two 
P values. 

The estimated effect of vitamin D supplementation was 0'04mmol/1 
(95% confidence interval -0'07 to +0·15 mmol/I) in 166 breast-fed babies 
and O'lOmmol/1 (95% confidence interval +0'04 to +0'16mmol/l) in 454 
bottle-fed babies. 16 The 95% confidence intervals for the two groups thus 
overlap considerably. 

The difference in treatment effects in the two subgroups was 
0·10 - 0·04 = 0·06 mmol/!. Using the preceding method, the standard 
error of this difference is obtained as VO·04S2 + 0.0292 = 0·0561. Because 
of the large sample size we can use the Normal approximation to the t 

distribution to calculate a confidence interva!. (If we use the t method 
there are N - 4 degrees of freedom for the t statistic where N is the 
total trial size.) 

The 95% confidence interval for the contrast between the groups is thus 
0·06 - 1·96 x 0·0561 to 0·06 + 1·96 x 0'0561, or -0'05 to 0'17 mmol/!. 
There is thus no good evidence that the effect of vitamin D supplementa­
tion differs between breast- and bottle-fed infants. 
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Table 11.5 Outcomes after intensive insulin treatment versus standard 
treatment following myocardial infarction21 

Outcomes Intensive Standard Relative risk Absolute risk NNT 
insulin treatment reduction reduction (95% Cl) 

event rate event rate (95% CI) (95% CI) 

Death at I year 19% 26% 27% 7% 15 
(2'5 to 46) (7 to 172) 

Death at mean 33% 44% 24% 11% 10 
of 3'4 years (7'3 to 38) (6 to 34) 

Presentation 

There are few problems regarding the presentation of confi­
dence intervals from clinical trials, other than for the NNT as dis­
cussed already. One point worth emphasising is that the confidence 
interval should always be presented for the difference in outcome 
between the treatment groups. It is a common error to present 
instead separate confidence intervals for the means or event rates 
observed in each group. A similar error is to calculate the confi­
dence interval associated with change from baseline in each 
group. This error has been noted in about 10% of published 
trials. 18,19 

Confidence intervals are widely used in journals of secondary 
publication, in which each study is given one journal page which 
includes both a summary of the paper and a short commentary on 
it. An example of the style of presentation is given Table 11.5, 
which summarises the results of a randomised trial comparing 
intensive versus standard insulin treatment after acute myocardial 
infarction in diabetics20 as presented in Evidence-Based Medicine. 

In recent years many journals have begun to require authors to 
present confidence intervals in their papers, especially for the 
principal outcomes. Particular attention has been given to 
randomised controlled trials, culminating in the CONSORT 
statement.22 These guidelines, which have been adopted by over 
70 journals, include the requirement that authors present confi­
dence intervals. Reporting of results is considered in more depth 
in chapters 14 and 15. 

Interpretation 

The interpretation of confidence intervals has been discussed 
earlier, notably in chapter 3. There should be no special problems 
relating to trials. Confidence intervals are especially useful in 
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association with trials which have not found a significant treatment 
benefit, as they indicate a range of possible true effects with which 
the results are compatible. Given that many trials are too small to 
have adequate power to detect modest yet clinically valuable 
benefits,23 the width of the confidence interval can signal the 
danger of interpreting "no significant difference" as "no differ­
ence". Sadly, authors sometimes ignore the confidence interval 
when interpreting their results. For example, Sung et aZ.24 

randomised patients to octreotide infusion or emergency sclero­
therapy for acute variceal haemorrhage. They randomised 100 
patients despite a power calculation showing that they needed 
1800 patients to have reasonable power to detect an improvement 
in response rate from 85% to 90%. The observed rates of 
controlled bleeding were 84% in the octreotide group and 90% 
in the sclerotherapy group. They quoted a confidence interval 
for the treatment difference as 0 to 19%-it should have been 
-7% to 19%. More seriously, they drew the unjustified conclusion 
that "octreotide infusion and sclerotherapy are equally effective in 
controlling variceal haemorrhage". 

Meta-analysis 

Many systematic reviews of the literature include a statistical 
meta-analysis to combine the results of several similar studies. 
There is a clear need to present confidence intervals when 
summarising a body of literature. This section considers meta­
analyses of randomised trials. Much the same considerations 
apply to meta-analyses of other types of study, including epi­
demiological studies. 

I will not describe here methods of performing meta-analysis, 
but will focus instead on the use of confidence intervals in the 
display of results. 

Analysis 

Meta-analysis is a two-stage analysis. For each trial a summary 
of the treatment effect is calculated and then a weighted average 
of these estimates is obtained, where the weights relate to the 
precision of each study's estimate (effectively, the width of the 
confidence interval). There are various methods of meta-analysis 
for both binary and continuous data. 25

,26 In each case, a confidence 
interval is obtained from the pooled estimate and its standard error 
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using the general formula given in chapter 3. Confidence intervals 
feature prominently in the presensation of results of meta­
analyses. 

For any type of outcome an analysis may used a "fixed" or 
"random" effects approach. The former considers only the data 
to hand whereas the latter assumes that the studies are represen­
tative of some larger population of trials that might have been 
performed.25

,26 Although in many cases the two methods 
agree quite closely, the random effects approach gives wider 
confidence intervals because it allows for an additional element 
of uncertainty. 

Continuous outcome 

The principal methods for performing meta-analysis of trials 
with continuous outcomes are the weighted mean difference and 
the standardised (weighted) mean difference. These methods 
yield a mean effect with a standard error, so confidence intervals 
are easily calculated using the general approach outlined in 
chapter 3. 

Binary outcome 

As for single trials, meta-analysis of several similar trials with a 
binary outcome can be based on the risk difference, the relative 
risk, or the odds ratio. None can be considered to be the best for 
all circumstances. The Mantel-Haenszel method is commonly 
used. It was described in chapter 7 in the context of stratified 
case-control studies. Although most familiar as a means of combin­
ing odds ratios, there are also versions of the Mantel-Haenszel 
method for obtaining either a pooled relative risk or risk 
difference.27 

Figure 11.2 shows the risk ratio associated with coronary artery bypass 
grafting versus coronary angioplasty and its 95% confidence interval for 
each trial and for the overall estimate (based on a fixed effect analysis). 
The four smallest trials have been combined.28 For each trial the risk 
ratio and 95% confidence interval are shown both numerically and graphi­
cally. The size of the black boxes is proportional to the weight given to 
each trial's results in the meta-analysis. The diamond represents the over­
all treatment effect (also shown by the dashed line) and its 95% confidence 
interval, obtained by combining the results of the eight trials. 

133 



STATISTICS WITH CONFIDENCE 

Study 

CABRI 

RITA .f 
EAST • 
GABI 

Other 

Overall (95% CI) <> 
I I 

0·2 0'5 
I 
2 

Risk ratio 

Risk ratio 
(95% CI) 

0·70 (0'51,0·98) 

0'52 (0·38, 0·70) 

0-49 (0,28, 0·84) 

0·89 (0'61, 1·30) 

0·59 (0,30, 1-15) 

0·63 (0,52, 0·75) 

I 
5 

Figure 11.2 Forest plot for meta-analysis of data from eight randomised 
trials relating to angina in one year comparing coronary artery bypass 
surgery with coronary angioplasty.28 

Outcome is time to an event 

Meta-analysis of trials is also possible where the outcome is time 
to an event. There are serious practical problems, however, as 
many published papers do not provide the necessary information. 
Acquiring the raw data from all studies, while desirable, is rarely 
feasible. Some methods based on published summary statistics 
have been described by Parmar et al.29 

Presentation 

Although tables are helpful in meta-analyses, especially to show 
the actual summary data from each trial, it is usual to show graphi­
cally the results of all the trials with their confidence intervals. The 
most common type of plot is called aforest plot. Such plots tabulate 
the summary results, estimates and confidence intervals for each 
study, and depict these graphically. Sometimes the weight given 
to each trial is also shown. A simplified example is shown in 
Figure 11.2. 

When the effect size has been summarised as relative risk or odds 
ratio the analysis is based on the logarithms of these values. The 
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Figure 11.3 Forest plot for the same trials as shown in fig 11.2, showing 
NNTB for coronary artery bypass surgery and its 95% confidence interval 
for each trial and for the overall estimate. The four smallest trials have 
been combined. 

forest plot benefits from using a log scale for the treatment effect as 
the confidence intervals for each trial are then symmetric around 
the estimate (see Figure 11.2). 

I t is common to use 95 % confidence intervals both for each trial 
and for the overall pooled effect, but some authors use wider con­
fidence intervals (often 99%) for the pooled estimate on the 
grounds that one is looking for convincing evidence regarding 
treatment benefit, while others use 99% confidence intervals for 
the results of each trial. 

A forest plot can also be made using the NNT. Noting, as before, 
that the NNT should be plotted on the absolute risk reduction scale, 
it is relatively simple to plot NNTs with confidence intervals for mul­
tiple trials, even when (as is usual) some of the trials did not show 
statistically significant results. Figure 11.3 shows such a plot for the 
same trials as in Figure 11.2. The plot was produced using the abso­
lute risk reduction scale, and then relabelled (this cannot be done in 
many software packages). Both scales can be shown in the figure. 

Interpretation 

As already noted, confidence intervals are an especially impor­
tant feature of meta-analyses. Systematic reviews of the literature 
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aim to provide a reliable answer based on all available evidence. It 
is important to know not just the average overall effect but also to 
be able to see how much uncertainty is associated with that 
estimate. 

Software 

CIA can perform all of the methods described for randomised 
controlled trials, but not those for meta-analysis, for which specia­
list software is advisable. 

Comment 

I have shown how the analysis of clinical trials, including the cal­
culation of confidence intervals, varies for parallel and crossover 
trials, corresponding to whether the data are unpaired or paired 
respectively. Some other trial designs also affect the analysis. 
This applies in particular to cluster randomised trials, in which 
patients are randomised in groups, such as those with a particular 
general practitioner or attending a particular hospital. For such 
trials analysis of individual patient data is misleading and will 
lead to confidence intervals which are too narrow. It is essential 
that the analysis of such trials is based on the randomised clusters. 30 

Although the focus of interest in this chapter has been on 
primary treatment effects, there is a similar need to provide 
confidence intervals for other outcomes, including adverse events 
and cost data. Such information is usually missing from published 
reports.31 
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12 Confidence intervals 
and sample sizes 

LESLIE E DALY 

A major part of the planning of any investigation is the estimation of 
an appropriate sample size. In line with the move towards confi­
dence intervals in data analysis, a number of sample size estimation 
methods based on that philosophy have been proposed as alterna­
tives to the more traditional methods based on hypothesis testing. 
These newer methods just require a pre-specification of a target 
confidence interval width and are much easier to understand. 

If the sole purpose of an investigation is to obtain an estimate for a 
non-comparative measure (for example, in a descriptive prevalence 
study where no comparisons are planned) then sample size calcula­
tions based on confidence interval width are perfectly acceptable. In 
this chapter, however I argue that for comparative studies, the 
confidence interval width approach, though appearing to have 
many advantages, leads to unacceptably small sample sizes. For 
such studies the traditional sample size formulae should always be 
employed. These formulae can, however, be made fully compatible 
with a confidence interval approach to data analysis with an appro­
priate change in the wording and interpretation of the specification. 

The discussion is illustrated using the comparison of both means 
and percentages in two independent equal-sized groups using dif­
ference measures. The arguments, however, extend to unequal 
sample sizes, to the use of other measures (for example, ratios of 
means or relative risks) and to within-subjects designs such as 
crossover trials. 

Confidence intervals and P values 
A large proportion of medical research involves the comparison 

of two groups, each of which may be considered a sample from a 
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larger population in which we are interested. The hypothesis test­
ing approach to statistical analysis determines if some appropriate 
comparative measure (such as a difference between means or per­
centages or a relative risk) is significantly different from its null 
value (for example a mean difference of zero or a relative risk of 
unity). The confidence interval approach, however, concentrates 
on an estimate of the comparative measure together with its confi­
dence limits. The confidence interval gives an indication of the 
degree of imprecision of the sample value as an estimate of the 
population value. It is important to note that hypothesis testing 
and confidence intervals are intimately connected. If a 95% confi­
dence interval does not include the null value of the hypothesis test 
then we can infer a statistically significant result at the two-sided 
5% level. If the null value of the comparative measure lies inside 
the confidence interval then the result is not statistically significant 
(see chapter 3). 

Sample size and hypothesis tests 

Suppose we are planning a randomised controlled trial to com­
pare an antihypertensive agent with a placebo and that suitable 
hypertensive patients are to be randomised into two equal-sized 
groups. We take two cases. The first is where the treatment 
effect is to be evaluated by examining the difference in mean sys­
tolic blood pressure between the groups after a period of, say, six 
weeks. As an alternative endpoint, to illustrate the comparison of 
percentages, we also take the case where the treatment effect is 
evaluated by examining the difference in the percentage of patients 
in each group who have severe hypertension (say a systolic pres­
sure above 180 mmHg). 

To determine the sample size required for such a two group 
comparison several quantities must be considered: 1

,2 

• The significance level (usually 5% or 1 %) at which we wish to 
perform our hypothesis test, and if it is to be one sided or two 
sided. (Apart from exceptional circumstances two-sided tests 
are usually more appropriate.) 

• The smallest clinically worthwhile difference we wish to detect. 
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Taking the difference in mean blood pressures to illustrate 
what we mean, we must distinguish between the blood pres­
sure difference that we might observe in our study (the 
sample result) and the real treatment effect. The real treatment 
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effect can be thought of as the difference in blood pressures 
that would be observed in a study so large that sample varia­
tion was precluded, or alternatively, as the blood pressure dif­
ference between the "populations" of treated and untreated 
patients. If there were a real treatment effect (that is, if the 
null hypothesis were false) we would want our study to reflect 
this and reject the null hypothesis with a statistically signifi­
cant result. We would be unlikely, however, to be interested 
in detecting a very small (real population) difference of say 
only 1 mmHg since, from a clinical point of view, such a treat­
ment effect could be considered negligible. We therefore 
decide on the smallest difference worth detecting such that, 
if the real difference was this large or larger, we would be 
likely to achieve a statistically significant result; on the other 
hand, for real differences smaller than this, a non-significant 
result is judged acceptable. 3 In our trial this smallest worth­
while difference might be set at 5 mmHg. 

If the trial endpoint had been expressed in terms of the 
percentage of patients with severe hypertension rather than 
in terms of a mean blood pressure, the smallest difference 
worth detecting would be expressed as a percentage. Thus 
we might be interested in detecting, as statistically significant, 
a treatment effect that reduced the percentage with severe 
hypertension by 10% or more, but would accept a non­
significant result if the real treatment effect were any less 
than this. 

• The power of the study. This is the chance of obtaining a 
significant result if the real effect is as great as or greater 
than the smallest worthwhile difference specified. Powers of 
80% or 90% are typical choices . 

• For comparing means, the variability of the measure in the 
study population. This is usually determined from a pilot 
investigation or from published results. (Note that the 
approach described below assumes that the distribution of 
the measure is approximately Normal or at least not too 
skew.) For illustrative purposes we shall take the standard 
deviation of systolic blood pressure in hypertensives to be 
20mmHg. 

• For comparing percentages, the percentage in one of the groups. 
In our example we would have to specify the percentage with 
severe hypertension in one of the groups instead of the stan­
dard deviation required when comparing means. We assume 
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Table 12.1 Sample size in each group for an indepen­
dent two-group comparison of mean blood pressures, 
pre-specifying power to detect a smallest worthwhile 
difference (at a two-sided significance level of 5%). 
The population standard deviation is 20 mmHg 

Power 
Smallest difference 

to be detected 90% 80% 50% 

5mmHg 336 251 123 
10 mmHg 84 63 31 
15 mmHg 38 28 14 

here that the percentage of controls with severe hypertension is 
50%. Thus a smallest worthwhile difference of 10% would 
correspond to a percentage with severe hypertension of 40% 
in the treatment group. 

Given levels for the significance, power and smallest difference 
(of means or percentages) to be detected and, as appropriate, a 
standard deviation or a percentage in controls, standard formulae, 
tables and graphs are available to enable calculation of the required 
sample size. These are reviewed by Lachin.2 To illustrate the 
method, Table 12.1 gives required sample sizes, in each group of 
our clinical trial, for three different levels of the smallest worth­
while difference in mean blood pressure to be detected (5, 10, 
and 15 mmHg), and powers of 50%, 80%, and 90%. A two­
sided 5% significance level, and a population blood pressure 
standard deviation of 20 mmHg are assumed. The required 
sample size increases with the power, but decreases for higher 
levels of the difference to be detected. For the same levels of 
power and significance, Table 12.2 gives sample sizes for detecting 
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Table 12.2 Sample size in each group for an indepen­
dent two-group comparison of the percentage with 
severe hypertension, pre-specifying power to detect a 
smallest worthwhile difference (at a two-sided signifi­
cance level of 5%). The percentage with severe hyper­
tension in the controls is 50% 

Power 
Smallest difference 

to be detected 90% 80% 50% 

10% 515 383 189 
20% 121 90 45 
25% 74 55 27 
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differences in the percentage with severe hypertension of 10%, 
20% and 25% from a control level of 50%. The appendix gives 
the equations from which these figures are calculated. 

Sample size and confidence intervals 

Most of the confidence interval approaches to sample size esti­
mation are based on the expected width of the confidence interval 
for the comparative measure (difference between means or percen­
tages) being analysed. (The width of a confidence interval is a 
measure of the imprecision of the sample estimate and is the differ­
ence between the upper and lower confidence limits. For example, 
if a confidence interval were determined to be from 90 to 170, its 
width would be 80.) All else being equal, the larger the sample 
size the narrower the width of the confidence interval. Once the 
width has been pre-specified, the only additional requirements 
for a sample size determination using this approach are the confi­
dence level (95% or 99%) and an estimate of the variability of the 
means or an estimate of the percentages in the groups. These 
specifications are clinically understandable and the difficult con­
cepts of power, the null value and a smallest difference to be 
detected seem to be avoided altogether. In addition, concentration 
on the precision of the estimate seems to fit in fully with an analysis 
that is to be performed using confidence intervals. Tables and 
formulae using this approach are available for various comparative 
measures in journals4- 7 and textbooks.8 (A further refinement is 
to estimate sample sizes on the basis that the width of the confi­
dence interval, rather than being fixed, is a percentage of the 
actual population value.4,s,9) Some simple formulae for sample 
size determination based on confidence interval width are given 
in the appendix. 

Confidence intervals and null values 

Although the specifications of confidence level and confidence 
interval width for a sample size calculation are easy to understand, 
estimates of sample size based on this approach can be misleading. 
The consequences of employing such estimates do not seem to be 
clearly understood and in general the published work does not con­
sider the problems explicitly. One distinction between hypothesis 
tests and confidence intervals is important in this regard.IO,11 
Hypothesis tests are essentially asymmetrical. Emphasis is on 
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rejection or non-rejection of the null hypothesis based on how far 
the observed comparative measure (in our example, the difference 
between means or percentages) is from the value specified by the 
null hypothesis (a zero difference). On the other hand, confidence 
intervals are symmetrical and estimate the magnitude of the differ­
ence between two groups without giving any special importance to 

the null value of the former approach. It seems mistaken, however, 
to conclude that this null value is irrelevant to the interpretation of 
confidence intervals even though it plays no part in their calcula­
tion. Irrespective of precision, there is a qualitative difference 
between a confidence interval which includes the null value and 
one which does not include it. In the former case, at the given con­
fidence level, the possibility of no difference must be accepted, 
while in the latter situation some difference has been demonstrated 
at a given level of probability. Herein lies the crux of the problem. 
In a comparative study can we ever say that the primary goal is just 
estimation and ignore completely the qualitative distinction 
between a "difference" and "no difference", or in hypothesis test­
ing terms, between a significant and a non-significant result? The 
answer is clearly "no" and I argue that the null value must have a 
central role in the estimation of sample sizes-even with a confi­
dence interval approach-and that the position of the confidence 
interval is as relevant as its actual width. 

Confidence intervals, power and worthwhile 
differences 

The role of the smallest clinically worthwhile difference to be 
detected (as specified by the alternative hypothesis) has also been 
questioned in the context of sample sizes based on confidence 
intervals. Beal states: "With estimation as the primary goal, 
where construction of a confidence interval is the appropriate 
inferential procedure, the concept of an alternative hypothesis is 
inconsistent with the associated philosophy, even when used as 
an indirect approach to hypothesis testing. Thus one should not, 
in this situation, determine sample size by controlling the power 
at an appropriate alternative.,,12 This viewpoint is untenable. 
For a sample size determination it seems inappropriate to specify 
the precision of an estimate without any consideration of what 
the real differences between the groups might be. Unfortunately, 
though the problem has been recognised by some,10,13 others 
make a correspondence between the precision of the confidence 
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Table 12.3 Sample size in each group for an indepen­
dent two-group comparison of mean blood pressures, 
pre-specifying confidence interval width (95% confi­
dence interval). The population standard deviation is 
20mmHg 

Confidence interval width 

5mmHg 
10mmHg 
15 mmHg 

Sample size required 

123 
31 
14 

interval and the smallest difference to be detected. In the clinical 
trial example, we might decide that a confidence interval width 
for blood pressure difference of just under 10 mmHg would be 
sufficient to distinguish a mean difference of 5 mmHg from that 
of a zero difference. If the confidence interval were centred 
around the observed difference, the expected interval of 
5 ± 5 mmHg (that is, from 0 to 10 mmHg) would just exclude the 
null value. Similarly a confidence interval width of 20% for a 
difference between percentages should allow detection of a 10% 
difference. 

Tables 12.3 and 12.4 give the sample size requirements in each 
group of our clinical trial to achieve confidence interval widths of 
10, 20, or 30 mmHg for the difference in mean blood pressures 
between the groups, and to achieve confidence interval widths of 
20%, 40%, and 50% for the difference in the percentage with 
severe hypertension. A comparison with the sample sizes based 
on the hypothesis test approach given in Tables 12.1 and 12.2 
shows that those based on confidence intervals would have only 
50% power to detect the corresponding smallest worthwhile 

Table 12.4 Sample size in each group for an indepen­
dent two-group comparison of the percentage with 
severe hypertension, pre-specifying confidence interval 
width (95% confidence interval). The table assumes 
that the width is equal to twice the difference between 
the population percentages, one of which is specified 
at 50%. See appendix 

Confidence interval width 

20% 
40% 
50% 

Sample size required 

189 
45 
27 
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differences. Thus even if the real difference were as large as postu­
lated, with the confidence interval-based sample sizes there would 
be a 50% chance of the confidence interval overlapping zero. This 
would mean a statistically non-significant result and a consequent 
acceptance of the possibility of there being no real difference. 

Explanation of the anomaly 

There are two reasons for this apparent anomaly. Take the com­
parison of means and assume the real population blood pressure 
difference was in fact 5 mmHg and that, based on a pre-specified 
confidence interval width of 10 mmHg, a sample size of 123 was 
used in each group. Firstly, this width is only an expected or aver­
age width. The width we might obtain on any actual data from the 
study would be above its expected value about 50% of the time. 
Thus, the confidence interval, if centred around 5 mmHg, would 
have a 50% chance of including zero. Secondly, the sample value 
of the blood pressure difference calculated on the study results 
would be as likely to be above the population value of 5 mmHg 
as below it. If our sample estimate were, for instance, 4 mmHg, 
then a confidence interval, with the expected width of 10 mmHg, 
would run from -1 mmHg to +9 mmHg and would include zero 
difference as a possible true value. Thus specification of the 
expected width of a confidence interval as described above does 
not consider the possible true values of the difference and the 
power of detecting them (with a confidence interval excluding 
the null value of zero); nor does it consider what confidence inter­
val width might actually be achieved. Consequently the approach 
leads to unacceptably small sample sizes with too low a power 
(only 50%) to detect the required effect. 

Proposed solutions 

Beal and Grieve propose sample size estimations based on a con­
fidence interval width specification together with a probability 
(somewhat akin to power) that the width be less than a given 
value. 12,14-16 This overcomes the problem related to expected 
width discussed above but does not account for the true location 
of the parameter of interest. Sample sizes based on this approach 
are still much lower than traditional estimates. 

In planning any investigation, the question of power to detect 
the smallest clinically worthwhile difference must predominate 
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over that of precision. In practice, of course, estimates based on 
samples large enough to detect small differences will have a high 
degree of precision. It is only when we are trying to detect large 
differences (not often found in medical research) that an imprecise 
estimate will result. In this latter situation it would in any case be 
possible to calculate a sample size based on precision also and use 
the larger of the two sizes so calculated. In line with this view, 
Bristolll gives tables and formulae relating the width of the inter­
val to the power for detecting various alternatives when comparing 
differences of means and proportions. However, if these factors 
have to be considered at all, why should sample size estimates 
not explicitly specify power to detect the smallest worthwhile 
difference in the first place, rather than concealing the specification 
in a vaguer requirement for confidence interval precision? 

Confidence intervals and standard sample size 
tables 

I propose that sample size requirements, which explicitly con­
sider power, null values and smallest worthwhile differences, can 
easily be put into a confidence interval framework without the con­
sideration of hypothesis tests in either design or analysis. Although 
the discussion has been in the context of employing the difference 
between means or percentages as a comparative measure, this 
proposal has general applicability. For calculation of a sample 
size based on a confidence interval approach we should specify 
(1) the confidence level (usually 95% or 99%), (2) the minimum 
size of the comparative measure we wish to estimate unambigu­
ously (that is with the confidence interval excluding the null 
value), and (3) the chance of achieving this if the measure actually 
had this minimum value (in the population). These correspond, 
of course, to the traditional requirements of (1) the significance 
level, (2) the smallest worthwhile difference to be detected, and 
(3) the power of the study. Thus with only a slight change of word­
ing the standard procedures based on hypothesis testing can be 
used to estimate sample sizes in the context of a confidence interval 
analysis. 

In our example, we might have specified that the trial should be 
big enough to have an 80% chance that, if the real difference in 
blood pressure were 5 mmHg or greater, the 95% confidence inter­
val for the mean difference would exclude zero. This would result 
in a sample size requirement of 251 in each group (see Table 12.1). 
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It is essential to note that this approach allows for the sampling 
variability of both the location and width of the confidence 
interval. The width of the interval, however, is not explicitly 
pre-specified. It is instead determined by the more important cri­
terion that we are unlikely to miss a difference we wish to detect. 

Greenland comes nearest to this view in terms of confidence 
intervals and sample size. 1O The proposal outlined in this chapter 
is based on distinguishing between a particular difference, if it 
exists, and the null value. Greenland, however, in a subtle modifi­
cation of this approach, also suggests that the sample size be large 
enough to distinguish between the null value and this difference, if 
the groups are in fact the same. In most situations this extra 
requirement does not result in an increase of sample size and it 
seems an unnecessary refinement. 

Conclusion 

There is no doubt that the whole topic of traditional sample size 
calculation tends to be complex and misunderstood and many 
studies are carried out with inadequate numbers. 17,18 Estimating 
an appropriate sample size is a vital part of any research design 
and it is important that the current emphasis on using confidence 
intervals in analysis and presentation does not mislead researchers 
to employ sample sizes based on confidence interval width. 
Though apparently much simpler, such calculations can result in 
studies so small that they are unlikely to detect the very effects 
they are being designed to look for. 

Examination of precision may well be a useful adjunct to the 
traditional estimation of sample size,13 but unless we place our pri­
mary emphasis on the question of power to detect an appropriate 
effect, we could be making a serious mistake. The use of confidence 
intervals in analysis, however, must be encouraged and this 
chapter has indicated how a realistic rewording of the usual speci­
fications allows standard approaches to be used for sample size 
calculations in a confidence interval framework. 

There is no need to throw out our old sample size tables in this 
era of confidence intervals. In fact we should guard them with care. 
Inadequate sample size has been a major problem in medical 
research in the past and we do not want to repeat those mistakes 
in the future. "However praiseworthy a study may be from other 
points of view, if the statistical aspects are substandard then the 
research will be unethical.,,19 If we depart from the tried and 
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tested approach for sample size calculations we are in danger of 
disregarding this principle. 

Appendix 

Notation 

This Appendix gives the formulae on which the sample size 
calculations in this chapter are based. Though percentages are 
used in the text the formulae given here, as in the rest of this 
book, are in terms of proportions. Significance, confidence and 
power levels are also expressed as proportions. All relevant quan­
tities should be converted from percentages to proportions by 
dividing by 100 prior to using the formulae. 

The following notation is employed: 

n 

a 

a 
I-a 
1-;3 

Sample size in each of the two groups (the value for n given 
by the formulae should be rounded up to the next highest 
integer) 
Population standard deviation (assumed equal in the two 
groups) 
Population means in each group 
Population proportions in each group 
Smallest worthwhile difference to be detected (Ml - Mz or 
7r\ - 7r2) 

Two-sided significance level 
Confidence level 
Power of test to detect the smallest worthwhile difference 
,6. 

100kth percentile of Normal distribution 

Values of Zk for values of k commonly used in sample size calcula­
tions are shown below: 

k 0·975 
1·96 

0·90 
1·28 

0·80 
0·84 

0·50 
0·00 

Satnple size for cotnparison of two independent tneans 

The sample size per group, given a specification for significance, 
power and the smallest difference to be detected, is 

2 X (Zl-a/Z + Zl_(3)Z x aZ 

n = ,6.2 
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The expected 100(1 - 0:)% confidence interval for the difference 
between means (using the Normal approximation) is 

(Note that the actual confidence interval for a given set of study 
data would use the sample means rather than the population 
means, the pooled estimate of the sample standard deviation 
rather than (>, and the appropriate critical value of the Student's 
t distribution rather than Zl- a/2-see chapter 4.) 

The expected width of the confidence interval, W, is thus 

W = 2 X zl-a/2 X J2~/n. 
Rearranging this equation, the sample size per group, based on 
confidence interval width, is obtained as 

8 X (ZI-a/2 X (»2 
n = -------'-=<---'--w2 

which, if W is set equal to 2~, reduces to 

2 x (ZI-a/2 X (»2 
n = ------,;----

~2 

Sample size based on confidence interval width is thus equal to the 
conventional calculation when Zl _ B = 0, implying that f3 = 0·5 
and the power is 50%. 

Sample size for comparison of two independent 
proportions 

The sample size per group, given a specification for significance, 
power and the smallest difference to be detected, is 

(ZI-a/2 + zl_;3)2 x ['if 1 (1 - 'ifl) + 'if2(1- 'if2)] 
n = ~2 . 

The expected 100(1 - 0:)% confidence interval for a difference 
between proportions (using the traditional method of chapter 6) is 

('if 1 - 'if2) ± ZI-a/2 X V['ifl(l - 'ifd + 'if2(1- 'if2)]/n. 

(Note that the actual confidence interval for a given set of study 
data would use the sample proportions rather than the population 
values. Also, chapter 6 presents more accurate formulae.) 
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The expected width of the confidence interval, W, is thus 

Rearranging this equation, the sample size per group, based on 
confidence interval width, is obtained as 

4 X (Zl_a/2)2 X [7rl (1 - 7rl) + 7r2(1 - 7r2)] 
n=--------~------~~--------------~ W2 

which, if W is set equal to 2~ = 2(7rl - 7r2), reduces to 

(Zl_a/2)2 X [7rl (1 - 7rl) + 7r2(1 - 7r2)] 
n= ~2 

Sample size based on confidence interval width is thus equal to the 
conventional calculation when Zl- f3 = 0, implying that f3 = 0·5 
and the power is 50%. 
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13 Special topics 
MICHAEL J CAMPBELL, LESLIE E DALY, 
DAVID MACHIN 

In this chapter we describe some special topics relating to the con­
struction and interpretation of confidence intervals in particular 
situations. Some of these methods have been referred to before 
in this book but we repeat them specifically here as they have 
general applicability. 

In certain circumstances, the algebraic expression for the estimate 
of the parameter of interest in a medical study may have a complex 
form. This complexity may, in turn, result in an even more complex 
expression for the corresponding standard error or in some circum­
stances no expression being available. In these situations, the substi­
tution method described here may be applicable. 

In some situations when the sample size is small, one may have 
to decide on whether the large sample expressions for the confi­
dence interval may have to be replaced by exact methods. This 
leads to consideration of conservative intervals, so-called mid-P 
values and bootstrap methods. 

In many clinical studies, multiple endpoints on each subject are 
often observed and these may lead to a large number of significance 
tests on the resulting data. The assessment of a patient'S quality of 
life is one example of this in which each instrument may have many 
questions which may be repeated on several occasions over the 
study period. In other circumstances, there may be multiple com­
parisons to make, for example in a clinical trial comparing several 
treatments. We discuss how the corresponding test size is affected 
and the impact on how confidence intervals are reported. 

The substitution method 

As described throughout this book the most commonly used 
method of calculating confidence intervals involves the Normal 
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approximation in which a multiple of the standard error is added to 
and subtracted from the sample value for the measure. The general 
expression is 

Estimate - (Zl-cr/2 x SE) to Estimate + (Zl-cr/2 x SE) 

where SE is the standard error ofthe relevant estimate and Z 1 - cr/2 

is the 100(1 - a)% percentile of the Normal distribution from 
Table 18.1. Sometimes the use of the Normal approximation 
relates to a transformation of the measure of interest. For instance, 
confidence limits for the relative risk, R, described in chapter 7 are 
based on the limits for loge R, that is, 

Transforming back to the original scale, by taking the exponential 
of these limits, gives the limits for the relative risk itself. 

It is important to realise that it is the actual limits of the trans­
formed quantity that must be back transformed and when the 
limits are transformed in this way the confidence limits are not 
symmetrical about the point estimate. 

Unfortunately, however, for a number of measures used in epi­
demiology or clinical research, either no standard error formula is 
available or the formula is complex and tedious to calculate. In 
addition, these more complex formulae may not be implemented 
in computer software packages. 

The substitution method is a particular approach to confidence 
interval estimation that can be used in some of these more difficult 
situations. It can replace the Normal approximation in others. 1 It 
is easily understood, simple to apply, makes fewer assumptions 
than the Normal approximation approach and is inherently more 
accurate. The essence of the method is to find an expression for 
the measure of interest as a function of a basic parameter for 
which confidence limits are easy to calculate. The confidence 
limits for the measure are then obtained by substituting the 
limits for this basic parameter into the formula for the measure. 

The following example illustrates a very simple application of the sub­
stitution method from the area of population genetics. Assuming Hardy­
Weinberg equilibrium, the frequency (the proportion or percentage) of a 
rare recessive gene, q, in the population can be estimated2 as the square 
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root of the birth incidence of homozygotes, I, that is, 

q= VI. 
In this case, an approximation for the standard error of this estimate of q is 
available and is given by2 

SE(q) = V(1 -l)/4N, 

where N is the number of births on which the birth incidence is based. 
This expression can then be used to calculate the large sample confidence 
interval in the usual way. 

Seventeen cases of Wilson's disease were detected in 1240091 births in 
Ireland3

, giving a birth incidence of 1= 17/1240 091 = 13·71 per million. 
This corresponds to a gene frequency of q = v'0·00001371 = 0·0037 or 
0'37%. Using the Normal approximation and the above expression for 
the standard error of q, the 95% confidence interval for the gene frequency 
is from 0'28% to 0'46%. 

To determine confidence limits for the gene frequency, q, using the sub­
stitution method, limits are obtained for the incidence rate I and substi­
tuted into the formula for q. Using the methods described in chapter 7, 
employing the Poisson distribution with x = 17 and Table 18.3, the 95% 
confidence limits for the incidence of Wilson's disease are h = 7·99 and 
Iv = 21·95 per million. Taking the square root of each of these limits 
gives 95% limits for q. Thus qL = v'0'00000799 = 0·0028 = 0·28% and 
qv = v'0'00002195 = 0'0047 = 0·47%. These are almost identical to 
those obtained using the Normal approximation above. 

The substitution method for obtaining confidence limits for the 
gene frequency relies on the fact that q can be expressed as the 
square root of the birth incidence, for which limits are readily 
calculated. The square root of these limits gives the confidence 
limits for the gene frequency. 

The simplicity of the standard error formula for the gene fre­
quency example above means that, in this case, the substitution 
method shows no advantage in terms of ease of use. However, 
the utility of the method is illustrated in the derivation of confi­
dence limits for the incidence rate, the attributable risk (chapter 
7) and the number needed to treat (chapter 11). In particular the 
standard error formula for the attributable risk is quite complex 
and the substitution limits provide a much easier method for per­
forming the calculation.! Other examples of the substitution 
method are to be found. In particular, confidence limit estimation 
based on a transformation of a particular quantity, such as that 

155 



STATISTICS WITH CONFIDENCE 

described for the relative risk above, can also be considered an 
application of the method. 

A major advantage of the substitution method is that no distri­
butional assumptions are necessary for the sampling distribution 
of the measure for which the confidence limits are required. If 
exact confidence limits are known for the underlying parameter 
(as in the binomial or Poisson cases) the limits for a function of 
the parameter will also be exact. For example, the substitution 
limits described above for the gene frequency, which are based 
on exact limits for the incidence rate, are in general more accurate 
than those obtained using the standard error formula. Thus there 
may be a distinct advantage to the substitution method even when 
an alternative exists. 

The kernel of the substitution method is expressing the measure 
for which confidence limits are required as a function of a single 
quantity for which limits are easily obtained. It is important to 
note, however, that the measure must be a function of a single 
parameter for the method to work. For example, it is not possible 
to obtain a confidence interval for a relative risk by using the con­
fidence limits for its two component absolute risks. 

To avoid multiple parameters it may be necessary to assume that 
some ofthe quantities that make up the relevant formula are with­
out sampling variation and are thus regarded as having no varia­
tion. If the measure is derived from a contingency table this will 
often be equivalent to assuming that one or both of the margins 
of the table are fixed. Thus the substitution limits for the attribu­
table risk (chapter 7) assume that the prevalence of the risk factor is 
constant and the substitution limits for an incidence rate (chapter 
7) assume that the population size is fixed. This aspect has been 
discussed further. 4-6 

Comment 

The substitution method will be applicable as long as there is a 
fairly simple relationship between the measure and the parameter 
for which limits are available. Technically, the measure must 
either increase or decrease as the parameter value increases. 
Most measures in epidemiology and clinical medicine, however, 
satisfy this requirement. 

The substitution method for deriving confidence intervals may 
be useful to the researcher faced with a non-standard measure or 
one with a fairly complex standard error. It is particularly suitable 
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for "hand" calculations when specialised computer software is not 
available. 

Exact and rnid-P confidence intervals 

One way of thinking about confidence intervals for a population 
parameter, (), is that a 95% confidence interval contains those 
values of () that are not rejected by a hypothesis test at the 5% 
level using the observed data. As a consequence, one can determine 
lower and upper limits (()L, ()u) as the values that are on the "exact" 
borderline of significance by the two possible one-sided tests both 
at the 2·5% level. For example, suppose we observed 50 remissions 
out of 100 patients, giving a response rate of 0·5. Using the tradi­
tional method of chapter 6, a 95% confidence interval for the true 
proportion () is 0·4 to 0·6. Suppose the true remission rate was in 
fact 0·4, the lower of these limits, that is it corresponded exactly 
to our estimate of ()u then, in a trial of 100 patients we would 
expect to observe 50 or more remissions with probability of 
about 0·025. Similarly, if the true remission rate were 0·6 (exactly 
our estimate of ()u) we would expect to observe 50 or fewer remis­
sions with a probability of about 0·025. These probabilities are not 
precisely 0·025 because the standard deviations necessary for these 
calculations are based on () = 0·4 and () = 0·6 respectively, rather 
than () = 0·5. 

An exact confidence interval for this remission proportion 
would involve using the binomial distribution to calculate the 
probability of 50 or more remissions in 100 patients for a variety 
of possible values of the true population parameter, (). The lower 
limit, ()L' is then the value of () which gives a probability of exactly 
0·025 (hence the term "exact" confidence interval). A similar cal­
culation provides ()u. This process would appear to be ideal, and 
many textbooks recommend it. However, because of the discrete 
nature of count data precise correspondence with (here) 0·025 
cannot often be obtained. Thus the coverage probability for an 
exact confidence interval tends to be larger than the nominal 
one of 100(1 - a)%. So what purports to be a 95% confidence 
interval is actually wider, and may exclude the true population 
value on, say, only 3% of occasions rather than the desired 5%. 
For small studies an exact interval may be much wider than is 
desired. 7 

For small samples, instead of the usual chi-squared test, a com­
monly used test is Fisher's Exact Test. 8 For this test the data for 
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calculating the two proportions are first expressed by placing the 
observations in a 2 x 2 table, with the total for the columns and 
rows known as the marginal totals. This format also provides an 
estimate of the odds ratio (chapter 7). Given the marginal totals, 
it is possible to calculate the probability of the observed table, 
using the so-called hypergeometric distribution. 8

,9 Fisher's Exact 
Test involves calculating the probability of all the possible tables 
that can be constructed that have the same marginal totals as the 
observed one. For convenience, these tables can be ordered in 
terms of the odds ratios of the individual tables. 

The actual observed data table has the highest probability, with 
the probabilities decreasing as the odds ratio moves away from the 
observed one in either direction. The one-sided P value is the sum 
of all probabilities more extreme (in a given direction) than the 
observed one, plus the probability of the observed table. The sim­
plest way to derive a two-sided P value is to double the one-sided P 
value. It can be shown that this test is conservative, which simplis­
tically means that the associated P value is too large. In particular, 
under the assumption that the null hypothesis is true the expected 
value of this one-sided P value is greater than 0'5, whereas it 
should be exactly 0'5, since under the null hypothesis one would 
expect the P value to be uniformly distributed over the interval 0 
to 1. 

An alternative is known as the mid-P value and involves adding 
only half (rather than all) the probability of the observed table to 
the sum of probabilities of the more extreme tables to obtain the 
one-sided P value. 8

-
10 Clearly this mid-P value will be smaller, 

and so results in a less conservative hypothesis test. It can also 
be shown that its expected value under the null hypothesis is 0·5. 
This is particularly important when the results of different studies 
are pooled7 (see chapter 11). In practice, we usually deal with two­
sided tests, and the two-sided mid-P value is simply double the 
one-sided mid-P value. lO 

The approach to confidence intervals via hypothesis tests can 
use mid-P probabilities rather than exact probabilities to obtain 
mid-P confidence intervals.9 They are more tedious to calculate 
than the corresponding limits using the more conventional 
methods as there is no direct formula. They give narrower 
limits than conventional intervals, but simulations have shown 
for a binomial proportion that the coverage probabilities are 
close to the specified ones, except for values of the proportion 
close to 0 or 1.7,11 
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Swinscow8 compares the injury rates in two parachute dropping zones 
as 5 out of 15 drops in one zone and 2 out of 40 drops in another zone. 
The conventional two-sided Fisher's Exact Test result is P = 0·0251 
and the mid-P value is 0'0136. The estimated odds ratio is 

OR = 5 x (40 - 2) = 9.5 
(15 - 5) x 2 

and a 95% confidence interval based on the probabilities from the Fisher 
Exact Test is 1·25 to 107'9. The mid-P 95% confidence interval is 1'54 to 

75'5. This narrower confidence interval reflects the less conservative infer­
ence obtained using mid-P values. It is perhaps worth noting that the 95% 
confidence interval using the traditional large sample assumptions is 1·60 
to 56'4, which is even narrower. However, this interval would not, in the 
long run, have 95 % coverage of the population odds ratio because the large 
sample assumptions do not hold for small samples (chapter 6). 

Comment 

Rothman and GreenlandlO remark on the exact versus mid-P 
debate that "neither position is logically compelling ... the choice 
is of little practical importance because any data set in which the 
choice makes a big numerical difference must have very little infor­
mation on the measure of interest". It should be noted that the 
coverage properties of exact and mid-P confidence intervals for 
more complicated situations such as the difference between bino­
mial proportions have yet to be investigated thoroughly although 
Newcombe l2 has investigated their properties through simulation. 

The use of the mid-P method when comparing a sample propor­
tion with a specified population proportion is discussed by Tai 
et ai. 13 

Software 

Exact confidence intervals for a variety of situations are available 
in the StatXact 3 software (http://www.cytel.com) which also give 
mid-P confidence intervals for the particular case of a confidence 
interval for an odds ratio. 

Bootstrap confidence intervals 

Conventional confidence interval calculations require assump­
tions concerning the sampling distribution of the estimate of 
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interest. If the sample size is large and we wish to estimate a con­
fidence interval for a mean, then the form of the underlying popu­
lation distribution is not important because the central limit 
theorem will ensure that the sampling distribution is approxi­
mately Normal. However, if the sample size is small we can only 
presume a t distribution form for the sampling distribution if the 
underlying population distribution can be assumed Normal. If 
this is not the case then the confidence interval cannot be expected 
to cover the population value with the specified confidence cover­
age, say 95%. In practice, we have information on the form of the 
distribution of the population from the distribution of the sample 
data itself. The so-called "bootstrap" estimates (from the expres­
sion "pulling oneself up by one's bootstraps") utilise this informa­
tion, by making repeated random samples with replacement of the 
same size as the original sample from the data. 14

,15 In this way the 
bootstrap samples mimic the way the observed data are collected 
from the population. The "with replacement" means that any 
observation can be sampled more than once. It is important 
because sampling without replacement would simply give the ori­
ginal data values in different orders with, for example, the mean 
and standard deviation always being exactly the same. It turns 
out that "with replacement" is the best approach if the observa­
tions are independent; if they are not then other methods, 
beyond the scope of this chapter, are needed. The standard error 
is estimated from the variability between the values of the statistic 
derived from the different bootstrap samples. The point about the 
bootstrap is that it produces a variety of values obtained from the 
observations themselves, whose variability reflects the standard 
error which would be obtained if samples had been repeatedly 
taken from the original population. 

Suppose we wish to calculate a 95 % confidence interval for a 
mean. We take a random sample of the data, of the same size as 
the original sample, and calculate the mean of the data in this 
random sample. We do this repeatedly, say 999 times. We now 
have 999 means. If these are ordered in increasing value a boot­
strap 95% confidence interval for the mean would be from the 
25th to the 975th values. This is known as the percentile method. 

However, the percentile method is not the best method of boot­
strapping because it can have a bias, which one can estimate and 
correct for using methods, such as the "bias corrected method" 
and the "bias corrected and accelerated" (BCa) method, the 
latter being the preferred option. There is also the "parametric 
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bootstrap" when the residuals from a parametric model are boot­
strapped to give estimates ofthe standard errors of the parameters, 
for example to estimate the standard errors of coefficients from a 
multiple regression. Details are given in Efron and Tibshirani l4 

or Davison and Hinckley.15 
Using the methods above, valid bootstrap confidence intervals 

can be constructed for all common estimators, such as a propor­
tion, a median, or a difference in means, providing that the data 
are independent and come from the same population. More 
sophisticated methods can also allow for correlations between the 
observations. 

The number of bootstrap samples required depends on the type 
of estimator: 50-200 are adequate for a confidence interval for a 
mean, but in excess of 1000 replications are required for a confi­
dence interval of, say, the 2'5% or 97'5% centiles. When quoting 
a bootstrap confidence interval one should state the method, such 
as the percentile or bias corrected, and the number of replications 
used. 

Consider the ,a-endorphin concentrations from 11 runners described in 
chapter 5. One method of calculating a confidence interval for a median is 
described there. To calculate a 95% confidence interval for the median 
using a bootstrap approach we first decide on the number of replications 
(say 999), generate the samples and calculate from each the median as 
Table 13.1. 

The 999 bootstrap medians are then ordered by increasing value. The 
25th and the 975th values give the percentile estimates of the 95% confi­
dence interval. In this example, we find that the BCa method gives a 95% 
bootstrap confidence interval 71·2 to 143'0 pmoljl. This contrasts with 
71'2 to 177'Opmoljl using the standard method given in chapter 5. The 
bootstrap interval suggests that the lower limit from the standard 
method is probably about right but the upper limit may be too high. 

Table 13.1 Summary of 999 bootstrap samples from 11 observations of 
,a-endorphin concentrations in pmoljl16 

Original data 
Bootstrap: 

Sample 1 
Sample 2 

,B-endorphin concentrations in pmol/I 

66, 71'2, 83'0, 83'6, 101, 107'6, 122, 143, 160, 177,414 

143, 107'6, 414, 160, 101, 177, 107'6, 160, 160, 160, 101 
122,414, 101,83'6, 143, 107'6, 101, 143, 143, 143, 107·6 

Median 

107'6 

160 
122 

Sample 999 122,414,160,177,101,107'6,83'6,177,177,107'6,107'6 122 
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When the standard and the bootstrap methods agree, we can be more con­
fident about the inference we are making and this is an important use ofthe 
bootstrap. When they disagree more caution is needed, but the relatively 
simple assumptions required by the bootstrap method for validity imply 
that, in general, it is to be preferred. 

It may seem that the best estimator of the median for the population is 
the median of the bootstrap estimates, but this turns out not to be the case. 
One should quote the sample median, here 107'6 pmol/l, as the best esti­
mate of the population median. 

The main advantage of the bootstrap is that it frees the investi­
gator from making inappropriate assumptions about the distribu­
tion of an estimator in order to make inferences. A particular 
advantage is that it is available when the formula for the confidence 
interval cannot be derived explicitly and it may provide better esti­
mates when the formulae are only approximate. 

Comment 

The naive bootstrap methods we have described make the 
assumption that the observed data sample is an unbiased simple 
random sample from the study population. More complex survey 
sampling schemes, such as stratified random sampling, may not 
reflect this simple situation, and so more complicated bootstrap­
ping schemes may be required. Naive bootstrapping may not be 
successful in very small samples (say <9 observations), since the 
observations themselves are less likely to be representative of the 
study population. "In very small samples even a badly fitting 
parametric analysis may outperform a non-parametric analysis, 
by providing less variable results at the expense of a tolerable 
amount of bias.,,14 

Perhaps one of the most common uses for bootstrapping in 
medical research has been for calculating confidence intervals for 
derived statistics such as cost-effectiveness ratios, when the theor­
etical distribution is mathematically difficult. 17

,ls However, care is 
needed here since the denominators in some bootstrap samples can 
get close to zero, leading to very large estimates of the ratio. As an 
example in health economics, Lambert et al. 19 calculated the mean 
resource costs per patient for day patients with active rheumatoid 
arthritis as £1789 with a bootstrap 95% confidence interval of 
£1539 to £2027 (1000 replications). They used a bootstrap 
method because the resource costs have a very skewed distribution. 
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However, the authors did not state which bootstrap method they 
used. 

Software 

It is relatively easy to program the bootstrap with modern soft­
ware. Three packages which have the bootstrap as standard are 
Stata (http://www.stata.com), SPlus (http://www.mathsoft.com) 
and Resampling Stats (http://www.resample.com). The book by 
Davison and Hinckley15 comes with a disk of software and 
examples for use with SPlus. The results in this chapter were 
derived using SPlus. 

Multiple comparisons 

In a clinical study in which two groups are being compared, the 
formal statistical test of this comparison has an associated two­
sided test 'size' of a. This is set as the boundary below which 
the P value, calculated from the data for the primary endpoint of 
the study, must fall to be declared statistically significant. In this 
case the null hypothesis of no difference between groups is then 
rejected. We have argued very strongly against the uncritical use 
of such an approach (chapter 3) but introduce it here for illustra­
tive purposes. 

Suppose this approach is utilised in the analysis of a clinical trial 
comparing two groups and suppose further that there is truly no 
difference between the two groups. Despite this "no difference" 
there is a 100a% probability of a statistically significant result 
and the false rejection of the null hypothesis. Thus, following 
any comparison, there is always the possibility of a false positive 
outcome. It is usual to set this probability as 5% (i.e., a = 0'05). 

If more than one endpoint is measured for the two group study 
in question, then the situation becomes more complex. For exam­
ple, if a clinical trial is comparing two treatments (A and B) but 
there are three different independent outcomes being measured, 
then there are three comparisons to make between A and Band, 
in theory at least, three statistical tests. In this circumstance it 
can be shown that the false-positive rate is no longer 100a% but 
approximately 300a%. In fact for k (assumed independent) out­
come measures the false-positive rate is 100 x [1 - (1 - all% 
which is approximately equal to 100ka%. Clearly, the false­
positive rate increases as the number of comparisons increases. 
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In order to retain the false-positive rate as 1000'% the Bonferroni 
correction is often suggested. This implies declaring differences as 
statistically significant at the 1000'% only if the observed P is less 
than 0'/ k. In the case of 0' = 0·05 and k = 3, this implies P < 0·017. 
Equivalently, and preferably, multiply the observed P value by k 
and declare this significant if less than 0'. This latter approach is 
recommended by Altmanzo as it avoids the apparently anomalous 
situation in which the P value quoted is less than 0' but is not 
statistically significant. 

Similar considerations can apply to confidence intervals and one 
approach in situations where k endpoints are being compared is to 
replace zl-a/2 in the corresponding equation for the confidence 
interval by Zl- a/2k' For example, if k = 3, 0' = 0'05, then 
Zl - 0/2 = ZO·975 = 1·96 is replaced by Zl- a/2k = ZO.9917 = 2·64 (see 
Table 18.1). This approach clearly leads to a wider confidence 
interval. (Analogous changes would be made if t rather than Z 

were being used for constructing the confidence interval.) 

·.·:.i\W~~j~~i;i 
Suppose in the first worked example of chapter 4 that both the systolic 

and diastolic blood pressures were measured. Thus the study has k = 2 
endpoints. In this case to calculate the 95% confidence interval corre­
sponding to the observed mean systolic blood pressure of 146·4mmHg 
(SD 18·5) we utilise 0)2 = 0·025 in place of a = 0·05 to obtain from 
Table 18.1 ZI-"j4 = zO.9875 = 2·24. The 95% confidence interval for the 
population value of the mean systolic blood pressure is then given by 

146·4 - (2·24 x 1·85) to 146·4 + (2·24 x 1·85) 

that is, from 142·3 to 150'5 mmHg. (This compares with 142'7 to 
150·1 mmHg in chapter 4.) In addition we would calculate the 95% con­
fidence interval for the diastolic blood pressure also using 2·24 in place 
of 1·96 in the calculation. 

It is recognised that the Bonferroni approach to adjusting for 
multiple comparisons is conservative as it assumes the different 
endpoints are uncorrelated. Indeed, in the example we are using, 
it is well known that systolic and diastolic blood pressures are 
strongly correlated. This conservativeness implies that utilising 
the criterion kP < 0' will lead to failure to reject the null hypothesis 
on too many occasions. The corresponding confidence intervals 
will also be too wide. However, the correlation structure between 
different endpoints measured on the same subjects may be very 
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complex and not easily summarised or corrected for and, in any 
event, will change from study to study. 

One approach that has been used to overcome this difficulty is to 
quote 99% confidence intervals rather than 95% confidence inter­
vals when more than a single outcome is regarded as primary. Thus 
the UK Prospective Diabetes Study Group21 report 21 distinct 
endpoints, ranging from fatal myocardial infarction to death 
from unknown cause, and provide 99% confidence intervals for 
the corresponding 21 relative risks comparing tight with less 
tight control of blood pressure. This is a "half-way house" propo­
sal, since 0'01 (= 1 - 0'99) is between the conventional 0·05 and 
the Bonferroni corrected value of 0'05/21 = 0·0024. 

A contrary view warning against the indiscriminate use of the 
Bonferroni correction, points out that the method is concerned 
with the situation that all k null hypotheses are true simulta­
neously, which is rarely of interest or use to researchers.22,23 A 
further weakness is that the interpretation of a finding depends 
on the number of other tests performed. Thus two investigators 
obtaining exactly the same result with a particular endpoint may 
draw different conclusions on statistical significance if they had 
observed a different number of other endpoints. In general there 
is also an increasing likelihood that truly important differences 
are deemed non-significant. 

There are other situations in which multiple comparisons may 
be made. For example, in the meta-analyses described in chapter 
11, many independent trial results may be summarised by their 
individual treatment effects and associated 95% confidence inter­
vals before combining into a single summary estimate with a 
confidence interval. A more cautious approach would be to utilise 
99% confidence intervals in their place. 

Similar considerations of multiplicity may also apply in situa­
tions other than studies with multiple endpoints. For example, if 
more than two groups are compared in a clinical trial using a 
single outcome, then there is potentially more than one statistical 
test to conduct and more than one confidence interval to construct. 

There are also situations in which a multiple comparison 
approach is utilised to compare different groups inappropriately. 
For example, Rothman24 illustrated, using data from Young 
et al.,25 how subjects from four groups are compared and are not 
statistically significantly different from each other using a test 
size of 5% without a Bonferroni correction. However, he points 
out that there is some structure to the four groups that had not 

165 



STATISTICS WITH CONFIDENCE 

been taken into account in this analysis. The four groups were in 
fact four levels of water chlorination: none, low, medium and 
high. Taking this "dose" into account with a suitable test for 
trend demonstrated a statistically significant and increasing rela­
tive risk of brain cancer amongst the women under study with 
increasing dose. (See also the example of multiple logistic regres­
sion in chapter 8.) 

Multiple comparisons can also occur in continuous monitoring 
of the progress of clinical trials which include interim analyses, 
subgroup analyses in trials and other studies, and in regression 
modelling when decisions on inclusion and exclusion of variables 
in a model have to be made. All of these have direct implications 
for the corresponding confidence intervals. 

Comment 

As we have indicated, the problem of multiple comparisons is 
particularly acute in quality of life research. Thus published guide­
lines on reporting such studies explicitly state: "in the case of 
multiple comparisons, attention must be paid to the total 
number of comparisons, to the adjustment, if any, of the signifi­
cance level, and to the interpretation of the results".26 Improved, 
but more complex, methods of correcting for multiple comparisons 
are available and their relative merits have been discussed.27 There 
is no general consensus, however, as to which procedures to adopt 
to allow for multiple comparisons. We therefore recommend 
reporting the unadjusted P values and confidence limits with a 
suitable note of caution with respect to interpretation. Perneger23 

concludes that: "Simply describing what tests of significance 
have been performed, and why, is generally the best way of dealing 
with multiple comparisons." A precautionary recommendation 
may be to follow the UK Prospective Diabetes Study Group21 
and at least have in mind a 99% confidence interval as an aid to 
interpretation. 
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14 Statistical guidelines 
for contributors to 
medical journals 

DOUGLAS G ALTMAN, SHEILA M GORE, 
MARTIN J GARDNER, STUART J POCOCK 

Introduction 

Most papers published in medical journals contain analyses that 
have been carried out without any help from a statistician. 
Although nearly all medical researchers have some acquaintance 
with basic statistics, there is no easy way for them to acquire 
insight into important statistical concepts and principles. There 
is also little help available about how to design, analyse, and 
write up a whole project. Partly for these reasons much that is pub­
lished in medical journals is statistically poor or even wrong. 1 A 
high level of statistical errors has been noted in several reviews 
of journal articles and has caused much concern.2,3 

Few journals offer even rudimentary statistical advice to contri­
butors. These guidelines (originally published in 1983) followed 
suggestionsL4 that comprehensive statistical guidelines could 
help by making medical researchers more aware of important 
statistical principles, and by indicating what information ought 
to be supplied in a paper. Since our original article, Bailar and 
Mosteller published guidelines amplifying the brief section on 
statistics in the "Uniform requirements for manuscripts". 5,6 

Other authors have since published guidelines for particular 
types of study.7-12 Lang and Secic have published very compre­
hensive guidance. 13 

Deciding what to include in the guidelines, how much detail to 
give, and how to deal with topics where there is no consensus was 
problematic. These guidelines should thus be seen as one view 
of what is important, rather than as a definitive document. We 
did not set out to provide a set of rules but rather to give general 
information and advice about important aspects of statistical 
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design, analysis, and presentation. Those specific recommenda­
tions that we have made are mostly strong advice against certain 
practices. 

Some familiarity with statistical methods and ideas is assumed, 
since some knowledge of statistics is necessary before carrying 
out statistical analyses. For those with only a limited acquaintance 
with statistics, the guidelines should show that the subject is very 
much wider than mere significance testing and illustrate how 
important correct interpretation is. The lack of precise recommen­
dations in some places indicates that good statistical analysis 
requires common sense and judgement, as well as a repertoire of 
formal techniques, so that there is an art in statistics as well as in 
medicine. We hope that the guidelines present an uncontroversial 
view of the most frequently used and accepted statistical pro­
cedures. We have deliberately limited the scope of the guidelines 
to cover the more common statistical procedures. The version pre­
sented here incorporates a few additions to the original version. 

Readers may find that a relevant section presents information or 
advice that is unfamiliar or is not understood. In such circum­
stances, although almost all of the topics covered may be found 
in the more comprehensive medical statistics textbooks,14-19 we 
strongly recommend that they should seek the advice of a statisti­
cian. The absence from the guidelines of specific references is 
intentional: it is better to get expert personal advice if further 
insight is needed. Moreover, because mistakes in design cannot 
later be rectified, professional advice should first be obtained 
when planning a research project rather than when analysing the 
data. 

These guidelines are intended to try to help authors know what 
is important statistically and how to present it in their papers. 
They emphasise that such matters of presentation are closely 
linked to more general consideration of statistical principles. 
Detailed discussion of how to choose an appropriate statistical 
method is not given; such information is best obtained by consult­
ing a statistician. We do, however, draw attention to certain 
misuses of statistical methods. 

These guidelines follow the usual structure of medical research 
papers: Methods, Results (analysis and presentation), and Discus­
sion (interpretation). As a result, several topics appear in more 
than one place and are cross-referenced as appropriate. Statistical 
checklists (chapter 15) indicate the broad categories of information 
that should be included in a paper. 
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Methods section 

General principles 

It is most important to describe clearly what was done, including 
the design of the research (be it an experiment, trial, or survey) and 
the collection of the data. The aim should be to give enough infor­
mation to allow methods to be fully understood and, if desired, 
repeated by others. As noted by the International Committee of 
Medical Journal Editors, authors should "describe statistical 
methods with enough detail to enable a knowledgeable reader 
with access to the original data to verify the reported results". 6 

Authors should include information on the following aspects of 
the design of their research: 

• the objective of the research, and major hypotheses; 
• the type of subjects, stating criteria for inclusion and exclu­

sion; 
• the source of the subjects and how they were selected; 
• the number of subjects studied and why that number of sub­

jects was used; 
• the types of observation and the measurement techniques used 

(where several assessments are made for each subject, the main 
focus of interest should be specified). 

Each type of study-for example, surveys and clinical trials-will 
require certain additional information. 

Surveys (observational studies) 

The study design should be clearly explained. For instance, the 
selection of a control group and any matching procedures need 
detailed description. It should also be clearly stated whether the 
study is retrospective, cross-sectional, or prospective. The pro­
cedure for selecting subjects and the achievement of a high par­
ticipation rate are particularly important, as findings are usually 
extrapolated from the sample to some general population. It is 
helpful to report any steps taken to encourage participation in 
the survey. 

Clinical trials 

The treatment regimens (including ancillary patient care and 
criteria for modifying or stopping treatment) need detailed defini­
tion. The method for allocating treatments to subjects should be 
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stated explicitly. In particular, the specific method of randomisa­
tion (including any stratification) and how it was implemented 
need to be explained. Lack of randomisation should be noted as 
a deficiency in design and the reasons given. Studies using deter­
ministic allocation methods, for example based on hospital 
number or alteration, are not truly randomised and are unlikely 
to be acceptable to the BMfo or other leading medical journals. 

The use of blinding techniques and other precautions taken to 
ensure an unbiased evaluation of patient response should be 
described. The main criteria for comparing treatments, as agreed 
in the trial protocol, should be listed. For crossover trials the pre­
cise pattern of treatments (and any run in and wash out periods) 
needs explaining. 

A more comprehensive list of information to include in the 
report of a clinical trial is given in the checklist in chapter 15. 
Many leading medical journals now require authors to comply 
with the CONSORT recommendations for reporting controlled 
trials. 12 

Statistical methods 

All the statistical methods used in a paper should be identified. 
When several techniques are used it should be absolutely clear 
which method was used where, and this may need clarification in 
the results section. Common techniques, such as t tests, simple X2 

tests, Wilcoxon and Mann-Whitney tests, correlation (r), and 
linear regression, do not need to be described, but methods with 
more than one form, such as t tests (paired or unpaired), analysis 
of variance, and rank correlation, should be identified unambigu­
ously. More complex methods do need some explanation, and if 
the methods are unusual a precise reference should be given, prefer­
ably to a textbook (with page numbers). It may help to include brief 
comments on why the particular method of analysis was used, 
especially when a more familiar approach has been avoided. It is 
useful to give the name of a computer program or package used­
for example, the Statistical Package for the Social Sciences 
(SPSS)-but the specific statistical methods must still be identified. 

Results section: statistical analysis 

Descriptive information 

Adequate description of the data should precede and comple­
ment formal statistical analysis. In general variables which are 
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important for the validity and interpretation of subsequent statis­
tical analyses should be described in most detail. This can be 
achieved by graphical methods, such as scatter plots or histograms, 
or by using summary statistics. Continuous variables (such as 
weight or blood pressure) can be summarised using the mean 
and standard deviation (SD) or the median and a percentile 
range-say, the interquartile range (25th to 75th percentile). 
The latter approach is preferable when continuous measurements 
have an asymmetrical distribution. The standard error (SE) is not 
appropriate for describing variability. For ordered qualitative data 
(such as stages of disease I to IV) the calculation of means and stan­
dard deviations is incorrect; instead, proportions should be 
reported. 

Deviations from the intended study design should be described. 
For example, in clinical trials it is particularly important to enu­
merate withdrawals with reasons, if known, and treatment alloca­
tion. For surveys, where the response rate is of fundamental 
importance, it is valuable to give information on the characteristics 
of the non-responders compared with those who took part. The 
representativeness of the study sample will need to be investigated 
if it is a prime intention to extrapolate results to some appropriate 
population. 

It is useful to compare the distribution of baseline characteristics 
in different groups, such as treatment groups in a randomised trial. 
Such differences that exist, even if not statistically significant, are 
real and should be properly allowed for in the analysis (see "Com­
plex analyses", below). Such tests assess only the integrity of the 
randomisation, not whether the groups are comparable. 

Underlying assumptions 

Methods of analysis such as t tests, correlation, regression, and 
analysis of variance all depend to some extent on certain assump­
tions about the distribution of the variable(s) being analysed. 
Technically, these assumptions are that in some aspect the data 
come from a Normal distribution and if two or more groups are 
being compared that the variability within each is the same. 

It is not possible to give absolutely the degree to which these 
assumptions may be violated without invalidating the analysis. 
But data which have a highly skewed (asymmetrical) distribution 
or for which the variability is considerably different across 
groups may require either some transformation before analysis 
(see "Data transformation", below) or the use of alternative 
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"distribution free" methods, which do not depend on assumptions 
about the distribution (often called non-parametric methods). For 
example, the Mann-Whitney U test is the distribution free 
equivalent of the two-sample t test. Distribution-free methods 
may also be appropriate for small data sets, for which the assump­
tions cannot be validated adequately. 

Sometimes the assumption of Normality may be especially 
important-for example, when the range of values calculated as 
two standard deviations either side of the mean is taken as a 95% 
"normal range" or reference interval. In such .ases the distribu­
tional assumption must be shown to be justified. 

Hypothesis tests 

The main purpose of hypothesis tests (often less accurately 
referred to as "significance tests") is to evaluate a limited 
number of preformulated hypotheses. Other tests, which are 
carried out because they have been suggested by preliminary 
inspection of the data, will give a false impression because in 
such circumstances the calculated P value is too small. For 
example, it is not valid to test the difference between the smallest 
and largest of a set of several means or proportions without 
making due allowance for the reason for testing that particular dif­
ference; special "multiple comparison" techniques are available 
for making pairwise comparisons among several groups. However, 
where three or more groups are compared which have a natural 
ordering, such as age groups or stages of cancer, the data should 
be analysed by a method that specifically evaluates a trend across 
groups. 

I t is customary to carry out two-sided hypothesis tests. If a one­
sided test is used this should be indicated and justified for the 
problem in hand. 

The presentation and interpretation of results of hypothesis tests 
are discussed in later sections. The use of confidence intervals in 
addition to hypothesis tests is strongly recommended-see next 
section and chapters 1 and 3. 

Confidence intervals 

Most studies are concerned with estimating some quantity, such 
as a mean difference or a relative risk. It is desirable to calculate the 
confidence interval around such an estimate. This is a range of 
values about which we are, say, 95% confident that it includes 
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the true value. There is a close relation between the results of a test 
of a hypothesis and the associated confidence interval: if the differ­
ence between groups is significant at the 5% level then the 
associated 95% confidence interval excludes the zero difference. 
The confidence interval conveys more information because it indi­
cates a range of values for the true effect which is compatible with 
the sample observations (see also "Interpretation of hypothesis 
tests", below, and chapter 3). 

Confidence intervals reveal the precision of an estimate. A wide 
confidence interval points to lack of information, whether the dif­
ference is statistically significant or not, and is a warning against 
overinterpreting results from small studies. 

In a comparative study, confidence intervals should be reported 
for the differences between groups, not for the results of each 
group separately. 

Paired observations 

It is essential to distinguish the case of unpaired observations, 
where the comparison is between measurements for two different 
groups-for example, subjects receiving alternative treatments­
from that of paired observations, where the comparison is between 
two measurements made on the same individuals in different 
circumstances (such as before and after treatment). For example, 
where with unpaired data the two sample t test would be used, 
with paired data the paired t test should be used instead. Similarly, 
the Mann-Whitney U test for unpaired data is replaced by the 
paired Wilcoxon test, and the usual X2 test for 2 x 2 tables is 
replaced by McNemar's test. It should always be made clear 
which form of test was used. Likewise the method for calculating 
a confidence interval differs from that for unpaired observations 
(see chapters 4, 5, 6, and 7). 

The same distinction must be made when there are three or 
more sets of observations. All of the statistical methods mentioned 
in this section may be generalised to more than two groups; in par­
ticular, paired and two-sample t tests generalise to different forms 
of analysis of variance. 

Units of analysis 

Often several measurements are made on the same patient, but 
the focus of interest usually remains the patient. The simplest 
case is when researchers study a part of the human anatomy 
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which is in duplicate, such as eyes, but sometimes very many meas­
urements can be taken on a single patient. Multiple counting of 
individual patients can lead to seriously distorted results. In parti­
cular, it inflates the sample size and may lead to spurious statistical 
significance. The patient is the unit of investigation and thus 
should be the unit of analysis. (A related issue is discussed in the 
following section.) 

By contrast, groups are sometimes the focus of interest. For 
example, in a "cluster" randomised trial groups such as hospital 
wards or general practices may be randomised to different inter­
ventions. In such studies it is wrong to analyse data for individual 
patients as if they were independent observations. Here the cluster 
is the correct unit of analysis. 

Repeated measurements 

A common study design entails recording serial measurements 
of the same variable(s) on the same individual at several points in 
time. Such data are often analysed by calculating means and stan­
dard deviations at each time and presented graphically by a line 
joining these means. The shape of this mean curve may not give 
a good idea of the shapes of the individual curves. Unless the indi­
vidual responses are very similar it may be more valuable to analyse 
some characteristic of the individual profiles, such as the time 
taken to reach a peak or the length of time above a given level. 
This would also help to avoid the problems associated with multi­
ple hypothesis testing (see "Many hypothesis tests", below). 

Repeated measurements of the same variable on one individual 
under the same experimental conditions, known as replicate read­
ings, should not be treated as independent observations when com­
paring groups of individuals. Where the number of replicates is the 
same for all subjects analysis is not difficult; in particular, analysis 
of variance is used where t tests would have been applied to 
unreplicated data. If the number of replicates varies among indivi­
duals, a full analysis can be very complex. The use of the largest or 
smallest of a series of measurements (such as maximum blood 
pressure during pregnancy) may be misleading if the number of 
observations varies widely among individuals. 

Data transformation 

Many biomedical variables have distributions which are posi­
tively skewed, with some very high values, and they may require 
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mathematical transformation to make the data appropriate for ana­
lysis. In such circumstances the logarithmic (log) transformation is 
often applicable, although occasionally other transformations 
(such as square root or reciprocal) may be more suitable. 

After analysis it is desirable to convert the results back into the 
original scale for reporting. In the common case of log transforma­
tion, the antilog of the mean of the log data (known as the "geo­
metric mean") should be used. The standard deviation or 
standard error must not be antilogged, however; instead, confi­
dence limits on the log scale can be antilogged to give a confidence 
interval on the original scale. A similar procedure is adopted with 
other transformations when there is a single sample, but back 
transformation of the confidence limits for a difference between 
sample means makes sense only for the log transformation (see 
chapter 4). 

If a transformation is used it is important to check that the 
desired effect (such as an approximately Normal distribution) is 
achieved. It should not be assumed that the log transformation, 
for instance, is necessarily suitable for all positively skewed vari­
ables. 

Outliers 

Observations that are highly inconsistent with the main body of 
the data should not be excluded from the analysis unless there are 
additional reasons to doubt their credibility. Any omission of such 
outliers should be reported. Because outliers can have a pro­
nounced effect on a statistical analysis, it can be useful to analyse 
the data both with and without such observations to assess how 
much any conclusions depend on these values. 

Correlation 

I t is preferable to include a scatter plot of the data for each cor­
relation coefficient presented, although this may not be possible if 
there are several variables. When many variables are being investi­
gated it is useful to show the correlations between all pairs of vari­
ables in a table (correlation matrix), rather than quoting just the 
largest or significant values. 

For data which are irregularly distributed the rank correlation 
can be calculated instead of the usual Pearson "product 
moment" correlation (r). Rank correlation can also be used for 
variables that are constrained to be above or below certain 
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values-for example, birth weights below 2500 g-or for ordered 
categorical variables. Rank correlation is also preferable when 
the relation between the variables is not linear, or when the 
values of one variable have been chosen by the experimenter 
rather than being unconstrained. 

The correlation coefficient is a useful summary of the degree of 
linear association between two quantitative variables, but it is one 
of the most misused statistical methods. There are several circum­
stances in which correlation ought not to be used. It is incorrect to 
calculate a simple correlation coefficient for data which include 
more than one observation on some or all of the subjects, because 
such observations are not independent. Correlation is inappropri­
ate for comparing alternative methods of measurement of the same 
variable because it assesses association, not agreement. The use of 
correlation to relate change over time to the initial value can give 
grossly misleading results. 

I t may be misleading to calculate the correlation coefficient for 
data comprising subgroups known to differ in their mean levels 
of one or both variables-for example, combining data for men 
and women when one of the variables is height. 

Regression and correlation are separate techniques serving dif­
ferent purposes and need not automatically accompany each 
other. The interpretation of correlation coefficients is discussed 
below ("Association and causality"). 

Regression 

It is highly desirable to present a fitted regression line together 
with a scatter diagram of the raw data. A plot of the fitted line with­
out the data gives little further information than the regression 
equation itself. It is useful to give the values of the slope (with 
its standard error) and intercept and a measure of the scatter of 
the points around the fitted line (the residual standard deviation). 
A confidence interval may be constructed for a regression line and 
prediction intervals for individuals based on the fitted relationship. 
The lines joining these values are not parallel to the regression line 
but curved, showing the greater uncertainty of the prediction cor­
responding to values on the horizontal (x) axis away from the bulk 
of the observations (see chapter 8). 

Regression on data including distinct subgroups can give mis­
leading results, particularly if the groups differ in their mean 
level of the dependent (y) variable. More reliable results may be 
obtained by using analysis of covariance (see chapter 8). 
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Regression and correlation are separate techniques serving dif­
ferent purposes and need not automatically accompany each 
other. The interpretation of regression analysis is discussed 
below ("Prediction and diagnostic tests"). 

Survival data 

The reporting of survival data should include graphical or tabu­
lar presentation of life tables, with details of how many patients 
were at risk (of dying, say) at different follow up times (see chapter 
9). The life table or actuarial survival curve deals efficiently with 
the "censored" survival times which arise when patients are lost 
to follow up or are still alive; their survival time is known to be 
only at least so many days. To avoid misinterpretation of the un­
reliable later part of the curve, it may help to truncate the survival 
curve when there are only a few (say five) subjects still at risk. The 
calculation of mean survival time is inadvisable in the presence of 
censoring and because the distribution of survival times is usually 
positively skewed. 

Comparison between treatment groups of the proportion surviv­
ing at arbitrary fixed times can be misleading and is generally less 
efficient than the comparison of life tables by a method such as the 
logrank test. Methods for calculating estimates of survival and 
confidence intervals are given in chapter 9. 

When there are sufficient deaths one can show how the risk of 
dying varies with time by plotting, for suitable equal time inter­
vals, the proportion of those alive at the beginning of each time 
interval who died during that interval. Adjusting for patient fac­
tors which might influence prognosis is possible using regression 
models appropriate to survival data (see next section). 

Comparison of survival between the group of individuals who 
respond to treatment and the group who do not is misleading 
and should never be performed. 

Complex analyses 

In many studies the observations of prime interest may be influ­
enced by several other variables. These might be anything that 
varies among subjects and which might have affected the outcome 
being observed. For example, in clinical trials they might include 
patient characteristics or signs and symptoms. Some or all of the 
co variates can be combined by appropriate multiple regression 
techniques to explain or predict an outcome variable, be it a 
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continuous variable (blood pressure), a qualitative variable (post­
operative thrombosis), or the length of survival (using, respec­
tively, multiple linear regression, multiple logistic regression, or 
proportional hazards (Cox) regression analysis). Even in random­
ised clinical trials investigators may need assurance that the 
treatment effect is still present after simultaneous adjustment for 
several risk factors. When models are used to obtain estimates 
adjusted for other variables, it should be made clear which vari­
ables were adjusted for, on what basis they were selected, and, if 
relevant, how continuous variables were treated in the analysis. 

Multivariate techniques, for dealing with more than one out­
come variable simultaneously, really require expert help and are 
beyond the scope of these guidelines. Any complex statistical 
methods should be communicated in a manner that is comprehen­
sible to the reader. It may help to place technical material in an 
appendix. 

Results section: presentation of results 

Presentation of summary statistics 

Mean values should not be quoted without some measure of varia­
bility or precision. The standard deviation (SD) should be used to 
show the variability among individuals and the standard error of 
the mean (SE) to show the precision of the sample mean (see chapter 
3: appendix 1). It must be made clear which is presented. 

The use of the symbol ± to attach the standard error or standard 
deviation to the mean (as in 14·2 ± 1'9) causes confusion and 
should be avoided. Several medical journals do not now allow its 
use. The presentation of means as, for example, 14·2 (SE 1'9) or 
14·2 (SD 7'4) is preferable. Confidence intervals are a good way 
of providing a reasonable indication of uncertainty of sample 
means, proportions, and other statistics. For example, a 95% con­
fidence interval for the true mean is from about two standard errors 
below the observed mean to two standard errors above it (see chap­
ter 4). Confidence intervals are more clearly presented as 10·4 to 
18·0 (see chapter 3) than by use of the ± symbol. 

When paired comparisons are made, such as when using paired t 
tests, it is important to give the mean and standard deviation of the 
differences between the observations or the standard error of the 
mean difference as appropriate (see chapter 3: appendix 1). 

For data that have been analysed with distribution free methods 
it is more appropriate to give the median and a central range, 
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covering, for example, 95% of the observations, than to use the 
mean and standard deviation (see "Descriptive information", 
above). Non-parametric confidence intervals can be calculated 
(see chapter 5). Likewise, if analysis has been carried out on trans­
formed data, the mean and standard deviation of the raw data will 
probably not be good measures of the centre and spread of the data 
and should not be presented. 

When percentages are given, the denominator should always be 
made clear. For small samples, the use of percentages is unhelpful. 
When percentages are contrasted it is important to distinguish an 
absolute difference from a relative difference. For example, a 
reduction from 25% to 20% may be expressed as either 5% or 
20%. 

Results for individuals 

The overall range is not a good indicator of the variability of a set 
of observations as it can be strongly affected by a single extreme 
value and it increases with sample size. If the data have a reason­
ably Normal distribution the interval two standard deviations 
either side of the mean will cover about 95% of the observations, 
but a percentile range is more widely applicable to other distribu­
tions (see "Descriptive information", above). 

Although statistical analysis is concerned with average effects, in 
many circumstances it is important also to consider how individual 
subjects responded. Thus, for example, it is very often clinically 
relevant to know how many patients did not improve with a treat­
ment as well as the average benefit. An average effect should not be 
interpreted as applying to all individuals (see also "Repeated 
measurements", above). 

Presentation of results of hypothesis tests 

Hypothesis tests yield observed values oftest statistics which are 
compared with tabulated values for the appropriate distribution 
(Normal, t, X2 etc.) to derive associated P values. It is desirable 
to report the observed values of the test statistics and not just the 
P values. The quantitative results being tested, such as mean 
values, proportions, correlation coefficients, should be given 
whether the test was significant or not. It should be made clear pre­
cisely which data have been analysed. If symbols, such as asterisks, 
are used to denote levels of probability, these must be defined and 
it is helpful if they are the same throughout the paper. 
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P values are conventionally given as <0'05, <0'01, or <0'001, 
but there is no reason other than familiarity for using these parti­
cular values. Exact P values (to no more than two significant fig­
ures), such as P = 0·18 or 0'03, are more helpful. It is unlikely to 
be necessary to specify levels of P lower than 0·0001. Calling any 
value with P > 0·05 "not significant" is not recommended, as it 
may obscure results that are not quite statistically significant but 
do suggest a real effect (see "Interpretation of hypothesis tests", 
below). When quoting P values it is important to distinguish 
< (less than) from> (greater than). P values between two limits 
should be expressed in logical order-for example, 0·01 < P < 
0·05 where P lies between 0·01 and 0·05. P values given in tables 
need not be repeated in the text. 

The interpretation of hypothesis tests and P values is discussed 
below ("Interpretation of hypothesis tests"). 

Figures (graphical presentation) 

Graphical display of results is helpful to readers, and figures that 
show individual observations are to be encouraged. Points on a 
graph relating to the same individual on different occasions 
should preferably be joined, or symbols used to indicate the related 
points. A helpful alternative is to plot the difference between occa­
sions for each individual. 

The customary "error bars" of one standard error above and 
below the mean depict only a 67% confidence interval, and are 
thus liable to misinterpretation; 95% confidence intervals are 
preferable. The presentation of such information in figures is sub­
ject to the same considerations as discussed above ("Presentation 
of summary statistics"). Figures are most valuable when they dis­
play data that are too complex to put into a table. At the other 
extreme, a figure that displays, say, only two or three means with 
their standard errors or confidence intervals is often a waste of 
space; either more information should be added, such as the raw 
data, or the summary values should be put in the text or a table 
instead. Tables are also preferable if the data values are likely 
to be used by others in subsequent analyses (including meta­
analysis). 

Scatter diagrams relating two variables should show all the 
observations, even if this means slight adjustment to accommodate 
duplicate points. These may also be indicated by replacing the 
plotting symbol by the actual number of coincident points. 
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Tables 

It is much easier to scan numerical results down columns rather 
than across rows, and so it is better to have different types of infor­
mation (such as means and standard errors) in separate columns. 
The number of observations should be stated for each result in a 
table. Tables giving information about individual patients, geo­
graphical areas, and so on are easier to read if the rows are ordered 
according to the level of one of the variables presented. 

Numerical precision 

Spurious precision adds no value to a paper and even detracts 
from its readability and credibility. Results obtained from a calcula­
tor or computer usually need to be rounded. When presenting 
means, standard deviations, and other statistics the author should 
bear in mind the precision of the original data. Means should not 
normally be given to more than one decimal place more than the 
raw data, but standard deviations or standard errors may need to 
be quoted to one extra decimal place. It is rarely necessary to 
quote percentages to more than one decimal place, and even one dec­
imal place is often not needed. With samples ofless than 100 the use 
of decimal places implies unwarranted precision and should be 
avoided. Note that these remarks apply only to presentation of 
results-rounding should not be used before or during analysis. It 
is sufficient to quote values of t, X2 and r to two decimal places. 

Miscellaneous technical terms 

It is impossible to define here all statistical terms. The following 
comments relate to some terms which are frequently used in an 
incorrect or confusing manner. 

Correlation should preferably not be used as a general term to 
describe any relationship. It has a specific technical meaning as a 
measure of association, for which it should be reserved in statis­
tical work. 

Incidence should be used to describe the rate of occurrence of 
new cases of a given characteristic in a study sample or popula­
tion, such as the number of new notifications of cancer in one 
year. The proportion of a sample already having a characteristic 
is the prevalence. 

Non-parametric refers to certain statistical analyses, such as 
the Mann-Whitney U test; it is not a characteristic of the 
observations themselves. 
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Parameter should not be used in place of "variable" to refer to 
a measurement or attribute on which observations are made. 
Parameters are characteristics of distributions or relationships 
in the population which are estimated by statistical analysis of 
a sample of observations. 

Percentiles-When the range of values of a variable is divided 
into equal groups, the cut-off points are the median, tertiles, 
quartiles, quintiles, and so on; the groups themselves should 
be referred to as halves, thirds, quarters, fifths, etc. 

Sensitivity is the ability of a test to identify a disease when it 
really is present-that is, the proportion positive of those who 
have the disease. Specificity is the ability of a test to identify 
the absence of a disease when the disease really is not pre­
sent-that is, the proportion negative of those who do not 
have the disease. See also "Prediction and diagnostic tests", 
below. 

Further guidance on terminology is given by Lang and Secic.13 

Discussion section: interpretation 

Interpretation of hypothesis tests 

A hypothesis test assesses, by means of the probability P, the 
plausibility of the observed data when some "null hypothesis" 
(such as there being no difference between groups) is true. The 
P value is the probability that the observed data, or a more extreme 
outcome, would have occurred by chance-that is, just due to 
sampling variation-when the null hypothesis is true. If P is 
small one doubts the null hypothesis. If P is large the data are 
plausibly consistent with the null hypothesis, which thus cannot 
be rejected. P is not, therefore, the probability of there being no 
real effect. 

Even ifthere is a large real effect a non-significant result is quite 
likely if the number of observations is small. Conversely, if the 
sample size is very large, a statistically significant result may 
occur when there is only a small real effect. Thus statistical sig­
nificance should not be taken as synonymous with clinical 
importance. 

The interpretation of the results of hypothesis tests largely 
follows from the above. A significant result does not necessarily 
indicate a real effect. There is always some risk of a false positive 
finding; this risk diminishes for smaller P values. Furthermore, a 
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non-significant result (conventionally P > 0·05) does not mean 
that there is no effect but only that the data are compatible with 
there being no effect. Some flexibility is desirable in interpreting 
P values. The 0·05 level is a convenient cut-off point, but P 
values of 0·04 and 0·06, which are not greatly different, ought to 
lead to similar interpretations, rather than radically different 
ones. The designation of any result with P > 0·05 as not significant 
may thus mislead the reader (and the authors); hence the sugges­
tion above ("Presentation of results of hypothesis tests") to 
quote actual P values. 

Confidence intervals are extremely helpful in interpretation, 
particularly for small studies, as they show the degree of uncer­
tainty related to a result-such as the difference between two 
means-whether or not it was statistically significant. Their use 
in conjunction with non-significant results may be especially 
enlightening. 

Many hypothesis tests 

In many research projects some tests of hypotheses relate to 
important comparisons that were envisaged when the research 
was initiated. Tests of hypotheses which were not decided in 
advance are subsidiary, especially if suggested by the results. It 
is important to distinguish these two cases and give much greater 
weight to the tests of those hypotheses that were formulated initi­
ally. Other tests should be considered as being only exploratory­
for forming new hypotheses to be investigated in further studies. 
One reason for this is that when very many hypothesis tests are 
performed in the analysis of one study, perhaps comparing many 
subgroups or looking at many variables, a number of spurious 
positive results can be expected to arise by chance alone, which 
may pose considerable problems of interpretation. Clearly, the 
more tests that are carried out the greater is the likelihood of 
finding some significant results, but the expected number of 
false-positive findings will increase too. One way of allowing for 
the risk of false-positive results is to set a smaller level of P as a 
criterion of statistical significance. 

A more complex problem arises when tests of significance are 
carried out on dependent (correlated) data. One example of this 
is in the analysis of serial data (discussed above-"Repeated 
measurements"), when the same test is performed on data for 
the same variable collected from the same subjects at different 
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times. Another is where separate analyses of two or more corre­
lated variables are carried out as if they were independent; any cor­
roboration may not greatly increase the weight of evidence because 
the tests relate to similar data. For example, diastolic and systolic 
blood pressures behave very similarly, as may alternative ways of 
assessing patient response generally. Very careful interpretation 
of results is required in such cases. 

Association and causality 

A statistically significant association (obtained from correlation 
or i analysis) does not in itself provide direct evidence of a 
causal relationship between the variables concerned. In observa­
tional studies causality can be established only on non-statistical 
grounds; it is easier to infer causality in randomised trials. Great 
care should be taken in comparing variables which both vary 
with time, because it is easy to obtain apparent associations 
which are spurious. 

Prediction and diagnostic tests 

Even when regression analysis has indicated a statistically signif­
icant relationship between two variables, there may be consider­
able imprecision when using the regression equation to predict 
the numerical level of one variable (y) from the other (x) for indi­
vidual cases. The accuracy of such predictions cannot be assessed 
from the correlation or regression coefficient but requires the cal­
culation of the prediction interval for the estimated y value corre­
sponding to a specific x value (see chapter 8). The regression line 
should be used only to predict the y variable from the x variable, 
and not the reverse. 

A diagnostic test with a high sensitivity and specificity may not 
necessarily be a useful test for diagnostic purposes, especially when 
applied in a population where the prevalence of the disease is very 
low. It is useful here to calculate the proportion of subjects with 
positive test results who actually had the disease (known as the 
positive predictive value). Note that there is no consensus on the 
definition of "false-positive rate" or "false-negative rate"; it 
should always be made clear exactly what is being calculated, 
and this can best be illustrated by a 2 x 2 table relating the test 
results to the patients' true disease status. 

A similar diagnostic problem arises with continuous variables. 
The classification as "abnormal" of values outside the "normal 
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range" for a variable is common, but if the prevalence of true 
abnormality is low most values outside the normal range will be 
normal. The definition of abnormality should be based on both 
clinical and statistical criteria. 

Weaknesses 

It is better to address weaknesses in research design and execu­
tion, if one is aware of them, and to consider their possible effects 
on the results and their interpretation than to ignore them in the 
hope that they will not be noticed. 

Concluding remarks 

The purpose of statistical methods is to provide a straightforward 
factual account of the scientific evidence derived from a piece of 
research. The skills and experience needed to design suitable 
studies, carry out sensible statistical analyses, and communicate 
the findings in a clear and objective manner are not easy to acquire. 
While we hope that these guidelines help authors to avoid statistical 
pitfalls, we reiterate our earlier advice to seek the advice of a statis­
tician when possible. 
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15 Statistical checklists 
MARTIN J GARDNER, DAVID MACHIN, 
MICHAEL J CAMPBELL, 
DOUGLAS G ALTMAN 

Introduction 

The British Medical Journal (BMJ) uses two checklists to evaluate 
the statistical aspects of medical studies. These checklists were 
developed during statistical assessment of papers submitted to the 
journal. lOne checklist is intended for all studies other than clinical 
trials and, because of this non-specific application, is limited in 
detail. The second is for controlled clinical trials and includes ques­
tions concerned with randomised comparisons of health interven­
tions. Information on the principles behind the questions may be 
found in books2

,3 or in the statistical guidelines of chapter 14. 
In addition to the two checklists that were developed to assist in 

the statistical evaluation of submitted manuscripts, it has been 
recognised that it is important that controlled trials are reported 
adequately. This has led to the development of the CONSORT 
guidelines for reporting.4 The BMJ is one of over 70 journals 
which require authors to adhere to the CONSORT recommenda­
tions. 

In this chapter, we discuss these three checklists in detail. At the 
end, we consider briefly checklists developed for some other types 
of study. 

Uses of the checklists 

The checklists may be used at different stages of manuscript 
assessment and study development. 

Refereeing is difficult and time-consuming. 5
-

7 Submitted 
papers clearly require subject matter referees to judge their 
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merit within the medical specialty. Most reports, however, have 
some statistical content that may be outside the expertise of 
these particular referees and warrant separate assessment. 
Many medical journals make extensive use of statisticians to 
assess medical papers.s Although the relevant considerations 
for this may be clear in a statistician's mind, a list of items to 
check and respond to serves as a useful reminder. These answers 
serve as the backbone for the statistician's recommendations on 
the paper and are supplemented by written comments. 

Editorial staff find a checklist helpful in obtaining a summary 
view on a paper. Because of the fixed format they can develop a 
familiarity which allows more rapid evaluation than from a 
textual report. The latter will generally be needed as well, but 
will be shorter than a report without the checklist. 

Authors receiving a copy of the completed checklist from the 
editor can see where their paper was thought to be statistically 
unsatisfactory, if that is the case. Suggestions for improvements 
will usually be given in the report if revision is suggested. Alter­
natively, problems with the design or conduct of the study 
making the paper unsuitable for publication will be pointed 
out; some examples are given by Vaisrub9 and Altman.7 

Planners of studies can be guided by the checklists, which 
indicate the need to consider relevant statistical aspects during 
development of protocols. Detailed advice may have to be 
sought from a statistician or in appropriate publications. Refer­
ral to the checklists should also improve the description of the 
statistical aspects of studies in submitted papers. 

Outline of the BMJ checklists 

General checklist 

Aspects covered by the general checklist include design, con­
duct, analysis, and presentation of studies (Figure 15.1). For 
each question "yes" or "no" answers are sought, but in some 
cases "unclear" is allowed, though its use should be minimal. 

The first part of the checklist relates to considerations before the 
start of an investigation, such as defining its main objective(s). 
Sometimes a choice of suitable studies to meet these is available, 
but some designs will be inappropriate. For example, it would 
not be sensible to compare elderly diseased patients with young 
healthy adults to determine whether a blood constituent is aetio­
logically important. Design considerations also include techniques 
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BMJ Ref No. ______ Date of review: _____ _ 

Design features 
1 Is the objective of the study sufficiently described 
2 Was an appropriate study design used to achieve the 

objectives? 
3 Is there a satisfactory statement given of source of 

subjects? 
4 Is a pre-study calculation of required sample size 

reported? 

Conduct of study 
5 Was a satisfactory response rate achieved? 

Analysis and presentation 
6 Is there a statement adequately describing or 

referencing all statistical procedures used? 
7 Are the statistical analyses used appropriate? 
8 Is the presentation of statistical material satisfactory? 
9 Are confidence intervals given for the main results? 

10 Is the conclusion drawn from the statistical analysis 
justified? 

Recommendation on paper 
11 Is the paper of acceptable statistical standard for 

publication? 
12 If "No" to Question 11, could it become acceptable with 

suitable revision? 

Reviewer: ______ _ 

Yes Unclear No 
Yes Unclear No 

Yes Unclear No 

Yes No 

Yes Unclear No 

Yes No 

Yes Unclear No 
Yes No 
Yes No 
Yes Unclear No 

Yes No 

Yes No 

Figure 15.1 Checklist for statistical review of general papers for the BM]. 

for measurement and collection of data. In addition, important 
statistical questions relate to the source and number of subjects 
studied. The former will be relevant to the validity of any general­
ised inferences from the results. The issue of the sample size 
required for a study is well documented, but many studies are 
still too small to detect anything other than large, and often unreal­
istic, effects. 

When the study is under way, a high participation rate is needed 
from the recruited subjects. Those who do not participate fully are 
almost certain to be a biased group in some respects, with detri­
mental effects on the interpretation of the results. A comparison 
of relevant baseline characteristics of responders and non-respon­
ders should be given. 1o 

The statistical methods used should be stated. If a technique is 
novel or unfamiliar then a description of its purpose and an outline 
of the method should be given together with a suitable reference. 
Aspects of presentation will also be checked, including tables 
and figures as well as textual content. 
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From the answers to the checklist, a summary can be made of the 
statistical content of a paper. Other features, which may be men­
tioned in the accompanying written report, contribute to the 
recommendation on its statistical quality. 

Clinical trials checklist 

For clinical trials, specific questions are asked in addition to the 
items from the general checklist (Figure 15.2). 

At the design stage of a clinical trial, it is important to determine 
the diagnostic criteria for inclusion of subjects and to define clearly 
the treatments to be compared. Where a randomised study is appro­
priate, which usually is the case, a method of random allocation to 
treatment is mandatory and should be clearly described.4,1l Unam­
biguous measures of outcome must be specified for trials comparing 
treatments and the duration of follow up stated. There are advan­
tages if double-blind comparisons can be made, and treatment 
should start with a minimum delay after patient allocation. All 
these features should be described in the trial protocol. 

In the Results section, the numbers and proportions of subjects 
treated and followed up should be stated. It is important also to 
describe dropouts and side effects by treatment group. In addition, 
treatment groups should be compared for relevant prognostic 
characteristics and adjustments for these made if appropriate in 
the analysis of outcome. 

Comments on the BMJ checklists 

These checklists have evolved over a period of time and, as 
shown in Figures 15.1 and 15.2, differ slightly from those used 
initially. For example, the question on confidence intervals (ques­
tion 9 in the general checklist, question 23 in the clinical trials 
checklist) was added. It was included partly as a consequence of 
a change in BM] policy.12 

Statistical assessment is a possibility for any article submitted to 
the BM]13 and the checklists are used routinely in this. Such a 
statistical evaluation is one way to prevent the publication of 
papers with unsatisfactory statistical content. Other approaches 
are, of course, possible,14 including the adoption of published 
statistical guidelines (such as in chapter 14) or having a statistician 
on the editorial board, or both. It should be recognised, though, 
that statistical errors remain common in medical journals despite 
the wide introduction of statistical refereeing.s 
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BMJ Ref No: ______ Date of Review: _____ _ 

Design features 
1 Is the objective of the trial sufficiently described? Yes Unclear No 
2 Is there a satisfactory statement given of diagnostic Yes Unclear No 

criteria for entry to trial? 
3 Is there a satisfactory statement given of source of Yes Unclear No 

subjects? 
4 Were concurrent controls used (as opposed to historical Yes Unclear No 

controls)? 
5 Are the treatments well defined? Yes Unclear No 
6 Was random allocation to treatment used? Yes Unclear No 
7 Is the method of randomisation described? Yes Unclear No 
8 Was there an acceptably short delay from allocation to Yes Unclear No 

commencement of treatment? 
9 Was the potential degree of blindness used? Yes Unclear No 

10 Is there a satisfactory statement of criteria for outcome Yes Unclear No 
measures? 

11 Were the outcome measures appropriate? Yes Unclear No 
12 Is a pre-study calculation of required sample size Yes No 

reported? 
13 Is the duration of post-treatment follow up stated? Yes Unclear No 

Conduct of trial 
14 Are the treatment and control groups comparable in Yes Unclear No 

relevant measures? 
15 Were a high proportion of the subjects followed up? Yes Unclear No 
16 Did a high proportion of subjects complete treatment? Yes Unclear No 
17 Are the drop outs described by treatment/control Yes Unclear No 

groups? 
18 Are side effects of treatment reported? Yes Unclear No 

Analysis and presentation 
19 Is there a statement adequately describing or Yes No 

referencing all statistical procedures used? 
20 Are the statistical analyses used appropriate? Yes Unclear No 
21 Are prognostic factors adequately considered? Yes Unclear No 
22 Is the presentation of statistical material satisfactory? Yes No 
23 Are confidence intervals given for the main results? Yes No 
24 Is the conclusion drawn from the statistical analysis Yes Unclear No 

justified? 

Recommendation on paper 
25 Is the paper of acceptable statistical standard for Yes No 

publ ication? 
26 If "No" to Question 25. could it become acceptable with Yes No 

suitable revision? 

Reviewer: _____ _ 

Figure 15.2 Checklist for statistical revIew of papers on controlled 
clinical trials for the BMJ. 
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The checklists are intended for guidance on the statistical con­
tent of papers and are not presented as items to be covered at the 
expense of other important aspects of medical studies. 15,16 

Reporting randomised controlled trials: the 
CONSORT statement 

It is widely recognised that randomised controlled trials are the 
best way to compare the effectiveness of different therapies. Only 
randomised trials allow one to make valid inferences of cause and 
effect. Randomised trials have considerable potential directly to 
affect patient care, occasionally as single trials, more often as the 
body of evidence from several trials, whether or not combined for­
mally. It is thus entirely reasonable to require higher standards for 
papers reporting randomised trials than those describing other 
types of study. 

Like all studies, randomised trials are open to bias if done 
badly.17 It is thus essential that randomised trials are done well 
if they are to be reliable, but it is also important that they are 
reported adequately. Readers should not have to infer what was 
probably done-they should be told explicitly. Proper methodol­
ogy should be used and be seen to have been used. Yet reviews 
of published trials have consistently found major deficiencies in 
reporting. 18- 20 Those carrying out systematic reviews commonly 
find that the reporting of many randomised trials is poor, making 
their task much harder. Now, more than 50 years after the first 
publication of a randomised trial,21 the guarantee of adequate 
reporting of these important studies is surely mandatory. 

In 1994, two groups independently published proposals for 
requirements for the reporting of randomised trials.22,23 A JAMA 
editorial suggested that the two groups should produce a unified 
statement.24 The outcome was the CONSORT statement,4 which 
includes a list of 21 items which should be reported in the paper 
(see Figure 15.3). There is also a flow chart describing patient pro­
gress through the trial, which should be included in the trial report 
(see Figure 15.4). In addition, a few specific subheadings are sug­
gested within the Methods and Results sections of the paper. In 
the spirit of the times, the recommendations are evidence based 
where possible, with common sense dictating the remainder. 

In essence, the requirement is that authors should provide 
enough information for readers to know how the trial was per­
formed, so that they can judge whether the findings are likely to 
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Heading Subheading Descriptor Reported? 
Ves or No 

Title 
Abstract 
Introduction 

Methods Protocol 

Assignment 

Masking 

Results Participant 

Comment 

flow and 
follow-up 

Analysis 

1 Identify the study as a randomised trial. 
2 Use a structured format. 
3 State prospectively defined hypothesis, clinical 

objectives, and planned subgroup or covariate 
analyses. 

Describe 
4 Planned study popUlation, together with 

inclusion and exclusion criteria. 
5 Planned interventions and their timing. 
6 Primary and secondary outcome measure(s) 

and the minimum important difference(s), and 
how the target sample size was projected. 

7 Rationale and methods for statistical analyses, 
detailing main comparative analyses and 
whether they were completed on an 
intention-to-treat basis. 

8 Prospectively defined stopping rules (if 
warranted). 

Describe 
9 Unit of randomisation (e.g. individual, cluster, 

geographic). 
10 Method used to generate the allocation 

schedule. 
11 Method of allocation concealment and timing of 

assignment. 
12 Method to separate the generator from the 

executor of assignment. 
13 Describe mechanism (e.g. capsules, tablets); 

similarity of treatment characteristics (e.g. 
appearance, taste); allocation schedule control 
(location of code during trial and when broken); 
and evidence for successful masking (blinding) 
among participants, person doing intervention, 
outcome assessors, and data analysts. 

14 Provide a trial profile (see Figure 15.4) 
summarising participant flow, numbers and 
timing of randomisation assignment, 
interventions, and measurements for each 
randomised group. 

15 State estimated effect of intervention on primary 
and secondary outcome measures, including a 
point estimate and measure of precision 
(confidence interval). 

16 State results in absolute numbers when feasible 
(e.g. 10/20 not 50%). 

17 Present summary data and appropriate 
descriptive and inferential statistics in sufficient 
detail to permit alternative analyses and 
replication. 

18 Describe prognostic variables by treatment 
group and any attempt to adjust for them. 

19 Describe protocol deviations from the study as 
planned, together with the reasons. 

20 State specific interpretation of study findings, 
including sources of bias and imprecision 
(internal validity) and discussion of external 
validity, including appropriate quantitative 
measures when possible. 

21 State general interpretation of the data in light of 
the totality of the available evidence. 

Figure 15.3 CONSORT checklist for randomised controlled trials.4 
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I Registered or eligible patients (n = ... ) I 
I 

I 
Not randomized (n = ... ) 

I Reasons (n = ... ) 

~ 
Received standard Received intervention 
intervention as allocated (n = ... ) as allocated (n = ... ) 
Did not receive standard Did not receive intervention 
intervention as allocated (n = ... ) as allocated (n = ... ) 

I I 
Followed up (n = ... ) Followed up (n = ... ) 
Timing of primary and Timing of primary and 
secondary outcomes secondary outcomes 

I 1 
Withdrawn (n = ... ) Withdrawn (n = ... ) 

Intervention ineffective (n = ... ) Intervention ineffective (n = ... ) 
Lost to follow-up (n = ... ) Lost to follow-up (n = ... ) 
Other (n = ... ) Other (n = ... ) 

I 1 
Completed trial (n = ... ) Completed trial (n = ... ) 

Figure 15.4 CONSORT patient flow diagram, showing progress 
through the various stages of a trial, including flow of participants, with­
drawals, and timing of primary and secondary outcome measures. The 
"R" indicates randomisation. 4 

be reliable. The CONSORT suggestions mean that authors will no 
longer be able to hide study inadequacies by omission of important 
information. For example, authors can, and often do, hide their 
procedures behind the single word "randomised". Under CON­
SORT authors are required to give details of the randomisation. 
If authors have used an inferior approach, such as alternate alloca­
tion, they will have to say so. The BM] has in fact refused to 
publish trials that were not truly randomised since 1991,11 a 
position justified by subsequent empirical findings. 17

,25 

As the authors note,4 the checklist applies to the most common 
design-trials with two parallel groups. Some modification is 
needed for special types of trial, such as crossover trials and 
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those with more than two treatment groups. Also, the list should be 
taken in addition to existing general requirements, for example to 
specify all statistical methods used in the analysis. This and other 
items appear on the checklist used by the BM] referees which was 
discussed above. 

Some of the items on the checklist would benefit from greater 
explanation than is possible in the CONSORT paper; in time, a 
fuller accompanying explanatory paper would be valuable. For 
example, while the advantages of randomisation have been appar­
ent for several decades, understanding of the rationale for it 
remains poor and so its importance is not fully appreciated. 26 

The BM] supports the CONSORT statement and has adopted 
the recommendations. So too have]AMA, The Lancet, and many 
other journals.27 As a consequence, authors submitting reports of 
controlled trials to the BM] should submit with their paper a 
copy of the completed checklist indicating on which page of the 
manuscript each item is addressed. The checklist is then used by 
the editors and the referees. The BM] also use in the published 
papers the additional subheadings suggested by CONSORT. 

It seems reasonable to hope that, in addition to improved report­
ing, the wide adoption of the CONSORT standard will improve 
the conduct of future trials by increasing awareness of the require­
ments for a good trial. Such success might lead to similar initiatives 
for other types of research. 

Checklists for other types of study 

While much methodological attention has focused on checklists 
for randomised controlled trials, some authors have produced 
checklists for assessing other types of study. Examples include 
epidemiological studies including case-control studies;28,29 non­
randomised studies;3o evaluation of diagnostic and screening 
tests;31.32 quality of life;33 and economic evaluations?4 

Finally, checklists and guidelines for the reporting of many 
methodological aspects of medical research matters are considered 
by Lang and Secic.35 

Gardner MJ, Altman DG, Jones DR, Machin D. Is the statistical assessment 
of papers submitted to the "British Medical Journal" effective? BMJ 
1983;286: 1485-8. 

2 Altman DG Practical statistics for medical research. London: Chapman and Hall, 
1991. 

3 Jadad AR. Randomised controlled trials. A user's guide. London: BMJ Books, 
1998. 
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16 Notation 
DOUGLAS G ALTMAN 

Chapters 4 to 1 1 contain formulae for calculating confidence inter­
vals. Repeated use is made of the mathematical notation explained 
below. 

x the mean of a sample of observations, where the indi­
vidual observations are denoted by x or Xi; it is pro­
nounced "x bar". In some chapters we use y and d to 
denote sets of observations and y and d to denote 
their means. 

p the proportion with a certain characteristic in a sample 
of individuals. 

SD (or s) the standard deviation of a set of observations. It is a 
measure of their variability around the sample mean. 
s2 is known as the variance. 

SE the standard error of the sample mean or some other 
estimated statistic. It is a measure of the uncertainty 
of such an estimate and is used to derive a confidence 
interval in most of the chapters in this book. 

(The distinct uses and interpretation of the SD and 
SE are discussed in appendix 1 of chapter 3. Note that 
the notation SE(b) means "the standard error of b.") 

L: x the Greek capital letter sigma, denoting "sum of." 
Thus L: x means the sum of all the values of x. A 
more correct notation is L:i = I Xi' which means the 
sum of the n values of Xi; that is, XI + X2+ 

X3 + ... + Xn • The simpler notation L: X is used when 
it is clear which items are being added together. 
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I1 X the Greek capital letter pi, denoting "product of." 
Thus I1 x means the product of all the values of x. 
As with 2: x above, a fuller notation is I1i = I Xi' 

which is equal to XI x X2 X X3 X ... X X n , but the 
shorter notation is used when the meaning is clear 
(see chapter 9). 

( ... ) brackets are used in formulae to clarify the structure 
and to indicate the correct method of calculation. 
The quantity inside brackets must always be calculated 
first. If there are brackets within brackets the inner 
quantity is evaluated first. 

loge X the logarithmic function giving the value y such that 
X = eY, where e is the constant 2·718281 ... loge X is 
sometimes known as the natural logarithm of x, and 
an alternative notation is In x. 

A key feature of the logarithmic transformation is 
that it is often successful in converting a non-Normal 
skewed distribution into an approximately Normal dis­
tribution (see chapter 4). Calculations, such as those to 
derive a confidence interval, can be performed using 
the log data and the results back transformed using 
the function eX (see next entry). 

eX the exponential function denoting the inverse proce­
dure to taking natural logarithms. It is sometimes 
called an antilogarithmic transformation. An alterna­
tive notation is exp(x). 

n or N the sample size. 

ni or Ni the sample size in the ith group of subjects. 

Zl- 0:/2; Zl- 0:/2 represents a value from the "standard Normal 
0:; distribution," which is the theoretical Normal distri-
100(1-0:) bution with mean 0 and standard deviation 1 (see 
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Figure 3.5). The subscript 1 - 0:/2 represents the pro­
portion of the distribution below the value Zl- 0:/2' 

Thus ZO'975 is the value from the standard Normal dis­
tribution below which lies the bottom 0·975 (or 97,5%) 
of the distribution. For this example, 0: = 0·025 (or 
2,5%). 

The central 1 - 0:, or 100(1 - 0:)%, of the distri­
bution lies between Zo:/2 and zl-0:/2' Because of the 
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symmetry of the Normal distribution Zo./2 = -z1-o./2, 

so that the central 100(1 - a)% of the distribution 
lies between -Z1-o./2 and Z1-o./2. For example, the 
central 0·95 (or 95%) of the Normal distribution lies 
between -ZO-975 and zO-975; that is, between -1·96 and 
+ 1·96. See also appendix 2 of chapter 3. 

(Note that in the first edition we used the notation 
N 1 -o./2 rather than Z1-o./2.) 

For some estimates, such as means and regression coef­
ficients, the distribution of values from repeated sam­
pling has a t distribution rather than a Normal 
distribution. For large samples the t distribution 
becomes nearly the same as the Normal distribution, 
but for small samples it has longer tails. As the tails 
of the distribution are relevant when calculating a con­
fidence interval it is important to use the t distribution 
when appropriate. The logic behind the notation 
t1-o./2, however, is exactly as for the Normal distribu­
tion described in the preceding entry. 

The t distribution, and hence the value of t1 _ 0./2' is 
different according to the size of the sample(s) of data 
and is characterised by the "degrees of freedom". 
The method for calculating the relevant degrees of 
freedom is given in those chapters which make use of 
the t distribution. 

In many cases, both confidence intervals and 
hypothesis tests are calculated on the same data. It is 
important to remember that the value of the theoretical 
t distribution should be used for calculating a confi­
dence interval, and not the observed value of the t 
statistic calculated in the hypothesis test. 

the probability value (or significance level) obtained 
from a hypothesis test. P is the probability of the 
data (or some more extreme data) arising by 
chance-that is, due to sampling variation only­
when the null hypothesis is true. Hypothesis testing 
is discussed in chapters 3, 13, and 14, but methods 
are not covered in detail in this book. 
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17 Computer software 
for calculating 
confidence intervals 
(CIA) 

TREVOR N BRYANT 

The first edition of Statistics with confidence l was complemented 
by the publication of the DOS program Confidence Interval Ana­
lysis (CIA).2 The program has been rewritten completely for the 
Windows operating system and this new version accompanies 
this book. CIA now includes several new methods introduced in 
this second edition of the book, and also incorporates suggestions 
from users for the improvement of the original version. 

This chapter describes the program in outline. The description 
is not intended to be an instruction manual; that task has been 
included in the help system that comes with CIA. For the tech­
nically minded, the software was developed using Borland 
Delphi v4.0 (Inprise Corporation) and ForHelp (ForeFront Tech­
nologies). 

CIA provides confidence interval calculations as described in 
chapters 4 to 11 in this book. The sole purpose of CIA is to calculate 
confidence intervals. This can be done only at the 90%, 95%, or 
99% level because these are the most widely reported values and 
we do not want to encourage the presentation of non-standard inter­
vals. CIA has not been written as a general-purpose statistical pack­
age because there are already many good packages. However, their 
coverage of confidence intervals can be patchy and they may be pre­
sented in the results for one statistical procedure but not another. 

Outline of the CIA program 

CIA can either use raw data, which are entered via the Data 
Editor, or summary information, for example, cell totals, which 
are entered using the Method windows. The program displays 
three types of window: 
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Figure 17.1 The Data Editor of CIA showing values read from a file 
created by exporting the data in CSV format from Excel. 

The Data Editor window 

Data can be entered into this window from the keyboard, copied 
and pasted from another application via the window's clipboard, 
for example from a spreadsheet, or read from a document such 
as a CSV (comma separated values) file created by Excel (see 
Figure 17.1). Data can be saved from the Data Editor to a docu­
ment. Various checks are applied to the data as they are entered 
so that inappropriate values are trapped and excluded. The Data 
Editor is limited to 4000 rows of data, which should be sufficient 
to cope with most data sets. 

The Method windows 

The type of confidence interval required determines the chosen 
window which can be opened. The choice is made either by select­
ing Methods from the menu bar or by clicking on one of the method 
icons (see Figures 17.2 and 17.3). Each method has various tabbed 
options that depend on the statistical technique used. For example, 
with regression and correlation the confidence interval for the slope 
of a single line may be requested, or the confidence interval for the 
mean value of the outcome variable (y) may be needed (Figure 17.3). 
The summary statistics and the confidence interval calculation are 
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Figure 17.2 Calculation of a 95 % confidence interval for the mean value 
of y for a regression line. 

Figure 17.3 Calculation of a 99% confidence interval for the difference 
between two proportions. 
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displayed in the window. Where appropriate, warning messages are 
displayed. For example, a message may advise that the confidence 
interval calculation is inappropriate for the data provided. 

A list of the confidence interval calculations performed by CIA 
is presented in Table 17.1. A few methods described in the book 

Table 17.1 Confidence intervals calculated by CIA 

Chapter 

4 Means and their 
differences 

5 Medians and their 
differences 

6 Proportions and their 
differences 

7 Epidemiological studies 

8 Regression and 
correlation 

9 Time to event studies 

10 Diagnostic studies 

Single sample 
Two samples 

Single sample 
Two samples 

Single sample 
Two samples 
Incidence study 
Case-control study 

Standardised ratios 
Ratio of two 

standardised ratios 
Standardised rates 
Single sample 

Two samples 

Single sample 

Two samples 

Hazard ratio 
Sensitivity 
Specificity 
Positive and negative 

predictive value 
Likelihood ratio 
Area under ROC 

curve 
Kappa 

II Clinical trials and meta- Number needed to 
analyses treat 

Parallel group trials 
Crossover trials 
Crossover trial: 

relative risk 

Paired and unpaired data 

Paired and unpaired data 

Paired and unpaired data 

Unmatched 
Series unmatched 
Matched 

Slope of the regression line 
Mean value of y for given 

value of x 
For the prediction of an 

individual value 
Correlation coefficient 
Difference between slopes of 

two lines 
Common slope of two 

regression lines 
Vertical distance between 

two regression lines 
Survival proportion 
Median survival time 
Survival proportion 
Median survival time 
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Figure 17.4 The Output window in CIA summarising the calculation of 
a 95% confidence interval for the mean. 

are not included. These are mainly the more complex methods, 
such as those associated with multiple regression, for which stan­
dard statistical software should be used. 

The Output window 

A record of the calculations can be displayed in the output 
window (Figure 17.4). The contents of the output window can 
be printed or saved as a document. If this feature is not wanted 
it can be disabled. 

Options in CIA 

Apart from the use, or not, of the Output window, CIA allows the 
number of decimal places presented for the confidence intervals and 
associated statistics to be controlled. Three decimal places are given 
by default, although where summary statistics are calculated from 
raw data, these values are given to one (mean) or two (standard 
deviation) more decimal places than found in the data. 

Confidence intervals can be calculated at the 90%,95%, or 99% 
level. The value is set within the Options. 

Options set by the user are stored between uses of CIA. The 
initial (default) settings can be reset. 
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Help 

CIA comes with an extensive help system. Each window within 
the program has its own help link. Example data used in this book 
are provided as part of the help system and can be copied from the 
Help screen into the Data Editor. 

Software updates and bug fixes 

No matter how hard software authors try, the odd "bug" slips 
into all programs. We acknowledge that there may be bugs in 
CIA as no software is ever perfect. There is a website for CIA 
where updates to the software and bug fixes will be made available. 
The address is as follows: www.som.soton.ac.uk/cia. 

Gardner MJ, Altman DG (eds). Statistics with confidence. London: BM} Publish­
ing Group, 1989. 

2 Gardner MJ, Gardner SB, Winter PD. Confidence Interval Analysis (CIA). 
London: BM} Publishing Group, 1989. 
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18 Tables for the 
calculation of 
confidence intervals 

MARTIN J GARDNER 

In each table selected values are given to enable the calculation of 
90%, 95%, and 99% confidence intervals using the methods 
described in part I. For values applicable to other levels of confi­
dence, reference should be made to more extensive published 
tables such as in Geigy scientific tables. 1 The first three tables can 
be used for calculating confidence intervals for a wide variety of 
statistics-such as means, proportions, regression analyses, and 
standardised mortality ratios-whereas the last three are for 
specific statistics, as described in chapter 5. 

Table 18.1 Normal distribution 
Table 18.2 t distribution 
Table 18.3 Poisson distribution 
Table 18.4 Median (single sample) or differences between medians 

(paired samples), based on Binomial distribution with 
probability! 

Table 18.5 Differences between medians (unpaired samples), 
based on distributions of the Wilcoxon two sample 
rank sum test statistic and of the Mann-Whitney U 
test statistic 

Table 18.6 Median (single sample) or differences between medians 
(paired samples), based on the distribution of the 
Wilcoxon matched pairs signed rank sum test statistic 

The tables have been produced directly from theoretical formulae. 

1 Lentner C, ed. Geigy scientific tables. Vol. 2. 8th ed. Basle: Ciba-Geigy, 1982. 
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Table 18.1 Values from the Normal distribution for 
use in calculating confidence intervals 

The value tabulated is zl_Q/2 jrom the standard Normal 
distributionjor the 100(1 - 01/2) percentile and is to be used 
in finding 100(1 - 01) % confidence intervals. For a 90% con­
fidence interval 01 is 0'10,jor a 95% confidence interval 01 is 
0'05, and for a 99% confidence interval 01 is 0'01. 

Level of confidence 

90% 95% 99% 

1'645 1·960 2'576 
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Table 18.2 Values from the t distribution for 1 to 400 degrees of freedom 
for use in calculating confidence intervals 

The value tabulated is t1_ a/zfrom the t distributionJor the 100(1 - Q/2) percentile and 
is to be used in finding 100(1 - Q) % confidence intervals. For a 90% confidence interval 
Q is O'lO,for a 95% confidence interval Q is 0'05, andJor a 99% confidence interval Q is 
0·01. The relation of the degrees of freedom to sample size(s) depends on the particular 
application and is described in chapters 3, 4, and 8 where appropriate. 

Level of confidence Level of confidence 
Degrees of Degrees of 

freedom 90% 95% 99% freedom 90% 95% 99% 

I 6·314 12·706 63'657 44 1'680 2'015 2·692 
2 2·920 4·303 9·925 45 1·679 2'014 2·690 
3 2·353 3'182 5·841 46 1'679 2·013 2'687 
4 2'132 2·776 4·604 47 1·678 2'012 2·685 
5 2·015 2'571 4·032 48 1'677 2·011 2·682 
6 1'943 2·447 3'707 49 1'677 2·010 2·680 
7 1'895 2'365 3'499 50 1'676 2'009 2'678 
8 1·860 2'306 3·355 51 1·675 2'008 2·676 
9 1·833 2'262 3'250 52 1'675 2·007 2·674 

10 1'812 2·228 3·169 53 1·674 2·006 2·672 
11 1'796 2·201 3'106 54 1-674 2·005 2'670 
12 1·782 2'179 3'055 55 1'673 2'004 2'668 
13 1·771 2'160 3-012 56 1'673 2'003 2·667 
14 1·761 2'145 2'977 57 1'672 2·002 2'665 
15 1'753 2·131 2·947 58 1'672 2'002 2·663 
16 1'746 2·120 2·921 59 1'671 2·001 2·662 
17 1'740 2·110 2'898 60 1-671 2'000 2'660 
18 1·734 2'101 2·878 61 1·670 2'000 2·659 
19 1'729 2'093 2'861 62 1'670 1'999 2'657 
20 1'725 2·086 2'845 63 1'669 1·998 2'656 
21 1·721 2'080 2·831 64 1·669 1'998 2·655 
22 1'717 2·074 2'819 65 1'669 1·997 2'654 
23 1·714 2'069 2·807 66 1·668 1'997 2·652 
24 1'711 2·064 2'797 67 1'668 1'996 2'651 
25 1'708 2'060 2'787 68 1'668 1'995 2'650 
26 1'706 2'056 2'779 69 1·667 1'995 2·649 
27 1·703 2'052 2·771 70 1-667 1·994 2·648 
28 1·701 2'048 2'763 71 1'667 1·994 2'647 
29 1'699 2'045 2'756 72 1·666 1'993 2·646 
30 1'697 2'042 2·750 73 1'666 1'993 2'645 
31 1'696 2'040 2'744 74 1·666 1'993 2'644 
32 1'694 2'037 2'738 75 1'665 1'992 2'643 
33 1'692 2'035 2'733 76 1'665 1'992 2'642 
34 1·691 2·032 2'728 77 1'665 1'991 2'641 
35 1'690 2'030 2'724 78 1'665 1'991 2'640 
36 1'688 2'028 2'719 79 1'664 1'990 2'640 
37 1'687 2'026 2·715 80 1'664 1'990 2'639 
38 1'686 2'024 2'712 81 1'664 1'990 2'638 
39 1·685 2'023 2'708 82 1'664 1'989 2'637 
40 1·684 2·021 2·704 83 1·663 1·989 2·636 
41 1·683 2·020 2·701 84 1·663 1·989 2·636 
42 1'682 2'018 2·698 85 1·663 1'988 2·635 
43 1'681 2'017 2'695 86 1'663 1'988 2'634 
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Table 18.2 (continued) 

Level of confidence Level of confidence 
Degrees of Degrees of 

freedom 90% 95% 99% freedom 90% 95% 99% 

87 1'663 1'988 2'634 137 1'656 1·977 2'612 
88 1'662 1·987 2'633 138 1·656 1·977 2'612 
89 1'662 1'987 2'632 139 1'656 1'977 2'612 
90 1'662 1'987 2'632 140 1'656 1'977 2'611 
91 1·662 1·986 2·631 141 1·656 1·977 2·611 
92 1'662 1'986 2'630 142 1'656 1'977 2·611 
93 1·661 1·986 2-630 143 1'656 1·977 2·611 
94 1·661 1·986 2-629 144 1'656 1'977 2'610 
95 1'661 1·985 2·629 145 1'655 1'976 2·610 
96 1·661 1·985 2·628 146 1·655 1'976 2'610 
97 1'661 1·985 2·627 147 1'655 1·976 2·610 
98 1·661 1·984 2·627 148 1·655 1·976 2'609 
99 1·660 1·984 2·626 149 1·655 1·976 2·609 

100 1·660 1·984 2·626 150 1'655 1·976 2·609 
101 1'660 1'984 2'625 151 1·655 1·976 2'609 
102 1·660 1·983 2·625 152 1·655 1·976 2'609 
103 1·660 1·983 2·624 153 1·655 1·976 2·608 
104 1·660 1·983 2·624 154 1·655 1·975 2'608 
105 1·660 1·983 2·623 155 1·655 1'975 2·608 
106 1'659 1'983 2·623 156 1·655 1·975 2·608 
107 1·659 1'982 2·623 157 1·655 1·975 2·608 
108 1'659 1'982 2·622 158 1'655 1·975 2'607 
109 1·659 1·982 2·622 159 1·654 1·975 2·607 
110 1'659 1·982 2'621 160 1·654 1'975 2·607 
111 1'659 1'982 2'621 161 1'654 1·975 2'607 
112 1'659 1'981 2·620 162 1'654 1'975 2·607 
113 1·658 1'981 2'620 163 1'654 1·975 2·606 
114 1'658 1'981 2'620 164 1'654 1·975 2'606 
115 1'658 1'981 2'619 165 1'654 1'974 2'606 
116 1·658 1'981 2'619 166 1'654 1'974 2'606 
117 1'658 1'980 2'619 167 1'654 1'974 2'606 
118 1'658 1'980 2'618 168 1'654 1'974 2'605 
119 1·658 1'980 2'618 169 1'654 1'974 2'605 
120 1'658 1·980 2·617 170 1·654 1·974 2·605 
121 1'658 1·980 2'617 171 1'654 1·974 2'605 
122 1'657 1·980 2'617 172 1'654 1·974 2'605 
123 1'657 1·979 2·616 173 1'654 1·974 2·605 
124 1'657 1'979 2'616 174 1'654 1'974 2'604 
125 1·657 1'979 2'616 175 1'654 1'974 2'604 
126 1'657 1·979 2'615 176 1'654 1·974 2·604 
127 1'657 1·979 2·615 177 1·654 1·973 2·604 
128 1'657 1'979 2'615 178 1'653 1·973 2'604 
129 1·657 1'979 2'614 179 1·653 1·973 2·604 
130 1'657 1'978 2'614 180 1'653 1'973 2'603 
131 1'657 1'978 2'614 181 1'653 1'973 2'603 
132 1'656 1'978 2·614 182 1·653 1'973 2·603 
133 1·656 1·978 2·613 183 1·653 1'973 2·603 
134 1·656 1'978 2·613 184 1·653 1'973 2·603 
135 1·656 1·978 2·613 185 1·653 1'973 2·603 
136 1'656 1·978 2·612 186 1'653 1·973 2·603 
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Table 18.2 (continued) 

Level of confidence Level of confidence 
Degrees of Degrees of 

freedom 90% 95% 99% freedom 90% 95% 99% 

187 1'653 1·973 2·602 250 1'651 1'969 2·596 
188 1·653 1·973 2·602 260 1·651 1·969 2·595 
189 1'653 1'973 2'602 270 1·651 1·969 2'594 
190 1·653 1'973 2'602 280 1·650 1·968 2'594 
191 1·653 1·972 2·602 290 1·650 1'968 2'593 
192 1'653 1'972 2'602 300 1'650 1'968 2'592 
193 1'653 1'972 2'602 310 1'650 1'968 2'592 
194 1'653 1'972 2'601 320 1·650 1'967 2'591 
195 1'653 1'972 2·601 330 1·649 1·967 2·591 
196 1·653 1'972 2'601 340 1·649 1·967 2·590 
197 1·653 1·972 2·601 350 1·649 1·967 2'590 
198 1-653 1·972 2·601 360 1·649 1·967 2·590 
199 1-653 1'972 2'601 370 1·649 1·966 2·589 
200 1·653 1·972 2'601 380 1'649 1'966 2'589 
210 1-652 1'971 2'599 390 1·649 1·966 2·588 
220 1·652 1·971 2'598 400 1'649 1'966 2'588 
230 1-652 1'970 2·597 00 1·645 1·960 2·576 
240 1'651 1'970 2·596 
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Table 18.3 Values from the Poisson distribution for observed numbers of 
from 0 to 100 for use in calculating confidence intervals 

If x is the observed number in the study then the values tabulated (XL to Xu) give the 
100(1 - ex)% confidence interval for the population mean, assuming that the observed 
number is from a Poisson distribution. For a 90% confidence interval ex is 0·10, for a 
95% confidence interval ex is 0·05, and for a 99% confidence interval ex is 0·01. 

Level of confidence 

90% 95% 99% 

X XL Xu XL Xu XL Xu 

0 0 2·996 0 3·689 0 5·298 
1 0·051 4·744 0·025 5·572 0·005 7·430 
2 0·355 6·296 0·242 7·225 0·103 9·274 
3 0·818 7·754 0·619 8·767 0·338 10·977 
4 1·366 9·154 1·090 10·242 0·672 12·594 
5 1·970 10·513 1·623 11·668 1·078 14·150 
6 2·613 11·842 2·202 13·059 1·537 15·660 
7 3·285 13·148 2·814 14·423 2·037 17·134 
8 3·981 14·435 3·454 15·763 2·571 18·578 
9 4·695 15·705 4·115 17·085 3·132 19·998 

10 5·425 16·962 4·795 18·390 3·717 21·398 
11 6·169 18·208 5·491 19·682 4·321 22·779 
12 6·924 19·443 6·201 20·962 4·943 24·145 
13 7·690 20·669 6·922 22·230 5·580 25·497 
14 8·464 21·886 7·654 23·490 6·231 26·836 
15 9·246 23·097 8·395 24·740 6·893 28·164 
16 10·036 24·301 9·145 25·983 7·567 29·482 
17 10·832 25·499 9·903 27·219 8·251 30·791 
18 11·634 26·692 10·668 28·448 8·943 32·091 
19 12·442 27·879 11·439 29·671 9·644 33·383 
20 13·255 29·062 12·217 30·888 10·353 34·668 
21 14·072 30·240 12·999 32·101 11·069 35·946 
22 14·894 31·415 13·787 33·308 11·792 37·218 
23 15·719 32·585 14·580 34·511 12·521 38·484 
24 16·549 33·752 15·377 35·710 13·255 39·745 
25 17·382 34·916 16·179 36·905 13·995 41·000 
26 18·219 36·077 16·984 38·096 14·741 42·251 
27 19·058 37·234 17·793 39·284 15·491 43·497 
28 19·901 38·389 18·606 40·468 16·245 44·738 
29 20·746 39·541 19·422 41·649 17·004 45·976 
30 21·594 40·691 20·241 42·827 17·767 47·209 
31 22·445 41·838 21·063 44·002 18·534 48·439 
32 23·297 42·982 21·888 45·174 19·305 49·665 
33 24·153 44·125 22·716 46·344 20·079 50·888 
34 25·010 45·266 23·546 47·512 20·857 52·107 
35 25·870 46·404 24·379 48·677 21·638 53·324 
36 26·731 47·541 25·214 49·839 22·422 54·537 
37 27·595 48·675 26·051 51·000 23·208 55·748 
38 28·460 49·808 26·891 52·158 23·998 56·955 
39 29·327 50·940 27·733 53·314 24·791 58·161 
40 30·196 52·069 28·577 54·469 25·586 59·363 
41 31·066 53·197 29·422 55·621 26·384 60·563 
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Table 18.3 (continued) 

Level of confidence 

90% 95% 99% 

x XL Xu XL Xu XL Xu 

42 31·938 54·324 30·270 56·772 27'184 61'761 
43 32·812 55·449 31·119 57'921 27·986 62·956 
44 33'687 56'573 31'970 59'068 28·791 64'149 
45 34'563 57'695 32'823 60'214 29'598 65·341 
46 35'441 58'816 33'678 61·358 30·407 66·530 
47 36'320 59'935 34'534 62'500 31'218 67'717 
48 37'200 61'054 35'391 63'641 32'032 68'902 
49 38·082 62·171 36·250 64·781 32'847 70'085 
50 38'965 63'287 37'111 65'919 33'664 71'266 
51 39'849 64'402 37·973 67'056 34'483 72'446 
52 40'734 65'516 38'836 68'191 35'303 73'624 
53 41'620 66'628 39'701 69'325 36'125 74'800 
54 42'507 67'740 40'566 70'458 36'949 75'974 
55 43'396 68'851 41'434 71'590 37'775 77·147 
56 44'285 69'960 42'302 72'721 38'602 78'319 
57 45'176 71'069 43'171 73·850 39'431 79'489 
58 46'067 72'177 44'042 74'978 40'261 80'657 
59 46'959 73'284 44'914 76'106 41'093 81'824 
60 47'852 74'390 45'786 77'232 41'926 82'990 
61 48'746 75'495 46'660 78·357 42'760 84'154 
62 49·641 76·599 47·535 79·481 43'596 85·317 
63 50'537 77'702 48·411 80·604 44'433 86'479 
64 51·434 78·805 49·288 81·727 45'272 87·639 
65 52·331 79·907 50'166 82'848 46·111 88·798 
66 53'229 81'008 51'044 83'968 46'952 89'956 
67 54·128 82·108 51·924 85'088 47·794 91·112 
68 55·028 83·208 52'805 86·206 48'637 92'269 
69 55'928 84·306 53·686 87'324 49'482 93'423 
70 56·830 85·405 54'568 88'441 50'327 94'577 
71 57'732 86'502 55·452 89·557 51'174 95·729 
72 58·634 87'599 56'336 90'672 52'022 96'881 
73 59'537 88'695 57'220 91'787 52'871 98'031 
74 60·441 89·790 58'106 92·900 53'720 99'180 
75 61'346 90·885 58·992 94·013 54·571 100·328 
76 62·251 91'979 59'879 95'125 55'423 101'476 
77 63'157 93·073 60·767 96'237 56·276 102·622 
78 64·063 94·166 61·656 97·348 57·129 103·767 
79 64'970 95'258 62'545 98'458 57'984 104'912 
80 65'878 96·350 63'435 99'567 58'840 106'056 
81 66·786 97·441 64'326 100'676 59·696 107·198 
82 67·965 98·532 65'217 101'784 60·553 108·340 
83 68·604 99·622 66·109 102·891 61'412 109·481 
84 69'514 100'712 67·002 103·998 62'271 110'621 
85 70'425 101-801 67'895 105'104 63'131 111'761 
86 71'336 102'889 68'789 106'209 63-991 112'899 
87 72'247 103·977 69'683 107,314 64,853 114,037 
88 73,159 105,065 70'579 108'418 65·715 115,174 
89 74,071 106'152 71,474 109·522 66·578 116·310 
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Table 18.3 (continued) 

Level of confidence 

90% 95% 99% 

x xL Xu XL Xu XL Xu 

90 74·984 107·239 72·371 110·625 67·442 117·445 
91 75·898 108·325 73·268 111·728 68·307 118·580 
92 76·812 109·410 74·165 112·830 69·172 119·714 
93 77·726 110·495 75·063 113·931 70·038 120·847 
94 78·641 111·580 75·962 115·032 70·905 121·980 
95 79·556 112·664 76·861 116·133 71·773 123·112 
96 80·472 113·748 77-760 117·232 72·641 124·243 
97 81·388 114·832 78·660 118·332 73·510 125·373 
98 82·305 115·915 79·561 119·431 74·379 126·503 
99 83·222 116·997 80·462 120·529 75·250 127·632 

100 84·139 118·079 81·364 121-627 76·120 128·761 

For X > 100 the following calculations can be carried out to obtain approximate 
values for XL and Xu: 

where z] _ 0/2 is the appropriate value from the standard Normal distribution for the 
100(1 - Ci/2) percentile. 

As an example of the closeness of the approximations to the exact values, for 
Ci = 0·05 (z] _ 0/2 = 1·96) and X = 100 the formulae give XL = 81·360 and Xu = 
121·658 for the 95% confidence interval compared to the values of XL = 81·364 
and Xu = 121·627 tabulated above. 
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Table 18.4 Ranks of the observations for use in calculating confidence 
intervals for population medians in single samples or for differences 
between population medians for the case of two paired samples with 
sample sizes from 6 to 100 and the associated exact levels of confidence, 
based on the Binomial distribution with probability ~. 

The values tabulated (rL to rv) show the ranks of the observations to be used to give the 
approximate 100(1 - a)% confidence interval for the population median. For a 90% 
confidence interval a is O'lO,for a 95% confidence interval a is 0'05, and for a 99% 
confidence internal a is 0·01. 

Level of confidence 

90% (approx) 95% (approx) 99% (approx) 
Sample 

size Exact Exact Exact 
(n) rL rv level (%) rL rv level (%) rL rv level (%) 

6 1 6 96'9 6 96·9 
7 1 7 98'4 1 7 98·4 
8 2 7 93'0 1 8 99·2 1 8 99·2 
9 2 8 96'1 2 8 96'1 1 9 99'6 

10 2 9 97·9 2 9 97'9 1 10 99·8 
11 3 9 93·5 2 10 98·8 1 11 99·9 
12 3 10 96·1 3 10 96·1 2 11 99'4 
13 4 10 90·8 3 11 97·8 2 12 99·7 
14 4 11 94·3 3 12 98·7 2 13 99·8 
15 4 12 96·5 4 12 96'5 3 13 99·3 
16 5 12 92'3 4 13 97'9 3 14 99'6 
17 5 13 95'1 5 13 95'1 3 15 99'8 
18 6 13 90'4 5 14 96·9 4 15 99·2 
19 6 14 93'6 5 15 98'1 4 16 99'6 
20 6 15 95'9 6 15 95'9 4 17 99'7 
21 7 15 92·2 6 16 97·3 5 17 99·3 
22 7 16 94'8 6 17 98'3 5 18 99'6 
23 8 16 90'7 7 17 96'5 5 19 99'7 
24 8 17 93'6 7 18 97'7 6 19 99'3 
25 8 18 95·7 8 18 95·7 6 20 99'6 
26 9 18 92'4 8 19 97'1 7 20 99'1 
27 9 19 94'8 8 20 98·1 7 21 99'4 
28 10 19 91'3 9 20 96·4 7 22 99'6 
29 10 20 93'9 9 21 97·6 8 22 99'2 
30 11 20 90·1 10 21 95'7 8 23 99·5 
31 11 21 92·9 10 22 97·1 8 24 99'7 
32 11 22 95'0 10 23 98'0 9 24 99·3 
33 12 22 92·0 11 23 96'5 9 25 99'5 
34 12 23 94'2 11 24 97·6 10 25 99'1 
35 13 23 91'0 12 24 95'9 10 26 99·4 
36 13 24 93'5 12 25 97'1 10 27 99'6 
37 14 24 90'1 13 25 95·3 11 27 99'2 
38 14 25 92·7 13 26 96·6 11 28 99'5 
39 14 26 94·7 13 27 97·6 12 28 99·1 
40 15 26 91·9 14 27 96·2 12 29 99·4 
41 15 27 94·0 14 28 97·2 12 30 99'6 
42 16 27 91'2 15 28 95·6 13 30 99·2 
43 16 28 93·4 15 29 96·8 13 31 99·5 
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Table 18.4 (continued) 

Level of confidence 

90% (approx) 95% (approx) 99% (approx) 
Sample 

size Exact Exact Exact 
(n) rL ru level (%) rL ru level (%) rL ru level (%) 

44 17 28 90·4 16 29 95·1 14 31 99·0 
45 17 29 92·8 16 30 96·4 14 32 99·3 
46 17 30 94·6 16 31 97·4 14 33 99·5 
47 18 30 92·1 17 31 96·0 15 33 99·2 
48 18 31 94·1 17 32 97·1 15 34 99·4 
49 19 31 91·5 18 32 95·6 16 34 99·1 
50 19 32 93·5 18 33 96·7 16 35 99·3 
51 20 32 90·8 19 33 95·1 16 36 99·5 
52 20 33 93·0 19 34 96·4 17 36 99·2 
53 21 33 90·2 19 35 97·3 17 37 99·5 
54 21 34 92·4 20 35 96·0 18 37 99·1 
55 21 35 94·2 20 36 97·0 18 38 99·4 
56 22 35 91·9 21 36 95·6 18 39 99·5 
57 22 36 93·7 21 37 96·7 19 39 99·2 
58 23 36 91·3 22 37 95·2 19 40 99·5 
59 23 37 93·3 22 38 96·4 20 40 99·1 
60 24 37 90·8 22 39 97·3 20 41 99·4 
61 24 38 92·8 23 39 96·0 21 41 99·0 
62 25 38 90·2 23 40 97·0 21 42 99·3 
63 25 39 92·3 24 40 95·7 21 43 99·5 
64 25 40 94·0 24 41 96·7 22 43 99·2 
65 26 40 91·8 25 41 95·4 22 44 99·4 
66 26 41 93·6 25 42 96·4 23 44 99·1 
67 27 41 91·4 26 42 95·0 23 45 99·3 
68 27 42 93·2 26 43 96·2 23 46 99·5 
69 28 42 90·9 26 44 97·1 24 46 99·2 
70 28 43 92·8 27 44 95·9 24 47 99·4 
71 29 43 90·4 27 45 96·8 25 47 99·1 
72 29 44 92·4 28 45 95·6 25 48 99·4 
73 29 45 94·0 28 46 96·6 26 48 99·0 
74 30 45 91·9 29 46 95·3 26 49 99·3 
75 30 46 93·6 29 47 96·3 26 50 99·5 
76 31 46 91·5 29 48 97·1 27 50 99·2 
77 31 47 93·2 30 48 96·0 27 51 99·4 
78 32 47 91·1 30 49 96·9 28 51 99·1 
79 32 48 92·9 31 49 95·8 28 52 99·3 
80 33 48 90·7 31 50 96·7 29 52 99·0 
81 33 49 92·5 32 50 95·5 29 53 99·3 
82 34 49 90·3 32 51 96·5 29 54 99·5 
83 34 50 92·2 33 51 95·2 30 54 99·2 
84 34 51 93·7 33 52 96·2 30 55 99·4 
85 35 51 91·8 33 53 97·1 31 55 99·1 
86 35 52 93·4 34 53 96·0 31 56 99·3 
87 36 52 91·4 34 54 96·9 32 56 99·0 
88 36 53 93·1 35 54 95·8 32 57 99·3 
89 37 53 91·1 35 55 96·7 32 58 99·4 
90 37 54 92·8 36 55 95·5 33 58 99·2 
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Table 18.4 (continued) 

Level of confidence 

90% (approx) 95% (approx) 99% (approx) 
Sample 

size Exact Exact Exact 
(n) rL ru level (%) rL ru level (%) rL ru level (%) 

91 38 54 90·7 36 56 96'5 33 59 99'4 
92 38 55 92'4 37 56 95'3 34 59 99'1 
93 39 55 90'3 37 57 96'2 34 60 99'3 
94 39 56 92'1 38 57 95'1 35 60 99'0 
95 39 57 93-6 38 58 96'0 35 61 99'3 
96 40 57 91'8 38 59 96'8 35 62 99'4 
97 40 58 93'3 39 59 95'8 36 62 99'2 
98 41 58 91·5 39 60 96·7 36 63 99'4 
99 41 59 93'0 40 60 95'6 37 63 99'1 
100 42 59 91'1 40 61 96'5 37 64 99'3 

For sample sizes of n over 100, satisfactory approximations to the values of rL and 
ru can be found as described in chapter 5. 

For n = 100 and cy = 0'01, for example, the calculations give r = 37'1 and 
5 = 63'9, which rounded to the nearest integer give rL = 37 and ru = 64 for finding 
the 99% confidence interval, the same values as shown in the table. 

For an explanation of the use of this table see chapter 5. 
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Table 18.5 Values of K for use in calculating confidence intervals for 
differences between population medians for the case of two unpaired 
samples with sample sizes nl and nz from 5 to 25 and the associated 
exact levels of confidence, based on the Wilcoxon two sample rank sum 
distribution 

Level of confidence 

Sample sizes (n1' n2) 90% (approx) 95% (approx) 99% (approx) 

Exact Exact Exact 
Smaller Larger K level (%) K level (%) K level (%) 

5 5 5 90·5 3 96·8 99·2 
5 6 6 91·8 4 97·0 2 99·1 
5 7 7 92·7 6 95·2 2 99·5 
5 8 9 90·7 7 95·5 3 99·4 
5 9 10 91·7 8 95·8 4 99·3 
5 10 12 90·1 9 96·0 5 99·2 
5 11 13 91·0 10 96·2 6 99·1 
5 12 14 91·8 12 95·2 7 99·1 
5 13 16 90·5 13 95·4 8 99·0 
5 14 17 91·3 14 95·6 8 99·3 
5 15 19 90·2 15 95·8 9 99·2 
5 16 20 90·9 16 96·0 10 99·2 
5 17 21 91·5 18 95·2 11 99·1 
5 18 23 90·6 19 95·4 12 99·1 
5 19 24 91·2 20 95·6 13 99·1 
5 20 26 90·3 21 95·8 14 99·0 
5 21 27 90·9 23 95·1 15 99·0 
5 22 29 90·1 24 95·3 15 99·2 
5 23 30 90·6 25 95·5 16 99·2 
5 24 31 91-1 26 95·6 17 99·1 
5 25 33 90·4 28 95·1 18 99·1 

6 6 8 90·7 6 95·9 3 99·1 
6 7 9 92·7 7 96·5 4 99·2 
6 8 11 91·9 9 95·7 5 99·2 
6 9 13 91·2 11 95·0 6 99·2 
6 10 15 90·7 12 95·8 7 99·3 
6 11 17 90·2 14 95·2 8 99·3 
6 12 18 91·7 15 95·9 10 99·0 
6 13 20 91·3 17 95·4 11 99·1 
6 14 22 90·9 18 95·9 12 99·1 
6 15 24 90·5 20 95·5 13 99·2 
6 16 26 90·2 22 95·1 14 99·2 
6 17 27 91·4 23 95·6 16 99·0 
6 18 29 91·0 25 95·3 17 99·1 
6 19 31 90·8 26 95·7 18 99·1 
6 20 33 90·5 28 95·4 19 99·1 
6 21 35 90·3 30 95·1 20 99·2 
6 22 37 90·0 31 95·5 22 99·0 
6 23 38 91·0 33 95·3 23 99·1 
6 24 40 90·7 34 95·6 24 99·1 
6 25 42 90·5 36 95·4 25 99·1 
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Table 18.5 (continued) 

Level of confidence 

Sample sizes (nl' n2) 90% (approx) 95% (approx) 99% (approx) 

Exact Exact Exact 
Smaller Larger K level (%) K level (%) K level (%) 

7 7 12 90·3 9 96'2 5 99'3 
7 8 14 90'6 11 96·0 7 99·1 
7 9 16 90·9 13 95·8 8 99·2 
7 10 18 91·2 15 95·7 10 99·0 
7 11 20 91'5 17 95'6 11 99'2 
7 12 22 91'7 19 95·5 13 99·0 
7 13 25 90'3 21 95·4 14 99'2 
7 14 27 90'6 23 95·4 16 99·0 
7 15 29 90'9 25 95'3 17 99'1 
7 16 31 91'1 27 95'3 19 99'0 
7 17 34 90'1 29 95·3 20 99'1 
7 18 36 90'3 31 95'3 22 99'1 
7 19 38 90'6 33 95'2 23 99'2 
7 20 40 90'8 35 95'2 25 99'1 
7 21 42 91'0 37 95'2 26 99·2 
7 22 45 90'2 39 95'2 28 99'1 
7 23 47 90'4 41 95'2 30 99'0 
7 24 49 90'6 43 95'2 31 99'1 
7 25 51 90'8 45 95·2 33 99·0 

8 8 16 91'7 14 95'0 8 99'3 
8 9 19 90'7 16 95·4 10 99·2 
8 10 21 91'7 18 95'7 12 99·1 
8 11 24 90'9 20 95'9 14 99'1 
8 12 27 90'2 23 95'3 16 99'0 
8 13 29 91-1 25 95'5 18 99'0 
8 14 32 90'5 27 95·8 19 99'2 
8 15 34 91·3 30 95'3 21 99'2 
8 16 37 90·7 32 95·5 23 99'1 
8 17 40 90'3 35 95'1 25 99·1 
8 18 42 91'0 37 95'3 27 99'1 
8 19 45 90·5 39 95'5 29 99'1 
8 20 48 90'1 42 95'1 31 99·0 
8 21 50 90'7 44 95'3 33 99·0 
8 22 53 90'3 46 95'5 35 99·0 
8 23 55 90·9 49 95·2 36 99·1 
8 24 58 90·6 51 95·4 38 99·1 
8 25 61 90'2 54 95'1 40 99'1 

9 9 22 90·6 18 96·0 12 99'2 
9 10 25 90'5 21 95·7 14 99·2 
9 11 28 90'5 24 95·4 17 99·0 
9 12 31 90'5 27 95·1 19 99'1 
9 13 34 90'4 29 95'7 21 99·1 
9 14 37 90·4 32 95·4 23 99·1 
9 15 40 90·4 35 95'2 25 99·2 
9 16 43 90'5 38 95·1 28 99·0 
9 17 46 90'5 40 95'5 30 99'1 
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Table 18.5 (continued) 

Level of confidence 

Sample sizes (nJ, n2) 90% (approx) 95% (approx) 99% (approx) 

Exact Exact Exact 
Smaller Larger K level (%) K level (%) K level (%) 

9 18 49 90·5 43 95'4 32 99'1 
9 19 52 90·5 46 95·2 34 99'1 
9 20 55 90'5 49 95·1 37 99·0 
9 21 58 90'6 51 95·5 39 99·1 
9 22 61 90'6 54 95·4 41 99'1 
9 23 64 90'6 57 95·3 44 99'0 
9 24 67 90·6 60 95'1 46 99'0 
9 25 70 90·6 63 95·0 48 99·1 

10 10 28 91'1 24 95'7 17 99'1 
10 II 32 90'1 27 95'7 19 99·2 
10 12 35 90'7 30 95·7 22 99·1 
10 13 38 91'2 34 95'1 25 99·0 
10 14 42 90·4 37 95'2 27 99'1 
10 15 45 90'9 40 95·2 30 99·0 
10 16 49 90'3 43 95'3 32 99·1 
10 17 52 90'7 46 95'4 35 99·1 
10 18 56 90·1 49 95·5 38 99·0 
10 19 59 90'6 53 95'0 40 99·1 
10 20 63 90'0 56 95·1 43 99·0 
10 21 66 90·4 59 95'2 45 99'1 
10 22 69 90'8 62 95·3 48 99·1 
10 23 73 90'4 65 95'3 51 99'0 
10 24 76 90'7 68 95'4 53 99'1 
10 25 80 90·3 72 95'0 56 99'1 

II 11 35 91·2 31 95'3 22 99·2 
11 12 39 90'9 34 95'6 25 99'1 
11 13 43 90·7 38 95'3 28 99'1 
11 14 47 90·5 41 95'6 31 99'1 
11 15 51 90'3 45 95'3 34 99'1 
11 16 55 90·1 48 95'6 37 99'1 
11 17 58 90'9 52 95'3 40 99'1 
11 18 62 90'8 56 95'1 43 99'1 
II 19 66 90·6 59 95·3 46 99'1 
11 20 70 90'5 63 95·1 49 99'1 
II 21 74 90'4 66 95·4 52 99'1 
11 22 78 90'3 70 95'2 55 99'1 
11 23 82 90·2 74 95'0 58 99'1 
11 24 86 90'1 77 95'3 61 99'1 
11 25 90 90'0 81 95'1 64 99·1 

12 12 43 91'1 38 95'5 28 99'2 
12 13 48 90·2 42 95·4 32 99·0 
12 14 52 90'5 46 95·4 35 99·1 
12 15 56 90·7 50 95·3 38 99·1 
12 16 61 90'0 54 95·3 42 99·0 
12 17 65 90'3 58 95·2 45 99·1 
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Table 18.5 (continued) 

Level of confidence 

Sample sizes (nj' nz) 90% (approx) 95% (approx) 99% (approx) 

Exact Exact Exact 
Smaller Larger K level (%) K level (%) K level (%) 

12 18 69 90'5 62 95·2 48 99'1 
12 19 73 90'7 66 95·2 52 99'0 
12 20 78 90'1 70 95·2 55 99·1 
12 21 82 90'4 74 95·2 59 99'0 
12 22 86 90'6 78 95·2 62 99·0 
12 23 91 90·1 82 95'1 65 99'1 
12 24 95 90'3 86 95'1 69 99·0 
12 25 99 90·5 90 95'1 72 99'1 

13 13 52 90·9 46 95·6 35 99·1 
13 14 57 90'6 51 95·2 39 99·1 
13 15 62 90'2 55 95'4 43 99'0 
13 16 66 90'8 60 95'0 46 99'1 
13 17 71 90·6 64 95'2 50 99'1 
13 18 76 90'3 68 95'4 54 99'0 
13 19 81 90·1 73 95·1 58 99·0 
13 20 85 90'6 77 95'2 61 99'1 
13 21 90 90'4 81 95'4 65 99'1 
13 22 95 90'2 86 95'1 69 99'0 
13 23 99 90'7 90 95'3 73 99'0 
13 24 104 90'5 95 95'1 76 99·1 
13 25 109 90'3 99 95'2 80 99·1 

14 14 62 90'6 56 95'0 43 99'1 
14 15 67 90'7 60 95'4 47 99'1 
14 16 72 90'7 65 95'3 51 99'1 
14 17 78 90·0 70 95·2 55 99·1 
14 18 83 90'1 75 95'1 59 99'1 
14 19 88 90'2 79 95'4 64 99'0 
14 20 93 90'3 84 95·3 68 99·0 
14 21 98 90'4 89 95'2 72 99·0 
14 22 103 90'5 94 95'1 76 99'0 
14 23 108 90'6 99 95'1 80 99'1 
14 24 114 90'0 103 95'3 84 99'1 
14 25 119 90'2 108 95'3 88 99'1 

15 15 73 90'2 65 95'5 52 99'0 
15 16 78 90'7 71 95'1 56 99'1 
15 17 84 90'3 76 95'1 61 99'0 
15 18 89 90'7 81 95'2 65 99'1 
15 19 95 90'4 86 95·3 70 99·0 
15 20 101 90'1 91 95'4 74 99'1 
15 21 106 90'4 97 95'1 79 99'0 
15 22 112 90'2 102 95·1 83 99·1 
15 23 117 90·5 107 95·2 88 99·0 
15 24 123 90'3 112 95'3 92 99'1 
15 25 129 90'0 118 95'0 97 99'0 
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Table 18.5 (continued) 

Level of confidence 

Sample sizes (n], n2) 90% (approx) 95% (approx) 99% (approx) 

Exact Exact Exact 
Smaller Larger K level (%) K level (%) K level (%) 

16 16 84 90-6 76 95-3 61 99-0 
16 17 90 90-6 82 95-1 66 99-0 
16 18 96 90-5 87 95-4 71 99-0 
16 19 102 90-5 93 95-2 75 99-1 
16 20 108 90-5 99 95-1 80 99-1 
16 21 114 90-5 104 95-3 85 99-1 
16 22 120 90-5 110 95-2 90 99-1 
16 23 126 90-5 116 95-0 95 99-1 
16 24 132 90-5 121 95-2 100 99-1 
16 25 138 90-5 127 95-1 105 99-0 

17 17 97 90-1 88 95-1 71 99-1 
17 18 103 90-4 94 95-1 76 99-1 
17 19 110 90-0 100 95-1 82 99-0 
17 20 116 90-3 106 95-2 87 99-0 
17 21 122 90-5 112 95-2 92 99-1 
17 22 129 90-2 118 95-2 97 99-1 
17 23 135 90-5 124 95-2 103 99-0 
17 24 142 90-2 130 95-2 108 99-0 
17 25 148 90-4 136 95-2 113 99-1 

18 18 110 90-3 100 95-3 82 99-0 
18 19 117 90_2 107 95-1 88 99-0 
18 20 124 90-1 113 95-2 93 99-1 
18 21 131 90-0 120 95-1 99 99-0 
18 22 137 90-5 126 95-2 105 99-0 
18 23 144 90-4 133 95-0 110 99-1 
18 24 151 90-4 139 95-2 116 99-0 
18 25 158 90-3 146 95-0 122 99-0 

19 19 124 90-4 114 95-0 94 99-0 
19 20 131 90-5 120 95-3 100 99-0 
19 21 139 90-1 127 95-3 106 99-0 
19 22 146 90-3 134 95-2 112 99-0 
19 23 153 90-4 141 95-2 118 99-0 
19 24 161 90-1 148 95-2 124 99-0 
19 25 168 90-2 155 95-1 130 99-1 

20 20 139 90-4 128 95-1 106 99-1 
20 21 147 90-2 135 95-2 113 99-0 
20 22 155 90-1 142 95-3 119 99-0 
20 23 162 90-4 150 95-1 126 99-0 
20 24 170 90-3 157 95-2 132 99-0 
20 25 178 90-2 164 95-3 139 99-0 

21 21 155 90-3 143 95-1 119 99-1 
21 22 163 90-4 151 95-0 126 99-1 
21 23 171 90-4 158 95-2 133 99-1 
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Table 18.5 (continued) 

Level of confidence 

Sample sizes (n], n2) 90% (approx) 95% (approx) 99% (approx) 

Exact Exact Exact 
Smaller Larger K level (%) K level (%) K level (%) 

21 24 180 90·1 166 95·2 140 99·0 
21 25 188 90·2 174 95·1 147 99·0 

22 22 172 90·2 159 95·1 134 99·0 
22 23 180 90·5 167 95·1 141 99·0 
22 24 189 90·3 175 95·2 148 99·1 
22 25 198 90·1 183 95·2 156 99·0 

23 23 190 90·0 176 95·0 149 99·0 
23 24 199 90·1 184 95·2 156 99·1 
23 25 208 90·1 193 95·1 164 99·0 

24 24 208 90·3 193 95·2 165 99·0 
24 25 218 90·1 202 95·2 173 99·0 

25 25 228 90·1 212 95·1 181 99·0 

For samples sizes where n] and n2 are greater than the range shown in the table, a 
satisfactory approximation to the value of K can be calculated as 

rounded up to the next higher integer value, where z]-aj2 is the appropriate value 
from the standard Normal distribution for the 100(1 - 0'./2) percentile. 

For n] = 25, n2 = 10, and 0'. = 0·05, for example, this calculation gives 71·3, 
which results in K = 72 for finding the 95% confidence interval, the same value 
as shown in the table. 

For an explanation of the use of this table see chapter 5. 
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Table 18.6 Values of K* for use in calculating confidence intervals for 
population medians in single samples or for differences between population 
medians for the case of two paired samples with sample size n from 6 to 50 
and the associated exact levels of confidence, based on the Wilcoxon 
matched pairs signed rank sum distribution (see footnote overleaf) 

Level of confidence 

90% (approx) 95% (approx) 99% (approx) 
Sample 

size Exact Exact Exact 
(n) K' level (%) K' level (%) K' level (%) 

6 3 90·6 1 96·9 
7 4 92·2 3 95·3 
8 6 92·2 4 96·1 1 99·2 
9 9 90·2 6 96·1 2 99·2 

10 11 91·6 9 95·1 4 99·0 
11 14 91·7 11 95·8 6 99·0 
12 18 90·8 14 95·8 8 99·1 
13 22 90·6 18 95·2 10 99·2 
14 26 90·9 22 95·1 13 99·1 
15 31 90·5 26 95·2 16 99·2 
16 36 90·7 30 95·6 20 99·1 
17 42 90·2 35 95·5 24 99·1 
18 48 90·1 41 95·2 28 99·1 
19 54 90·4 47 95·1 33 99·1 
20 61 90·3 53 95·2 38 99·1 
21 68 90·4 59 95·4 43 99·1 
22 76 90·2 66 95·4 49 99·1 
23 84 90·2 74 95·2 55 99·1 
24 92 90·5 82 95·1 62 99·0 
25 101 90·4 90 95·2 69 99·0 
26 III 90·1 99 95·1 76 99·1 
27 120 90·5 108 95·1 84 99·0 
28 131 90·1 117 95·2 92 99·0 
29 141 90·4 127 95·2 101 99·0 
30 152 90·4 138 95·0 110 99·0 
31 164 90·2 148 95·2 119 99·0 
32 176 90·2 160 95·0 129 99·0 
33 188 90·3 171 95·2 139 99·0 
34 201 90·2 183 95·2 149 99·0 
35 214 90·3 196 95·1 160 99·0 
36 228 90·2 209 95·0 172 99·0 
37 242 90·2 222 95·1 183 99·0 
38 257 90·1 236 95·1 195 99·0 
39 272 90·1 250 95·1 208 99·0 
40 287 90·3 265 95·0 221 99·0 
41 303 90·2 280 95·0 234 99·0 
42 320 90·1 295 95·1 248 99·0 
43 337 90·0 311 95·1 262 99·0 
44 354 90·1 328 95·0 277 99·0 
45 372 90·0 344 95·1 292 99·0 
46 390 90·1 362 95·0 308 99·0 
47 408 90·2 379 95·1 323 99·0 
48 427 90·2 397 95·1 340 99·0 
49 447 90·1 416 95·1 356 99·0 
50 467 90·1 435 95·1 374 99·0 
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For sample sizes of n over 50, a satisfactory approximation to the value of K' can 
be calculated as 

n(n + 1)(2n + 1)) 
24 ' 

rounded up to the next higher integer value, where z\ _ ,,/2 is the appropriate value 
from the standard Normal distribution for the 100(1 - 0./2) percentile. 

For n = 50 and a = 0'05, for example, this calculation gives 434'5, which results 
in K' = 435 for finding the 95% confidence interval, the same value as shown in the 
table. 

For an explanation of the use of this table see chapter 5. 
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Index 
absolute risk reduction see risk 

difference 
abstracts 9 
accuracy, diagnostic 112 
ACP Journal Club 124 
alpha (0) 206 
American Journal of Epidemiology 6-7 
American Journal of Physiology 7 
American Journal of Public Health 4 
analysis of covariance 124, 180 
analysis of variance 178 
Annals of Internal Medicine 4 
area under receiver operating 

characteristic (ROC) curve 
(AUC) 111-16 

association 188 
attributable risk CAR) 59-60,155,156 
authors 

instructions to 8 
statistical checklists 
statistical guidelines 

192 
171-89 

baseline differences 175 
benefit per 1000 patients 126-7 
bias 19 
binary variables 45 

clinical trials 121-3, 124, 127-9 
meta-analysis 133, 134 
regression analysis 84-5,86-8 

Binomial distribution 38, 65-6, 69-70 
table for confidence intervals 222-4 

blinding techniques 174, 194 
Bonferroni correction 164-5 
bootstrap methods 114, 153, 159-63 

bias corrected and accelerated 
method 160 

bias corrected method 160 
parametric 160-1 
percentile method 160 
software 163 

brackets ( ... ) 206 
British Heart Journal 4 
British Medical Journal (BMJ) 

misuse of confidence intervals 9 
policies 11, 25, 198 
statistical checklists 191, 192-6, 199 

clinical trials 191, 194, 195 
comments 194-6 
general papers 191, 192-4 

use of confidence intervals 6, 7 

case-control study 57, 199 
matched 65-6 

with I:M matching 66-7 

more than two levels of 
exposure 62 

unmatched 60-2 
series 62-5 

causality 188 
censored observations 93, 96-7, 181 
checklists, statistical 191-9 
chi squared C/) test 52, 177 
CIA software see Confidence Interval 

Analysis (CIA) software 
clinically worthwhile difference, 

smallest 140-1, 144-6 
clinical trials 11, 120-32 

adjusting for other variables 123-4 
arguments against confidence 

intervals 10-11 
benefit per 1000 patients 126-7 
cluster 136, 178 
crossover trials see crossover trials 
guidelines for authors 173-4 
interpretation 131-2 
multiple groups 129, 165-6 
number needed to treat 124-6 
parallel groups 120-3 

binary outcome 121-3 
continuous outcome 120-1 
time to event outcome 123 

presentation of results 131 
results section 175 
software 136 
statistical checklists 191, 194, 195, 

196-9 

54 
subgroups 129-30 

Clopper-Pearson method 
cluster randomised trials 136, 178 
complex analyses, guidelines for 

authors 181-2 
Confidence Interval Analysis (CIA) 

software 136,208-13 
Data Editor window 209 
help 213 
Method window 209-12 
options 212 
outline of program 208-13 
Output window 212 
updates and bug fixes 213 

confidence intervals 6-12 
degree 4, 5, 17, 18-19, 20 

in multiple comparisons 165, 
166 

in non-parametric methods 36-7 
options in CIA software 212 

dissenting voices 10-11 
exact 153, 157-9 
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confidence intervals (continued) 
guidelines for authors 176-7, 182, 

183, 187 
link to P values 10 
in medical journals see journals, 

medical 
method of calculation 19, 26-7 
null values and 143-4 
presentation of results 17 -19, 23-4, 

182 
rationale 3-4, 15-24 
suggested use 23 
use 4 
vs P values 10-11, 15-24, 139-40 
vs standard errors 22-3, 24 
width 143,177 

factors affecting 4-5,17,18-19 
sample size estimation 

from 139-51 
confidence limits 23 
CONSORT statement 11,131,174, 

191, 196-9 
checklist 197 
patient flow diagram 198 

continuous variables 
clinical trials 120-1, 127 
diagnostic problem 188-9 
meta-analysis 133 
non-Normal 36 
regression analysis 74-84, 86-7 
summary statistics 175 

control group 120 
correlated variables, hypothesis 

tests 187-8 
correlation 73, 89-91 

coefficient 179-80 
Pearson's product moment 73, 

89-90,91 
Spearman's rank 43,73,90-1, 

92,179-80 
guidelines for authors 179-80, 181, 

185 
matrix 179 
technical details 91-2 

cost-effectiveness ratio 162 
Cox regression 85-6, 87 

in clinical trials 124 
in time to event studies 93, 102-4 

crossover trials 127-9,174,198-9 
binary outcome 127-9 
continuous outcome 127 

data 
description 174-5 
presentation see presentation of 

results 

234 

tied 37 
decimal places, number of 185,212 
degrees of freedom 207 
design, study 173 
Diabetic Medicine 8 
diagnostic tests 105-18, 199 

area under ROC curve 111-16 
classification 

into more than two groups 110 
into two groups 105-10 

clinical cutpoints 114 
interpretation 188-9 
kappa statistic 116-18 
likelihood ratios 108-10 
measurement-based 110-18 
positive/negative predictive values 

107-8 
sensitivity 105-7, 186 
specificity 105-7, 186 

difference, smallest clinically 
worthwhile 140-1,144-6 

discussion section 186-9 
distribution-free methods see non­

parametric methods 
distribution of data 32,34,74, 121, 

178-9, 183 

economics, health 162, 199 
editorials, in medical journals 7 
editorial staff, statistical 

checklists 192 
epidemiological studies 57-71, 199 
Epidemiology 8-9 
error bars 184 
errors in journal articles 171, 194 
estimates, sample study 

imprecision 3-5, 17 
presentation 23 

Evidence-Based Medicine 124, 131 
eX 206 
exact confidence intervals 153, 

157-9 
medians 38-9 
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