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In lifetesting, medical follow-up, and other fields the observation of 
the time of occurrence of the event of interest (called a death) may be 
prevented for some of the items of the sample by the previous occur
rence of some other event (called a l088). Losses may be either accidental 
or controlled, the latter resulting from a decision to terminate certain 
observations. In either case it is usually assumed in this paper that the 
lifetime (age at death) is independent of the potential loss time; in 
practice this assumption deserves careful scrutiny. Despite the resulting 
incompleteness of the data, it is desired to estimate the proportion pet) 
of items in the population whose lifetimes would exceed t (in the absence 
of such losses), without making any assumption about the form of the 
function pet). The observation for each item of a suitable initial event, 
marking the beginning of its lifetime, is presupposed. 

For random samples of size N the product-limit (PL) estimate can 
be defined as follows: List and label the N observed lifetimes (whether 
to death or loss) in order of increasing magnitude, so that one has 
0:::;;tl':::;;t2':::;;··· :::;;tN'. Then P"(t)=II. [(N-r)/(N-r+l»), where r 
assumes those values for which tr':::;;t and for which tr' measures the 
time to death. This estimate is the distribution, unrestricted as to form, 
which maximizes the likelihood of the observations. 

Other estimates that are discussed are the actuarial estimates (which 
are also products, but with the number of factors usually reduced by 
grouping); and reduced-sample (RS) estimates, which require that 
losses not be accidental, so that the limits of observation (potential loss 
times) are known even for those items whose deaths are observed. When 
no losses occur at ages less than t, the estimate of pet) in all cases re
duces to the usual binomial estimate, namely, the observed proportion 
of survivors. 

CONTENTS 

1. Introduction........................................................... 458 
1.1 Formulation....................................................... 458 
1.2 Nonparametric estimation.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 459 
1.3 Examples of the RS and PL estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 459 
1.4 Notation......................................................... 461 

2. The Product-Limit Estimate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 462 
2.1 Definition and calculation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 462 
2.2 Mean and variance of pet) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 465 
2.3 Mean lifetime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 467 

3. The Reduced-Sample Estimate vs. the PL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 469 
3.1 Alternatives to the PL estimate..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 469 
3.2 Dependence of deaths and losses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 470 

* Prepared while the authors were at Bell Telephone Laboratories and Johns Hopkins University respectively. 
The work was aided by a grant from the Office of Naval Research. 

457 

admin
Text Box
 J Am Stat Assoc 1958;53:457-81 



458 AMERICAN STATISTICAL ASSOCIATION JOURNAL, JUNE 1958 

4. Actuarial Estimates. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 471 
4.1 Estimates using only n, il, A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 471 
4.2 Estimates using average ages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 473 

5. Maximum Likelihood Derivation of the PL. . . . . . . . . .. . . . . .. . . . . .. . . . . . . . .. 475 
6. Means and Variances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 476 

6.1 The PL estimate P(t). .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 476 
6.2 Covariances and mean lifetimes ..................................... , 478 

7. Consistency; Testing with Replacement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 479 

1. INTRODUCTION 

1.1 Formulation. In many estimation problems it is inconvenient or im
possible to make complete measurements on all members of a random sample. 
For example, in medical follow-up studies to determine the distribution of sur
vival times after an operation, contact with some individuals will be lost before 
their death, and others will die from causes it is desired to exclude from con
sideration. Similarly, observation of the life of a vacuum tube may be ended by 
breakage of the tube, or a need to use the test facilities for other purposes. In 
both examples, incomplete observations may also result from a need to get out 
a report within a reasonable time. 

The type of estimate studied here can be briefly indicated as follows. When 
a random sample of N values, T l , T2, ••• , TN of a random variable is given, 
the sample distribution function Pet) is naturally defined as that which assigns 
a probability of liN to each of the given values, so that PCt) equals liN times 
the number of sample values less than the argument t. Besides describing the 
sample, this Pet) is also a nonparametric estimate of the population distribution, 
in the sense indicated in 1.2 below. When the observations are incomplete, the 
corresponding estimate is still a step-function with discontinuities at the ages 
of observed deaths, but it can no longer be obtained as a mere description of 
the sample. 

The samples considered in this paper are incomplete in the sense that one 
has given, not a random sample Tl , ••• , TN of values of the random variable 
T itself (called the lifetime), but the observed lifetime8 

i = 1,2, ... , N. (la) 

Here the L;, called limits of observation, are constants or values of other random 
variables, which are assumed to be independent of the T i unless otherwise 
stated (in Sections 3.2 and 7). For each item it is known whether one has 

t; = T; (a death) (lb) 

or 

L; < Ti, t; = Li (a l08s). 

Ordinarily the Ti and L .. are so defined as to be necessarily nonnegative. 
The items in the sample are thus divided into two mutually exclusive classes, 

namely deaths and losses. A loss by definition always precludes the desired 
knowledge of T •. On the other hand, a death does not always preclude the 
knowledge of the corresponding L i , in case the limits of observation are non
random and foreseeable. Such knowledge of the L. may have value; for example, 
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it makes available the reduced-sample estimate (Section 3), if one chooses to 
use it. 

The type of sample described is a generalization of the censored sample de
fined by Hald [17], and a specialization of the situation considered by Harris, 
Meier, and Tukey [18]. 

The term death has been adopted as being at least metaphorically appropri
ate in many applications, but it can represent any event susceptible of random 
sampling. In particular, the roles of death and (random) loss may be inter
changeable. By redefining the classification of events into deaths and losses, it 
may be possible to approach the same data from various points of view and thus 
to estimate the survivorship functions P(t) that would be appropriate to vari
ous categories of events in the absence of the others. This is familiar enough; 
see for example [6], [13], [16]. 

1.2 N onparametric estimation. Most general methods of estimation, such as 
maximum likelihood or minimum chi-square, may be interpreted as procedures 
for selecting from an admissible class of distributions one which, in a specified 
sense, best fits the observations. To estimate a characteristic (or parameter) 
of the true distribution one uses the value that the characteristic has for this 
best fitting distribution function. It seems reasonable to call an estimation pro
cedure nonparametric when the class of admissible distributions from which the 
best-fitting one is to be chosen is the class of all distributions. (Wolfowitz [28] 
has used the term similarly in connection with the likelihood ratio in hypothesis 
testing). With a complete sample, it is easy to see that the sample distribution 
referred to in 1.1 is the nonparametric estimate on the maximum likelihood 
criterion. The same result is true of the product-limit estimate for incomplete 
samples, as wiII be demonstrated in Section 5. 

The most frequently used methods of parametric estimation for distributions 
of lifetimes are perhaps the fitting of a normal distribution to the observations 
or their logarithms by calculating the mean and variance, and fitting an ex
ponential distribution e-t / p.dt/ p. by estimating the mean life J.I alone. Such as
sumptions about the form of the distribution are naturally advantageous insofar 
as they are correct; the'estimates are simple and relatively efficient, and a 
complete distribution is obtained even though the observations may be re
stricted in range. However, non parametric estimates have the important func
tions of suggesting or confirming such assumptions, and of supplying the esti
mate itself in case suitable parametric assumptions are not known. An impor
tant property of these nonparametric estimates is that if the age scale is trans
formed from t to t* = f(t), where f is a strictly increasing function, then the cor
responding estimated distribution functions are simply related by F*(f(t)) 
=F(t). 

1.3 Examples of the RS and P L estimates. We will consider the following 
situation. A random sample of 100 items is put on test at the beginning of 1955; 
during the year 70 items die and 30 survive. At the end of the year, a larger 
sample is available and 1000 additional items are put on test. During 1956, 
15 items from the first sample and 750 from the second die, leaving 15 and 250 
survivors respectively. As of the end of 1956, it is desired to estimate the propor
tion P(2) of items in the population surviving for two years or more. 
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The survival probabilities are supposed to depend on the age (the duration 
of the test) rather than on the calendar year, and hence the data are arranged 
as in Table 460. 

Samples 

Initial numbers 
Deaths in first year of age 
One-year survivors 
Deaths in second year of age 
Two-year survivors 

TABLE 460 

I 

100 
70 
30 
15 
15 

II 

1000 
750 
250 

This particular example is such that it is easy to form an estimate P*(2) 
= 15/100 = 0.15 from the first sample alone. This is called the reduced-sample 
(RS) estimate because it ignores the 1000 items tested only during 1956. It is a 
legitimate estimate only when the reduced sample is itself a random sample; 
this will be the case only when (as assumed here) the observation limits (two 
years for the first sample, and one year for the second) are known for all items, 
deaths as well as losses. In the absence of this information, one would have no 
basis for discriminating among the 835 deaths observed before the age of two 
years. One cannot simply ignore the 250 losses at age one year; since only 15 
items have survived for two years, P(2) would then be estimated as 15/850 
= .018, an absurd result. The point is discussed further in 3.1 below. 

We now inquire whether the second sample, under test for only one year, can 
throw any light on the estimate of P(2). Clearly it will be necessary to assume 
that both samples have been drawn from the same population, an assumption 
that the RS estimate P*(2) avoided. At any rate, the estimates of P(l) from 
the two samples, namely 0.30 and 0.25, are not sufficiently different to contra
dict the assumption. By combining the two samples, the estimate 

.P(1) = P*(l) = (30 + 250)/(100 + 1~00) = .255 

is obtained for P(l). (In this case the RS has the same value as the other esti
mate to be discussed, the product-limit or PL.) This result exhausts the useful
ness of the second sample for the present purposes; how does it help to esti
mate P(2)? 

The answer is that there are advantages to using the first (the smaller) 
sample for estimating P(2)/P(1), the conditional probability of survival for 
two years given survival for one year, rather than P(2) itself. This estimate is 

.P(2)/ .P(1) = 15/30 = 0.50, whence 

.P(2) = 0.255 X 0.50 = 0.127, 

a very simple example of the product-limit (PL) estimate. The outstanding 
advantage of this strategy is that it works just as well if we are not privileged 
to know that the 750 deaths in the second sample had observation limits of one 
year, because these items are irrelevant to the estimation of P(2)/P(1) in any 
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case. Other considerations for deciding between the two estimates will be set 
forth in Section 3. 

The discussion of the PL estimate will be continued shortly, in Sections 2 
and 3. Section 3 is equally concerned with the RS estimate, while Section 4 is 
devoted to the actuarial estimates. The remaining three sections consist princi
pally of mathematical derivations. Though much older, the actuarial estimates 
are essentially approximations to the PL; they are products also, but typically 
they aim to reduce the number of factors by grouping. (Grouping mayor may 
not be possible for the PL itself.) The distinguishing designation product-limit 
was adopted because this estimate is a limiting case of the actuarial estimates. 
It was proposed as early as 1912 by Bohmer [6] (referred to by Seal [26]), but 
seems to have been lost sight of by later writers and not further investigated. 

1.4 Notation. The survival function 

pet) = Pr (T > t), (lc) 

giving the population probability of surviving beyond t, will be used in place 
of the distribution function F(t) = 1-pet) because of its convenience where the 
product-limit estimate and its actuarial approximations are concerned. In 
addition the following functions are defined: 

Pet) = product-limit (PL) estimate of pet). 
P*(t) = reduced-sample (RS) estimate of pet). 

net) =the number of items observed and surviving at age t, when deaths 
(but not losses) at t itself are subtracted off. 

N(t) = the expectation of net), for fixed observation limits. 
N°(t) = the number of items having observation limits L such that L~t. In 

practice this function is not necessarily known. 

For the first reading of the paper it may be desirable to suppose that the 
death of one item and the loss of the same or any other item never occur at the 
same age, and never coincide with an age t at which any of the above functions 
are to be evaluated. This condition can always be met by fudging the ages a 
little when necessary. On the other hand, a regular user of the techniques will 
probably come to regard overt fudging as naive; he will prefer to formalize his 
notation and record-keeping by adopting the conventions already insinuated 
into the definitions of death and loss, pet), and net) above. These conventions 
may be paraphrased by saying that deaths recorded as of an age t are treated as 
if they occurred slightly before t, and losses recorded as of an age t are treated 
as occurring slightly after t. In this way the fudging is kept conceptual, sys
tematic, and automatic. 

The convention that deaths precede losses in case of ambiguity is based on 
the following sequence of operations, which is clearly more efficient than the 
reverse sequence: Examine a group of items of age to, observe the number 0 of 
deaths since the last examination, and then remove (or lose contact with) a 
number ~ of the survivors. It may then be convenient simply to record to as 
the age of death or loss of the o+~ items, especiall.f if to is always an integral 
multiple of a fundamental time interval; in fact, however, the deaths will have 
preceded the losses. 
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The chief exception to the immediate applicability of this convention occurs 
when the losses are random but cannot affect items that have already died. 
Then the possible sequences of occurrence of deaths and losses between exami
nation times (assumed to be close together) are approximately equally likely, 
and a reasonable compromise is to assume that half the losses in the interval 
precede and half follow the deaths, as in (4b) below. If the loss of an item is 
compatible with the possibility of its having died (unknown to the experi
menter) between the time when it was last examined and the time of loss, an 
item lost in this way is effectively lost just after it was last examined, and the 
convention is entirely appropriate. The disappearance of individuals subject 
to medical follow-up is a case in point. 

The remainder of the conventions concern the treatment of discontinuities in 
the functions listed above. Should the value assigned to n(t), say, for an argu
ment t for which it is discontinuous be the right-hand limit n(t+O) = lim n(t+h) 
as h~O with h>O, the left-hand limit n(t-O) (the same but with h<O), or 
something else? The superior expressiveness of the notation adopted is illus
trated by the relations 

n(t - 0) - n(t) = the number of deaths at t, 
n(t) - n(t + 0) = the number of losses at t, 

(ld) 

or equivalently by the formula (3a): P*(t) = n(t)/N°(t) , which otherwise would 
not be valid at discontinuities. Analogous conventions are adopted for all the 
above-mentioned functions of t, so that P(t) and 1'(t) are right-continuous, 
N°(t) is left-continuous, and n(t) and P*(t) are neither. Other advantages of the 
convention for P(t) and its estimates are the following: (a) According to the 
sequence of operations assumed above, one may record deaths as of age t al
though they actually occurred slightly earlier. (b) It makes P(O) = 1 if and only 
if no item dies at birth (age zero). This is convenient and natural. 

One other possibility may be mentioned briefly. The assumption that 
P( 00) =0, so that the lifetimes are finite with probability one, is necessary only 
for parts of Section 7 and for the calculation of a finite mean lifetime. However, 
in practice there is no apparent need to contradict the assumption either. If 
half of a sample dies in one day and the other half is still alive after 1000 days, 
one should still report 1'(1000) (not 1'( 00)) =0.50, since the argument 1000 is 
not an arbitrary large number, but the actual duration of the test. 

2. THE PRODUCT-LIMIT ESTIMATE 

2.1 Definition and calculation. Both the PL and the actuarial estimates of 
Section 4 are based on the following general procedure: 

(a) The age scale is divided into suitably chosen intervals, (0, Ul), (Ul, U2), 
... , as described below. (In the example of 1.3, there were only two 

such intervals, namely (0, 1) and (1, 2).) 
(b) For each interval (Uj_l, Uj), one estimates p;=Pj/Pi - 1, the proportion of 

items alive just after Ui-l that survive beyond Uj. 

(c) If t is a division point (it may be introduced specially if necessary), the 
proportion P(t) in the population surviving beyond t is estimated by the 
product of the estimated Pi for all intervals prior to t. 
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If step (a) is left relatively arbitrary and approximations or parametric 
assumptions are accepted in step (b), one arrives at the actuarial estimates. 
The PL is obtained by selecting the intervals in (a) so that the estimation in (b) 
is a simple binomial, without any recourse to assumptions of functional form. 
The condition for this is that within each interval, deaths and losses be segre
gated in a known fashion. As a beginning, it may be assumed that no interval 
contains both deaths and losses. Then if the number under observation just 
after Ui-1 is denoted by nJ, and ai deaths are observed in the interval (Uj-l, Uj), 
the estimate is clearly 

Pi = (n; - lJi)ln; = n/ In/, (2a) 

where n/ is the number under observation just after the (,j deaths. However, if 
the interval contains only losses (but at least one item survives throughout the 
interval), the estimate is P;=1. 

In the product of conditional probabilities formed in step (c), unit factors 
may as well be suppressed; and we need not be concerned with the manner in 
which the losses are distributed among the intervals, so long as nj and n/ are 
correctly evaluated in (2a), and no losses occur at ages intermediate to the aj 
deaths. The situation is illustrated by the following scheme: 

No. of items 
No. of deaths or losses 
Division points 

TABLE 463 

~.~'--~ 

N ~ ~ _ ~ 

~ L ~ ~ ~ 
Uo=O Ul 

Here N is the initial number of items, and the braces join the numbers whose 
ratios are the conditional probabilities (2a). The numbers in the second line 
are the differences of those in the first, the X's counting losses and the a's deaths; 
some of these could be zero. The division points Uj are placed in the third line 
to show that the aj deaths occur between Uj-l and Uj, while Uj is located any
where among the Xi losses. The relation n/5:n(uj) 5:nJ+l holds. 

The PL estimate is now given by 
/, 

Pet) = II (n/ In,), with Uk = t, n/ = nj - Dj. 
i=1 

(20) 

If the greatest observed lifetime t* corresponds to a loss, (2b) should not be 
used with t>t*; in this case p(t) can be regarded as lying between 0 and p(t*), 
but is not more closely defined. 

If it is desired to permit the entrance of items into the sample after the com
mencement of their lifetimes, this can be done by treating such entrances as 
"losses" that are counted negatively in Xj. The same items can of course disap
pear again at a later age and so yield ordinary losses as well. It is assumed that 
nothing is known of the existence of any such item that dies before it becomes 
available for observation; that is, the observation is censored on the right but 
truncated on the left, in the terminology of Bald [17]. 
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The form (2b) was selected for the PL estimate to give the minimum number 
of elementary factors and the maximum grouping of the observations. N ever
theless, the number of deaths OJ in an interval can easily be as small as unity. 
The resulting estimate Pi, though of limited value by itself, is none the less 
acceptable as a component of F(t). In fact, one is at liberty to take the intervals 
as short and as numerous as one pleases, and to regard each death as occupying 
an interval by itself. To specify the resulting expression, one relabels the N ages 
ti of death or loss in order of increasing magnitude, and denotes them by 
tl/~t2/~ ... ~tN'. Then 

F(t) = II [(N - r)/(N - r+1)], (2c) 

where r runs through those positive integers for which tr' ~t and tr' is the age 
of death (not loss). The cancellation of like integers in numerator and denomi
nator where they occur reduces (2c) to (2b). If there are no losses, everything 
cancels except the first denominator N and the last numerator n(t), say, and 
the PL reduces to the usual binomial estimate n(t)/N. (2c) shows that F(t) is a 
step-function which changes its value only at the observed ages of death, where 
it is discontinuous. 

In analyzing data on lifetimes by the multiplication of conditional probabili
ties, one of the following three procedures will usually suffice: 

(1) If the number of deaths is relatively small, these deaths may be arranged 
in order of age without grouping, and the numbers of losses in the intervening 
age intervals counted. The PL estimate is calculated by (2c). 

(2) If (1) is too time-consuming but the number of distinct ages of loss is 
relatively small, these ages may be arranged in order, additional division points 
inserted as desired, and the numbers of deaths in the resulting age intervals 
counted. If some of these intervals are shorter than necessary and are found to 
contain no deaths, they can be combined with adjacent intervals. The PL esti
mate is calculated by (2b). 

(3) If neither (1) nor (2) is compact enough, then division points are chosen 
without close consideration of the sample, deaths and losses are counted in 
each interval, and an actuarial approximation to the PL, such as (4b), is used. 

As a miniature example of case (1), suppose that out of a sample of 8 items 
the following are observed: 

Deaths at 0.8,3.1,5.4,9.2 months. 
Losses at 1.0, 2.7, 7.0, 12.1 months. 

The construction of the function F(t) then proceeds as follows: 

TABLE 464 

Ui ni n/ Ai 

0.8 8 7 2 
3.1 5 4 0 
5.4 4 3 1 
9.2 2 1 0 

(12.1) 1 1 1 

P(Ui) 

7/8 
7/10 

21/40 
21/80 
21/80 



NONPARAMETRIC ESTIMATION 465 

Each value of p(Uj) is obtained by multiplying n/lnj by the preceding value 
P(Uj_l). The age 12.1 is recorded in the last line to show the point at which 
Pet) becomes undefined; since it is a loss time, the 12.1 is enclosed ~n parenthe
ses. It is to be inferred from the table that P(5.3) =7/10, for example. The 
third and fourth columns could be omitted since n/ =nj-l (except in the last 
line, which corresponds to a loss) and Aj=n/ -ni+l. 

A rudimentary illustration of case (2) has already been given in 1.3. A little 
more elaborate example of a similar sort with N = 100 is given in Table 465. 
Here 1.7, 3.6, and 5.0 are assumed to be the only ages at which losses occur; 
they are prescribed as division points. The other division points (1, 2, 3, 4) are 
selected at pleasure, with the object of interpolating additional points on the 
curve of Pet) vs. t. IV Hj is the effective sample size defined in (2j) below. In 
practice four columns headed Ui/ nil n/, Pi will suffice. From the table one 
infers that .74 <P(2.5) <.87, for example. 

TABLE 465 

Interval Factor 

U:i-l, Ui j nj 8; Aj 1)i P(U;) /.rEi 

0 -1 1 100 3 0 97/100 .97 100 
1 -1.7 2 97 5 20 92/97 .92 100 
1.7-2 3 72 4 0 68/72 .87 88 
2 -3 4 68 10 0 58/68 .74 83 
3 -3.6 5 58 9 12 49/58 .63 80 
3.6-4 6 37 6 0 31/37 .52 73 
4 -5.0 7 31 15 16 16/31 .27 51 

2.2 Mean and variance of Pet). The important facts here, derived in Section 
6.1, are that Pet) is consistent and of negligible bias (unless excessive averaging 
is done; see Section 3.1), and that an asymptotic expression for its variance can 
be obtained. Like the estimate itself, the sample approximation to its variance 
proves to be independent of the limits of observation of items not actually lost. 
However, the variance derived from population values does depend on all the 
limits of observation, which are assumed to be fixed during the sampling. 

It has been noted that if the greatest observed lifetime t* corresponds to a 
loss, then for t>t*, Pet) is undefined though bounded by 0 and p(t*). Unless 
the probability of this ambiguous situation is quite small, however, a non
parametric estimate of pet) will not be very informative in any case. The 
ambiguity cannot occur unless the N°(t) items observable to t all die at ages 
less than t. The probability of this event is 

(2d) 

This is already less than 0.01 when N(t) is only five. 
It is shown in Section 6.1 that if one can supplement the ambiguous case by 

ascertaining the age of death of the item lost at t*, or of one or more other 
randomly selected items alive at t*, and defines Pet) for t>t* as p(t*) times the 
survival function for the supplementary sample, then the expected value of 
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F(t) is precisely the population value pet). In practice this supplementation 
would often be neither feasible nor worthwhile, but with otherwise adequate 
data the resulting bias in one or a few samples will be too small to have any 
practical importance. 

It will be shown in Section 6.1 that the variance of F(t) is given approxi
mately by 

" V [p(t)] == P2(t) :E (qifNjpj) , (2e) 
1 

where the distinct limits of observation L/ are now used as the division pointsj 
L\_1 is the greatest preceding tj and pj=l-Qj=P(L/)/P(L'i-I), with Lo'=O, 
L k ' = t. Mter dividing (2e) by P2(t), one sees that the square of the coefficient of 
variation (CV) of Pet) is set equal to the sum of the squares of the CV's of the 
estimates of the Ph the usual approximation for the variance of a product. 

If the sample estimates are inserted in (2e) one obtains 

A very similar formula was derived by Greenwood [15] and later by Irwin [19] 
in connection with actuarial estimates. It is easily verified that (2f) remains 
valid when the number of intervals is reduced to those used in (2b), or ex
panded to one interval for each death as in (2c). In the latter case it may be 
written 

V [p(t) ] == P2(t) :E [(N - r)(N - r -I- 1) ]-1, (2g) 

where r runs through the positive integers for which tr' ~ t and tr' corresponds 
to a death. 

In terms of integrals (2e) can be written 

I I I dP(u) I 
11 [p(t)] == P2(t) ° N° (u)P2(U) 

== P2(t) I I I dP(u) I 
° N(u)P(u) 

(2h) 

In case of ambiguity the first form should be referred to and interpreted in ac
cordance with 1.4. If P(u) alone is discontinuous within the range of integration, 
it should be regarded as a (continuous) independent variable, so that 
JP(u)-21 dP(u) 1= l/P(u). 

Since N°(t) ~N°(u) ~N, it is clear that (2h) is greater than the complete 
sample variance pet) [l-P(t)JlN but less than the reduced-sample variance 
pet) [l-P(t)]/N°(t) of (3b). If losses are random and the instantaneous rates of 
death and loss among survivors are in the ratio 1 to p at all ages, then one has 
E [NO(U)-l] == [N.PP(u) ]-1 for large samples, and (2h) reduces to 

V [p(t)] == [pl-p(t) - P2(t) ]/(1 -I- p)N (2i) 
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It is often instructive to estimate an effective sample size N E(t), which in the 
absence of losses would give the same variance V [p(t) ]. Evidently 

lV E(t) = Pet) [1 - p(t)]/ V [p(t)]. (2j) 

It can be shown that N E(t) is nonincreasing as t increases, and that 

n(t)/P(t) ~ NE(t) ~ D(t)/[1 - Pet)], (2k) 

where D(t) is the number of deaths observed at ages not exceeding t. The 
upper bound was proposed as an approximation to N E(t) by Cornfield [8]. The 
lower bound corresponds to the reduced-sample variance. 

In Table 464 of 2.1 we had P(6) =21/40=0.525. By (2f) the variance of P(6) 
is estimated as 

V [P(6) ] = (0.525)2 (_1 _ + _2_) = 0.042. 
8X7 5X3 

By (2g) the same result appears in the form 

( 1 1 1) (0.525)2 -- + -- + -- . 
7X8 4X5 3X4 

The effective sample size is estimated as 

N E(6) = (0.525) (0.475) /0.042 = 6.0. 

The bounds for N E(6) in (2k) are 5.7 and 6.3. Values of N E are also indicated in 
Table 465. 

2.3 Mean lifetime. The PL estimate Ii of the mean lifetime p, is defined as 
the mean of the PL estimate of the distribution. It is well-known (and easily 
proved by integrating by parts) that the mean of a nonnegative random varia
ble is equal to the area under the corresponding survivorship function. Hence 

Ii = i '" P(t)dt. 

Of course, if Pet) is not everywhere determined, fJ, is undefined. In cases where 
the probability of an indeterminate result is small, Pet) is practically unbiased 
and the same is true of fJ,. 

If we "complete" Pet) in the example of Table 464 by following the longest 
observed individual (with tt' = 12.1) to death at t = 14.3 we have 

fJ, = (1.000)(0.8) + (0.875)(3.1 - 0.8) + (0.700)(5.4 - 3.1) 

+ (0.525)(9.2 - 5.4) + (0.2625)(14.3 - 9.2) 

= 0.800 + 2.012 + 1.610 + 1.995 + 1.339 = 7.76. 

If Pet) were "completed" by setting Pet) =0 for the indeterminate range, the 
last term in the above sum would be replaced by (0.2625) (12.1-9.2) =0.761, 
and ~ would be estimated as 7.18. 

Of course, if the probability of an indeterminate result is high, there is no 
satisfactory way to estimate p.. In such cases Irwin [19] has suggested that in 
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place of estimating the mean itself, one should estimate the "mean life limited 
to a time L," say JLIL). This is the mean of min (Ti, L), with L chosen at the in
vestigator's convenience. Naturally, one would choose L to make the probability 
of an indeterminate result quite small. If one chooses to use this procedure he 
should give an estimate of P(L) along with I'lL). If we take L= 10 in our 
example, 

~II0) = 0.800 + 2.012 + 1.610 + 1.995 + (0.2625)(10 - 9.2) = 6.63, 

and F(lO) = 0.2625. 
In Section 6.2 an approximate formula is given for the variance of 1': 

V - == f 00 A 2(t) I dP(t) I = f 00 A 2(t) I dP(t) I , 
(JL) 0 N(t)P(t) 0 NO(t)P2(t) 

(21) 

where A(t) = It P(u)du. Upon making the obvious substitutions we find, after 
some reduction, the following estimate of VOL): 

A " Ar2 
V(jl) = ~ (N - r)(N - r + 1) 

(2m) 

where r runs over those integers for which tr corresponds to a death, and 
Ar= I~ F(u)du. If there are no losses, 

N 

Ar = L (t. - tr)/N, 

and it can be shown that V(JL) reduces to L (ti-f'J2/N2. This fact, plus the 
impossibility of estimating the variance on the basis of only one observed 
death, suggests that (2m) might be improved by multiplication by D/(D-1), 
where D is the number of deaths observed. 

For our first estimate of I' above we have 

Al = 2.012 + 1.610 + 1.995 + 1.339 = 6.956, 

A4 = 1.610 + 1.995 + 1.339 = 4.944, 

AD = 1.995 + 1.339 = 3.334, 

A7= 1.339 = 1.339. 

(Obviously the Ar and Ii are best calculated in reverse order.) We then have for 
the estimated variance, 

A (6.956)2 (4.944)2 (3.334)2 (1.339)2 
V(:a) = + + + = 3.91 

7X8 4X5 3X4 1X2 

The estimated standard deviation of Ji is v'3.91 = 1.98. If the factor D / (D -1) 
=4/3 is included, these results become 5.21 and 2.28 respectively. 

If one is limited to grouped data as in Table 465 it is necessary to use 
actuarial-type assumptions (e.g., the trapezoidal rule) to estimate I' and its 
variance. Thus, we may estimate the mean life limited to 5 time units as follows: 

:aID) = (1/2) [(1.00 + 0.97)(1.0 - 0.0) + (0.97 + 0.92)(1.7 - 1.0) 

+ ... + (0.52 + 0.27)(5.0 - 4.0)] = 3.76. 
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We observe in conjunction with this estimate that the estimated proportion 
surviving the limit is P(5) =0.27. 

3. THE REDUCED-SAMPLE ESTIMATE VS. THE PL 

3.1 Alternatives to the PL estimate. The acceptable nonparametric estimation 
procedures known to the writers in the situation considered are variants of the 
PL and of the reduced-sample (RS) estimate defined by 

P*(t) = n(t)/N°(t) = n(t)/ [net) + DO(t)]. (3a) 

Here N°(t) =n(t)+DO(t) is the number of items with observation limits ~t; of 
these, DO(t) die at ages ~t and net) survive beyond t. A simple example of the 
RS estimate has been given in 1.3. Berkson and Gage [3] have called it the 
"ad-hoc" method. 

If the lifetimes are independent of the observation limits, the reduced sample 
of N°(t) items will be a random sample and P*(t) a simple binomial estimate, 
unbiased, and with the variance 

v [P*(t) ] = pet) [1 - pet) ]jN°(t). (3b) 

It has already been noted that this is equal to or larger than the approximation 
(2h) to the PL variance. As with the PL, the estimate 

p.* = i 00 P*(t)dt (3c) 

of the mean life may have to be truncated at the greatest of the observation 
limits. In Section 6.2 it is shown that the variance of Jl* is given exactly by 

V(p.*) = 2 f 00 1 - pet) f oop(u)dudt. 
° N°(t) ! 

In practice one substitutes P*(t) for pet) in this formula and perhaps approxi
mates the integrals. 

Whereas the PL estimate has discontinuities only at observed ages of death, 
it is apparent from (3a) that the RS generally has discontinuities at losses and 
observation limits also. Furthermore, suppose that one of the observation 
limits L is such that all (or a sufficient number of) the corresponding items are 
observed to die prior to L, while other items survive and are observed beyond L. 
Then the decrease in N°(t) (without an equivalent decrease in net)) will cause 
P*(t) to increase as t increases through L. Thus P*(t), unlike Pet) and the true 
P(t), is not necessarily monotonic decreasing. However, this appears to be a 
disadvantage only in a psychological sense. It does not seem advisable to avoid 
it, as one could, by a further reduction of the sample, basing the estimated 
pet) for all t~a suitable L on the fixed sample of items having observation 
limits~L. 

The expression DO(t) =N°(t) -net) in (3a) is not the total number D(t) of 
deaths observed prior to or at age t, but the (usually smaller) number of such 
deaths having observation limits~t. Since P*(t) is unbiased, the estimate ob
obtained by replacing DO(t) by D(t) is too small on the average (except in 



470 AMERICAN STATISTICAL ASSOCIATION JOURNAL, JUNE 1958 

special cases where D(t) =DO(t) with probability one), as has been pointed out 
many times (e.g., [3] and [23]). Examples such as that of 1.3 show that the 
resulting bias can be very great, being in fact limited only by the necessity 
that the expectation be positive. Since DO(t) is often unknown while D(t) is 
known, an investigator who is unacquainted with the PL or one of its approxi
mations is all too likely to fall into the trap. 

Another insidious but instructive characteristic of the illegitimate estimate 
based on D(t) is the fact that it is simply the average of the PL estimates Pet) 
(those that are defined at t) obtained by regarding each item as a sample in its 
own right. For a sample of one item with observed lifetime tl, Pet) is unity for 
t<tl, and for t?tl is zero or undefined according as the observation ends with 
death or loss. This is also the RS estimate unless one insists that P*(t) is unde
fined for t>L1 (the observation limit of the item), even though it may have 
been estimated as zero for smaller values of t. 

The moral of this discussion is that arithmetic averages of independent PL 
estimates from very small samples will tend to be biased. On the other hand, 
the averaging of independent RS estimates is quite satisfactory, especially if 
the values of N°(t) are used as weights. To avoid bias one must at least assign 
zero weight when N°(t) =0, thus supplying each estimate with a limit of ob
servation (the maximum of those attached to its items) beyond which it is 
regarded as undefined, even though a value of zero may be indicated at some 
earlier age. 

To summarize, the advantages of the PL over the RS are the following: 

(a) The observation limits need not be known for items observed to die. 
(b) The sampling variance of the PL is usually a little smaller. 
(c) The PL has fewer discontinuities, and its monotonicity may be comfort

ing. 

On the other hand, the RS has the following advantages over the PL: 

(a) It is perfectly unbiased, and hence estimates from man V small samples 
can be combined by (weighted) averaging. 

(b) It facilitates the estimation of an isolated value of pet). 
(c) It may be preferred in some cases of dependence between lifetimes and 

observation limits (see 3.2 below). 

3.2 Dependence of deaths and losses. The assumption that the full lifetimes 
T, are independent of the observation limits L, is sometimes violated, as a re
sult of a change in the population sampled, or the conditions leading to the 
event called death, or the method of sampling the population. For example, in 
a study of survival after an operation, a change in surgical technique five years 
before the data are analyzed will affect the survival times only of those with 
observation limit less than five years. When loss 18 due to unforeseen circum
stances, such as patients moving out of the state, the possibilities for depend
ence are obvious. Merrell [23] and Sartwell [24] have emphasized this point. 

The estimate of pet) from the sample as a whole, whether PL or RS, involves 
arbitrary assumptions whose danger is peculiar to the dependent case and hence 
easily overlooked. The PL estimate in effect assumes that for items having an 



NONPARAMETRIC ESTIMATION 471 

observation limit L less than t, the conditional survival probability P(t)/P(L) 
is the same as that for items whose observation limits exceed t, while the RS 
estimate makes the same assumption concerning the absolute survival prob
ability pet) itself. In many applications, the PL assumption may seem as 
plausible as any; on the other hand, the fact that the results are expressed 
in terms of absolute probabilities may lead one to prefer the RS assumption 

(when there is no feeling to the contrary), if only because its operation is more 
easily visualized. For example, the RS estimate P*(t) (apart from sampling 
fluctuations) can never fall outside the range of the true values for the popula
tions sampled, because it is a weighted average, whereas in unfavorable cases 
the PL estimate Pet) may fall outside this range. 

If prior observation limits are given for all the items and the sample is 
large enough, dependence may be inquired into by grouping the items according 
to these limits, making separate estimates of pet) for each group, and comparing 
the results. If some unanticipated losses occur in advance of the a priori limits, 
the PL method can be used within each group. The group estimates can then 
be averaged with the initial numbers of items as weights to give something 
similar to the RS estimate, if that is desired. 

On the other hand, no dependence can be demonstrated if one's information 
is limited to the values of the ti=min (Li, Ti) and their Classification as deaths 
or losses; in this case the observed rates of death and loss can always be repre
sented by a model in which deaths and losses occur independently, as well as 
by many models in which this is not so. However, one usually has or can obtain 
other information that is more or less useful. 

What one would like is to obtain for each item the value of an auxiliary 
variable V (which may be either quantitative or qualitative), such that the Ti 
and Li are more nearly independent within subsamples defined in terms of V, 
than they are in the sample or population as a whole. This will generally be 
true if V is strongly related to the cause of loss, and independent of the cause of 
death, or vice versa. In this case the subsamples are formed so as to reduce the 
variability of the L, (or the T.) within them. Even if the auxiliary variable does 
not have the desired properties, it may be worthwhile to get an estimate of 
pet) by a different route for the sake of comparison. Also, the auxiliary variable 
may be of interest for its own sake, for example, classification of the items by 
starting date would be aimed at detecting a temporal change in the population. 
As pointed out in 3.1, the procedure in the general case is not satisfactory if the 
estimates depend on very few items. 

The innocuous form of dependence that results from testing with replace
ment is considered briefly in Section 7. 

4. ACTUARIAL ESTIMATES 

4.1 Estimates ttsing only n, 0, A. It has already been indicated (in 2.1) that 
actuarial estimates, like the PL, are formed by mUltiplying together a sequence 
of estimates of conditional probabilities of survival through intervals (0, Ul), 
(Ul, U2), .... Unlike the PL, the actuarial estimates will generally be some
what dependent on the selection of these intervals. It remains to consider how a 
typical factor p of this sort can be estimated when the number of items n at the 
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beginning of the interval is known to be depleted by 0 deaths and X losses 
within the interval, but the order in which these occur is not known or used. 
The PL estimate is denoted by p. 

As in 2.1, the estimates 

n-o 
p=--, 

n 

n-X-o 
r.= n-X 

(4a) 

would be used if all the deaths were known to precede all the losses, and if all 
losses preceded all deaths, respectively. Evidently p ~ p <po If P is not known, 
another intermediate value is clearly supplied by -the well-known "adjusted
observed" estimate (cf. [3], [12], [18], [22]) 

n - X/2 - 0 
p(l) = . 

n - X/2 
(4b) 

This can be recommended for its simplicity even though 

n - X/2 - 0 n - 0/2 - X n - 0 - X 
-----. ~ 

n - Xj2 n-o/2 n 
(4c) 

Here the second fraction is the corresponding estimate of the probability of not 
being lost (if losses are also random events), and the third fraction is the ob
served probability of escaping both death and loss. The only other estimate in 
this section that fails to give equality here is p(4) below. 

The "joint risk" estimate (cf. [6] and [12]) is 

[
n - 0 - X] iJ/(/H}.) 

p(2) = 
n 

(4d) 

It is the maximum likelihood estimate when the losses are random, the instan
taneous event-rate for losses is a constant times that for deaths, and the only 
data given are the values of n, 0, and X. The above estimates satisfy the rela
tion p~p(2)~p(1)~p. 

One can obtain the PL estimate p from any of the foregoing by dividing the 
given interval into smaller intervals no one of which contains both deaths and 
losses. Since there are reasons (full use of information, absence of arbitrary 
assumptions, essential uniqueness of the estimate) for preferring small intervals 
to large, it seems reasonable to regard p as the standard to which the large
interval actuarial methods are approximations. 

The error incurred in an actuarial estimate of p can be attributed to two 
sources, namely, the sampling error of p, reflecting the fact that 0 is a random 
variable, and the discrepancy between p(1) and p, reflecting the unknown ar
rangement of deaths and losses within the interval. These sources of error will 
be compared by calculating the variance of log p in each case, on the assumption 
that n is large compared with 0 and X, and that factors of the form 1 +O(n-2 ) 

can be neglected. On this basis the effect of variation in 0 is indicated sufficiently 
by the square of the coefficient of variation of pO), namely 

olen - X/2)(n - 0 - X/2) == 4o(2n - 0 - X)-2. (4e) 
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To evaluate the second source of error we note first that the total range of 
possible variation in log p (given 5 and X) is by (4a) 

log p - log E.. == 45X(2n - 5 - X)-2. (4f) 

However, if the arrangement is random, the extreme values may be unlikely. 
Therefore it will now be assumed that all permutations of the 5 deaths and X 
losses are equally likely (which happens to be a consequence of the proportional 
event-rates leading to (4d». In this case log p is minus the sum of a random 
sample of 5 of the 5+X numbers 

log (1 + _1_), log (1 + _1_), ... ,log (1 + 1 ). 
n-1 n-2 n-5-X 

Sampling theory and the Euler-Maclaurin theorem lead to the approximate 
variance 

45X(5 + X + 1)/3(2n - 5 - X)4. (4g) 

Dividing the sampling variance (4e) into the square of half the range (4f) of 
the grouping error gives 

(4h) 

which may be either> 1 or < 1. Dividing (4e) into the grouping variance (4g) 
gives 

X(5 + X + 1)/3(2n - 5 - X)2, (4i) 

which is always <1 (when n>O). 
The above results suggest that rather large intervals could be used if enough 

was known about the mechanisms of death and loss, and that the principal 
source of error is the probable failure of the various permutations of deaths and 
losses within the interval to be equally likely, or to fit any other scheme that 
may be assumed. Evidence on this point could be obtained by examining the 
permutations that actually occur. For example, this is what is done in using 
(2a). Otherwise one should probably require at the least that (4h) be suitably 
small. This still assumes that grouping errors, like the sampling errors, are inde
pendent from interval to interval. If not, one is thrown back on the ultimate in 
conservatism, which is to assert only that TI;E;:s;P:s;TI;p;. 

4.2 Estimates using average ages. Several estimates will now be considered 
that make use of the individual ages of death and loss, although arbitrary age 
intervals continue to be used. The individual ages enter via the average age d of 
the 5 deaths, and the average age A of the X losses, both measured from the be
ginning of the age interval under consideration, which is of length h. 

The first estimate assumes nothing about the losses, but assumes that the 
instantaneous death-rate is constant throughout the interval. The total ex
posure to the risk of death in the interval is then (n-5-X)h+M+XA, the maxi
mum-likelihood estimate of the death-rate is 5/[(n-5-X)h+M+XA], and the 
corresponding estimate of the survival probability p is 

p(3) = exp (-5/[n - 5 - X + (M + XA)/h]). (4j) 
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By using p(3), Harris, Meier, and Tukey [18} have been able to give an estima
tion procedure for the more general and more difficult case in which the age of 
death is never known exactly, but only known to fall in some interval, semi
infinite or finite, bounded by one or two observation points which vary from 
item to item. 

The PL estimate p can be derived from p(3) as well as from p(1) or p(2). Al
though the limit of the product of the estimates p(8) for the subintervals is not 
quite unique, the average value of log p(S) corresponding to 0 deaths occurring 
at the same age is 

I I du n - 0 
-0 = log--, 

o n - 0(1 - u) n 
(4k) 

in agreement with p=(n-o)/n. Here t:..(=uh) has been regarded as uniformly 
distributed between 0 and h. However, in other respects the behavior of p(3) 

does not parallel that of p. If the position of one or more of the deaths is shifted 
toward the end of the interval, p(S) is increased, while p is decreased (or else not 
changed). Again, p(3) does not necessarily agree with p in the simple case of no 
losses. Finally, the extreme values of p(3), obtained by putting t:..=A=O or h, 
fall outside the interval 'E1 p within which p is confined; in fact one can have 
p(3) <!!.. while p = p, or p(3) > P while p = J!.: 

The following estimates have been constructed with the object of using the 
mean ages t:.. and A to simulate the behavior of p: 

p(4) = (n - CA - o)/(n - CA), (41) 

where 

C = 1/2 + (t:.. - A)/h for I t:.. - A I ::; h/2, 

=0 

= 1 

for 

for 

t:.. - A ::; - h/2, 

t:.. - A ~ h/2. 

The value of C is immaterial when 0 = 0 or A = O. 

(4m) 

(4n) 

These estimates are two different averages of the bounding estimates!!. and 
p, taken with weights C and 1-c respectively. The quantity C is so defined that 
the appropriate one of the bounding estimates is assigned as soon as It:.. - A I 
~h/2. This is intuitively reasonable, and is justified analytically by the fact 
that log p(4) and log p(5) have essentially the variance (4g) of log p, if each death 
and each loss is uniformly and independently distributed in the interval. To 
estimate this variance, one can mUltiply 

var C == var [(t:.. - A)/h] = (0 + A)/12oA 

by the square of the range (4f), since (4f) gives the change in log p(4) and log 
p(5) corresponding to a unit change in c. 

Experience may indicate which estimate is preferable in a given type of 
situation. If relevant experience is lacking, it would seem advisable to rely 
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primarily on adequately small intervals, and to minimize the computation 
time by using simple estimates. This suggests that pel) be used when the deaths 
and losses are thought to be arranged at random within the interval, p when 
the interval is chosen so that most of the deaths precede most of the losses, and 
P when losses precede deaths. 

This completes the material that seems to be most important for applica
tions. The remaining three sections are devoted primarily to mathematical 
deri va tions. 

5. MAXIMUM LIKELIHOOD DERIVATION OF THE P L 

In accordance with 1.2 the method of maximum likelihood is viewed as a 
means for selecting the best fitting distribution from a class of admissible dis
tributions. It will now be shown that if all possible distributions are admitted, 
the product-limit is the one for which the sample likelihood is a maximum. 

Let Ti < T2 < .. " < T" denote the distinct ages of death, with 6i deaths 
observed at Ti . Let Ai denote the number of losses in the interval [Ti> Ti+l) , 
including any losses at Ti but none at Ti+1. (Here j=O, 1, "', kj To=Oj 
T"+1 = (Xl.) The ages of the Ai losses are denoted by LP), i = 1, 2, ... , Ai' Only 
in this section, pet) will represent not the "true" survivorship but rather an 
arbitrary one that is to be determined so as to maximize the likelihood. The 
likelihood may now be written 

(5a) 

. [P(T" - 0) - P(T,,))6k [ IT P(L.(/o») J. 
Here P(Ti-O) includes, whereas P(Ti ) excludes, the probability of death at 
age Ti exactly. 

Clearly (5a) will be maximized by making the P(LiW) and the P(Ti-O) as 
large, and the P(Ti ) as small, as is consistent with the monotonicity of the 
function and the assumption Ti 5. Litil < Ti+1• This means that peL/OJ) = 1 and 

peT;) = peL/i») = P(Ti+l - 0) (5b) 

for all i and j. If the common value is denoted by Pi> (5a) reduces to 
k 

11 (Pi- l - Pi)8iP/'i with Po = 1. (5c) 
i .... l 

Now writing Pi=I-Qi=Pi /Pi - 1 gives P j =PIP2 .. " Pi and Pi-I-Pi=PI ... 
Pi-lqi. With these substitutions (5c) becomes 

,. 
II p/,/-3 i ql i , (5d) 
'-1 
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where 

i=i-l '=i-l .=k 

ni = N - L A. - L 8. = L (Ai + 8.), or n(Ti - 0) 
i=1 

in the notation of 1.4. In this form each factor with a fixed index j is maximized 
individually by the binomial estimate Pi = Pi = (ni - 8i) In" in agreement with 
the PL in (2a). If Ak>O, so that the greatest observed lifetime t* corresponds to 
a loss, then p(t*) >0 and the likelihood of the sample is independent of the 
values of P(t) for t> t*. Thus p(t) and the maximum likelihood estimate are 
indeterminate under the same circumstances, and the identity between them is 
complete. 

6. MEANS AND VARIANCES 

In this seotion the mean of p(t) and the variances of F(t) and of the mean
life estimates j;. and p.* are derived. The observation limits are regarded as fixed 
from sample to sample. In principle, unconditional results for random loss 
times could be obtained by integration. 

6.1 The P L estimate p(t). Let Ll < Ls < . . . < Lk-l be the distinct observa
tion limits that are less than the age t=Lk at which P(t) is being estimated. Let 
ni+l=n(Li+O) be the number of survivors 1 observed beyond Li ; Ni+l=Eni+l 
=N°(Li+O)P(Li); P;= 1-Qi=P(Li)IP(Li- 1); and 8; the number of deaths 
observed in the interval (L;_I, L;], excluding nonzero values of the left end
point/ with Lo = O. Then 

" p(t) = II Pi with Pi = (ni - 8i)lni. (6a) 
i-I 

Let Ei denote a conditional expectation for nl, ... , ni (and hence also 
81, ••• , 8i-l) fixed. Then EiPi=p" provided that ni>O. If the condition ni>O 
could be ignored, one could write 

EF(t) = E[h ... h-1Ekh] = E[h ... h-lPk] 

= pkE [h ... Pk-2Ek- 1h-d (6b) 

= ... = PkP"-1 ... PI = P(t), 

so that p(t) would be an unbiased estimate. The flaw in this demonstration is 
the indeterminacy resulting when (for some j) niH = 0 but F(Li) > 0, an event 
whose probability is bounded by (2d), and which could be obviated in principle 
by obtaining one or more supplementary observations. In the derivations of 
approximate formulas that follow, any bias that p(t) may have is neglected. 

Both Greenwood [15] and Irwin [19] when giving formulas for the variance 
of an actuarial estimate of P(t) actually treat a special case in which the ac
tuarial estimator and p(t) coincide. Translated into our notation their com
mon argument is the following. 

Suppose we consider conditional variances for ni held fixed at the values Ni. 

1 The expression Li+O means that losses at Li itself have been subtracted off. 
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Then the h may be treated as independent quantities and 

h ( p.q.) " ( q. ) E[P2(t)] = II Pi2 + _, _' = P12 ••• Pk2 II 1 + _,_ 
i~l Ni i~l NiPi 

= P2(t) fr(l + ~). 
i=l NiPi 

(6c) 

If we ignore terms of order N i-2 we have as an approximation for the variance 

v [p(t) ] == P2(t) t ~ . 
i~l NiPi 

(6d) 

This last expression we will refer to as "Greenwood's formula." The calculation 
of the variance with n1, ... , n" fixed can apparently be justified only on the 
ground that it doesn't matter a great deal; the fixed ni are unrealistic, and in
consistent with the previous assumption of a sample of fixed size and fixed 
limits of observation. 

The authors have therefore rederived (6d) by means of successive conditional 
expectations. The procedure is to verify by induction the approximate relation 

Ei+dP2(t)] == p12 ••• h 2 (1 + E qi) Pi+12 ... Pk2 (6e) 
i~i+1 PiEi+1n i 

which reduces to (6d) whenj=O. Applying Ei to (6e) has the effect of replacing 
j by j -1 provided that one sets 

E. _,_ == E. p'.. 1 3 
P··2 [ E·P··] 

1 1 1 
Ei+1ni EiEi+1ni (6f) 

== Pi2/ Eini. 

wherein h/Ei+1n; has been replaced by the ratio of the expectations of numer
ator and denominator. The fact that hand Ei+1ni are positively correlated im
proves the approximation. 

In the special case in which k=2 (all observation limits less than t are equal 
to L 1) and any indeterminacy is resolved by one supplementary observation, 
the exact variance of Pet) can be calculated to be 

( [ ( N')2 N' [N'] v[p(t)] = P2(t) ~ + q2 1 + 1 _ _ P1 - ,P1 
Np1 N'P1P2 N [N', pd 

(6g) 

+ N' (1 _ N') ( ;1 - 2Q1N')]) ' 
N N [N, pd 

where N is the total sample size; N'=N°(t), the number of items observable 
to t or beyond; and 

[N', pd = 1/E(X-1) (6h) 

with X = max (Y, 1) and Y distributed binomially (N', P1). The methods used 
by Stephan [27] show that [N', pd =N'P1+O(1) for N' large. Thus the term 
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in square brackets is of order 1+0(I/N'), and (6g) approaches Greenwood's 
formula (6d) for large N'. 

6.2 Covariances and mean lifetimes. The method of Irwin [19] can be used 
to derive the variance of ;;. = j; P(t)dt by writing 

E(jJ.2) = E J: co J:cop(u)P(V)¢VdU 

= 2 J: GO I .. 00 E [p(u)p(v) ]dvdu. 

(Pi) 

If u <v and L" and Lk denote u and v respectively, then apart from bias due to 
indeterminate cases one has 

E[P(u)P(v)] = Jj][P2(u)E,,+~<P"+lh+2 ... h) J 
== Ph+lP"+2 ... PkE [P2(U) J (6j) 

== [P(v)/P(u) ]E[P2(U)] == P(u)P(v) [1 + U(u)], 

where by (2h) and (2g) 

U(u) = IV I dP(t) I == :E [(N - r)(N - r + 1)]-1; 
° N(t)P(t) 

the summation is over deaths at ag~s not exceeding u, and gives the sample 
estimate. Thus one has approximately 

V(.it) == 2 I co f GOp(u)P(v)U(u)dvdu 
° .. 

= 2 fcoA(u)p(u)U(u)du = IcoA2(U)dU(u), 
° . ° 

(6k) 

where A(u) = j,,"" P(v)dv. The result is discussed in 2.3. 
To obtain analogous (but in this case exact) results for the RS estimates 

P*(t) and f.L*, let u<v as before, and split off two independent subsamples con
sisting of the N'=N°(v) items observable to v or beyond, and the N"=N°(u) 
-N°(v) additional items observable to u or beyond, but not to v. Let the first 
subsample yield 5' deaths in (0, u) and e' in (u, v), while the second yields 5" 
deaths in (0, u). Also let Pl=P(U) and P2=P(V). Then 

E [P*(u)P*(v)] (with u ~ v) 

= E[(N' + N" - 5' - 5")(N' ....,. 5' - e') ]/N'(N' + N") 

= E [(N' + N" - 5' - 5")(N' - 5') ]P2/P1N'(lV' + N") 

= [E(N' - 5')2 + E(N" - 5")·E(N' - 5')]P2/P~N'(N' + N") 

= [N'2PI2 + N'P1(1 - PI) + N'N"PI2]P2/P1N'(N' + N") 

= P(u)P(v) + P(v) [1 - P(u) ]/N°(u). 

(61) 

Substituting this result in the analogue of (6i) and subtracting f.L2 gives V(f.L*) as 
in (3d). 
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7. CONSISTENCY; TESTING WITH REPLACEMENT 

The RS estimate P*(t), being binomial, is of course consistent. In view of the 
approximate nature of the formula for the variance of p(t) , however, a proof of 
its consistency is in order. In fact, by giving closer attention to the errors of 
the approximations in the variance derivation, it can be shown that Pet) does 
have the limit pet) in probability provided only that N°(t)~ 00. However, the 
proof is too lengthy to be given here. Of course, the consistency is obvious 
enough in the special case in whi~h t4e number k of conditional probabilities to 
be estimated remains bounded as N°(t)~ 00 • 

Thus far the independence of deaths and losses has been assumed. The 
question of consistency may also be raised in the differing context of "testing 
with replacement." (Cf. [7], [10], [11], [14].) This is the common life-testing 
situation in which a fixed number of items, say 71 of them, are always under 
test; when one dies it is replaced by another. The only preassigned constants 
are the duration of the test, S, and the number, 71, of items on test at all times. 
The number of losses is then fixed at 71, one for each item on test at the conclu
sion of the experiment, while the number of deaths observed, and hence the 
total number of items, is a random variable. The first 71 items on test have S 
as their limit of observation; if one of these dies at age t, with t<S, its successor 
has S-t as its limit of observation, and so on. Consistency will mean an ap
proach to pet) as 7IS~OO, which implies that either 7I~00 or S~OO (or both). 

The RS estimate will be considered first. Let Tl , T2, ••• , be an infinite se
quence of independent lifetimes with survivorship pet) and let Pk(t) be the 
proportion of T l , ••• , Tk that exceed t. By the strong law of large numbers, 
lim Pk(t) = pet) with probability one as lc~ 00 , for any specified t. Now the RS 
estimate P*(t) (which exists only for values of t in the interval 0, S) can be 
represented as a value of Pk(t), with k a random variable. This can be done by 
assigning the lifetimes T l , ••• , T. to the 71 ite:rp.s initially tested. If some of 
these items have replacements whose limits of observation S - Ti (i = 1, ... ,71) 

are not less than t, then succeeding lifetimes T.+ l , T.+2, ••• , are assigned to 
these replacements. The process is repeated until no more observation intervals 
of at least the duration t are left. To prove P*(t) consistent, it only remains to 
prove that for any M, Pr (k>M)~llts 7IS~oo. If 7I~00 the result is evident. 
If S~oo, then even for 71=1, 

Pr (k > M) = Pr (Tl + ... + TM ~ S - t) 

~ Pr [T. ~ (S - t)/M for i = 1, ... , M J (7a) 

= {1 - preS - t)/M]}M. 

As S~ 00 the last expression has the limit unity and consistency is proved, pro
vided that P( 00) =0 (eventual death is certain). 

When S~OO, 71 is fixed, and P( 00) =0, the consistency of the PL estimate 
Pet) follows from the relation (cf. (4a)) 

net) < Pet) < net) + 71 

N°(t) + D' - - N°(t) + D' + 71 

net) + 71 

N 
(7b) 
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since the number of losses is "', P*(t) =n(t)/N°(t) is consistent, N°(t)~ (f;), and 
the number of deaths D' having observation limits less than t is a random 
variable that does not depend significantly on S. F(t) is undoubtedly consistent 
also when S is fixed and .,,~ (f;), but a rigorous proof of this has not been con
structed. 
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